Как найти площадь стороннего треугольника

Формула расчета площади треугольника

Треугольник это плоская фигура, которая имеет три стороны и три угла. Сумма всех трех углов, равна 180 градусов.
Высота треугольника это – опущенный перпендикуляр из вершины угла на противоположенную сторону или ее продолжение, которую в этом случае, называют основанием.

Что бы найти площадь треугольника,

для этого надо основание умножить на высоту и разделить на два

1. Площадь разностороннего треугольника

h – высота треугольника

Формула площади треугольника (S):

Калькулятор для расчета площади треугольника

2. Площадь треугольника с тупым углом

h – высота треугольника

Формула площади треугольника с тупым углом (S):

Формулы для треугольника:

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Если известны длины трех сторон

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона

Формула Герона для нахождения площади треугольника:

Через основание и высоту

Формула нахождения площади треугольника с помощью половины его основания и высоту:

Через две стороны и угол

Формула нахождения площади треугольника через две стороны и угол между ними:

Через сторону и два прилежащих угла

Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:

Площадь прямоугольного треугольника

Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

Площадь равнобедренного треугольника через стороны

Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

Площадь равнобедренного треугольника через основание и угол

Формула нахождения площади равнобедренного треугольника через основание и угол:

Площадь равностороннего треугольника через стороны

Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.

Формула нахождения площади равностороннего треугольника через сторону:

Площадь равностороннего треугольника через высоту

Формула нахождения площади равностороннего треугольника через высоту:

Площадь равностороннего треугольника через радиус вписанной окружности

Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

Площадь равностороннего треугольника через радиус описанной окружности

Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

Площадь треугольника через радиус описанной окружности и три стороны

Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

Площадь треугольника через радиус вписанной окружности и три стороны

Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

[spoiler title=”источники:”]

http://vsvoemdome.ru/obrazovanie/kak-nayti-ploschad-treugolnika

http://mozgan.ru/Geometry/AreaTriangle

[/spoiler]

Теперь вам не нужно тратить время на долгие вычисления, прежде чем вы сможете узнать площадь треугольника. Зная методы расчета, используемые для расчета площади треугольника, вы легко сможете это сделать самостоятельно. Действительно, всегда лучше знать формулы площади треугольника. Треугольники могут быть разными и вы это знаете, но как найти площадь треугольника если вам практически ничего неизвестно о треугольнике? И что нужно знать из размеров треугольника, чтобы найти его площадь. Давайте разбираться. При этом тема не так проста как кажется на первый взгляд, наверное, поэтому задачи нахождения площади треугольника есть и в ОГЭ и в ЕГЭ по математике.

Что такое треугольник

Треугольник – это геометрическая фигура. По определению, это многоугольник, имеющий три стороны. Следовательно, треугольник также должен иметь три угла.

Сумма трех углов треугольника должна быть равна 180°.

Чтобы иметь возможность вычислить площадь треугольника, мы должны сначала знать меру его основания, а также высоту. Основание треугольника представляет одну из его сторон. Высота, с другой стороны, представляет собой каждую из трех прямых линий, которые проходят через одну из вершин треугольника и перпендикулярны стороне, лежащей напротив принятой вершины (то есть перпендикулярно основанию).

Треугольник

Прежде всего, помните, что треугольник состоит из трех сторон и трех углов. Это значит, что у него должно быть три вершины. Треугольник, вершинами которого являются A, B и C, может быть представлен как: ΔABC. Существуют разные виды треугольников. Они могут быть классифицированы двумя различными способами: либо по свойству его сторон, либо по свойству его углов.

Различные типы треугольников в зависимости от длины их сторон

Разносторонний треугольник

Мы узнаем разносторонний треугольник по трем сторонам, которые имеют разную длину. Эта треугольная форма может быть построена только с тремя разными углами. Кроме того, один из них может быть прямым углом (или углом 90 °). В общем, название «произвольный треугольник» используется для разностороннего треугольника.

Разносторонний треугольник

Равнобедренный треугольник

Мы говорим, что треугольник равнобедренный, если он имеет две стороны одинаковой длины и два равных угла при основании. Равнобедренный треугольник также можно узнать по тому факту, что его высота представляет его ось симметрии, его медиану и биссектрису.

Равнобедренный треугольник

Прямоугольный треугольник

Прямоугольный треугольник обязательно имеет прямой угол. Другими словами, сумма двух других его углов должна быть равна 90°. Прямоугольный треугольник также имеет гипотенузу.

Прямоугольный треугольник

Это противоположная сторона вершине с прямым углом. Прямой треугольник может быть разносторонним (или любым), если его три стороны имеют разную длину.

Кроме того, он может быть равнобедренным в том случае, если он имеет два одинаковых катета.

Равносторонний треугольник

Треугольник называется равносторонним, если он имеет три стороны одинаковой длины. Поэтому все его углы также равны и каждый по 60°. В равностороннем треугольнике любая высота также выступает в качестве медианы и биссектрисы.

Равносторонний треугольник

Площадь треугольника

Площадь разностороннего треугольника

Вычисляем площадь треугольника без особенностей – все его стороны разные и все углы разные.

Площадь треугольника через две стороны и угол между ними

Если известны две стороны треугольника и угол между ними, то площадь разностороннего треугольника вычисляется по формуле “площадь треугольника через две стороны и угол между ними”:

S=frac{1}{2} cdot ab cdot sin alpha

Если известны высота в треугольнике и основание, то используется формула площади треугольника через основание и высоту:

Площадь треугольника через основание и высоту

S=frac{1}{2} ah

Формула Герона определения площади треугольника

Если известны стороны любого треугольника, то его площадь можно определить по формуле Герона.

Определение площади по формуле Герона

S=sqrt{p cdot (p-a) cdot (p-b) cdot (p-c)}, где p=frac{a+b+c}{2}

Площади треугольника

Площадь равнобедренного треугольника

Площадь треугольника через основание и сторону можно найти, если известны сторона и основания равнобедренного треугольника.

Площадь равнобедренного треугольника через сторону и основание

S=frac{1}{4}b sqrt{4a^2-b^2}

К равнобедренному треугольнику также применима формула площади треугольника через основание, сторону и угол между ними:

Площадь равнобедренного треугольника через сторону и основание

S=frac{1}{2}ab cdot sin alpha

Найти площадь равнобедренного треугольника можно также через боковые стороны и угол между ними.

Площадь равнобедренного треугольника через боковые стороны и угол между ними

S=frac{1}{2} a^2 cdot sin alpha

Площадь равнобедренного треугольника через основание и угол между боковыми сторонами:

S=frac{b^2}{4 tg frac{alpha}{2}}

Площадь прямоугольного треугольника

Приведем формулы площади прямоугольного треугольника. Формула площади прямоугольного треугольника через катет и прилежащий угол:

Площадь треугольника по катету и прилежащему углу

S=frac{a^2 cdot tg alpha}{2}

Площадь прямоугольного треугольника по радиусу вписанной окружности и гипотенузе

Формула площади треугольника по радиусу вписанной окружности и гипотенузе

S=r cdot (r+c)

Площадь прямоугольного треугольника, если в него вписана окружность:

Формула площади прямоугольного треугольника, в который вписана окружность

S=c_1 cdot c_2

Площадь равностороннего треугольника

Площадь равностороннего треугольника можно найти через радиус описанной окружности.

Площадь равностороннего треугольника через радиус описанной окружности

S=frac{3 sqrt{3} R^2}{4}

Если дан радиус вписанной окружности, то площадь равностороннего треугольника можно найти по формуле:

Площадь равностороннего треугольника через радиус вписанной окружности

S=3r^2 sqrt{3}

Площадь равностороннего треугольника, если известна сторона треугольника:

S=frac{sqrt{3}}{4} cdot a^2

Площадь равностороннего треугольника, если известна высота треугольника:

Площадь равностороннего треугольника через высоту

S=frac{h^2}{sqrt{3}}

Прежде, чем говорить всяко-разные, не обязательно печатные, выражения и оскорблять представителей вида Capra aegagrus hircus сравнением авторов учебника с этими животными – желательно бы видеть фото этой страницы учебника…

Четвёртый класс… Только вводятся основные понятия геометрии, абсолютно нет никаких сведений по тригонометрии, даже и намёка нет об основных аксиомах и теоремах геометрии, ноль понятия об иррациональных числах (и, соответственно, квадратных корнях) – и посчитай площадь разностороннего треугольника!

Единственный способ, который не использует ни тригонометрии, ни корней – через радиус вписаной окружности: площадь треугольника равна произведению радиуса вписаной окружности на полупериметр.

Если “четвертачкам” уже объяснили смысл биссектрисы и способы её построения, объяснили, что точка пересечения биссектрис равноудалена от сторон треугольника, объяснили понятие вписаной окружности (в чём я капитально сомневаюсь) – построят и найдут. Но – “плюс-минус убежало”: радиус вписаной окружности можно будет только измерить линейкой.

А это – “не наш метод”: в геометрии построение считается правильным только тогда, когда оно выполнено линейкой без делений и циркулем без шкалы углов. Но зато – математически обосновано.

А математический аппарат таких обоснований излагают школярам далеко не в четвёртом классе…

Кому интересна методика построения вписаной окружности – пожалуйста:

1) Из вершины А любым (в разумных пределах…) раскрывом циркуля делаем засечки на прилегающих сторонах треугольника;

2) Из этих точек тем же раскрывом циркуля рисуем вспомогательные сегменты окружностей внутри угла между сторонами треугольника;

3) Через точку пересечения этих вспомогательных сегментов рисуем луч из точки А – это и будет биссектриса угла а;

4) Повторяем 1), 2) и 3) для остальных двух вершин. Точка пересечения трёх биссектрис и будет центром вписаной окружности;

5) Строим перпендикуляр к стороне треугольника, проходящий через центр вписаной окружности: из точки пересечения биссектрис делаем (подобрав подходящий раскрыв циркуля) две засечки на любой стороне треугольника. Из этих точек тем же раскрывом циркуля строим симметричную относительно стороны треугольника точку и проводим линию, соединяющую полученную точку и центр вписаной окружности. Точка пересечения этой линии со стороной треугольника будет точкой касания вписаной окружности к стороне треугольника. Расстояние от точки касания до центра вписаной окружности – и есть необходимый нам радиус вписаной окружности.

Можно повторить 5) для каждой из сторон треугольника – это ничего не изменит, поскольку вписаная окружность может быть только одна, и радиус её, естественно, тоже один. Единственный плюс: мы получим все три точки касания вписаной окружности к сторонам треугольника…

А теперь измеряйте длину этого радиуса милиметровой линейкой, микрометром, нанометром, … Всё это филькина грамота – до тех пор, пока мы математически не обоснуем формулу нахождения этого самого радиуса.

А это – не по “четвертачку” панамка!

Я могу поизголяться и через ещё тыщонку знаков результат по Герону (три корня из пятнадцати) подтвердить через “Пифагоровы штаны”. Но – снова упираемся в корни…

Как найти площадь любого треугольника

Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.

Как найти площадь любого треугольника

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.
  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.
  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Читайте также 🧠👨🏻‍🎓✍🏻

  • 7 причин полюбить математику
  • ТЕСТ: Помните ли вы геометрию?
  • 10 хитрых головоломок со спичками для тренировки воображения
  • Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
  • ТЕСТ: Сможете ли вы решить простые математические примеры?

Для всех треугольников

По основанию и высоте

По основанию и высоте

Основанием треугольника может быть выбрана любая из сторон треугольника.

Сторона a

Высота h


По двум сторонам и углу между ними

По двум сторонам и углу между ними

Сторона a

Сторона b

Угол α° между сторонами a и b

Угол α между сторонами может быть любым: тупым, острым, прямым.


По радиусу вписанной окружности и трем сторонам

По радиусу вписанной окружности и трем сторонам

Сторона a

Сторона b

Сторона c

Радиус r вписанной окружности

По радиусу описанной окружности и трем сторонам

По радиусу описанной окружности и трем сторонам

Сторона a

Сторона b

Сторона c

Радиус R описанной окружности


По формуле Герона

По формуле Герона

Полупериметр: 

Сторона a

Сторона b

Сторона c


По стороне и двум прилежащим углам

По стороне и двум прилежащим углам

Сторона a

Угол β°

Угол α°

Для равнобедренных треугольников

По боковым сторонам и основанию

По боковым сторонам и основанию

Сторона a (a = b)

Сторона c


По боковым сторонам и углу между ними

По боковым сторонам и углу между ними

Боковая сторона a (a = b)

Угол α° между боковыми сторонами


По боковой стороне, основанию и углу между ними

По боковой стороне, основанию и углу между ними

Боковая сторона a (a = b)

Основание треугольника c

Угол β° между основанием и стороной


По основанию и углу между боковыми сторонами

По основанию и углу между боковыми сторонами

Основание треугольника c

Угол α° между боковыми сторонами


По высоте и основанию

По высоте и основанию

Основание треугольника c

Высота h

Для равносторонних треугольников

По стороне

По стороне

Сторона a (a = b = c)


По высоте

площадь треугольника по высоте

Высота h


По радиусу вписанной окружности

По радиусу вписанной окружности

Радиус r вписанной окружности


По радиусу описанной окружности

По радиусу описанной окружности

Радиус R описанной окружности


Для прямоугольных треугольников

По двум катетам

По двум катетам

Формула нахождения площади прямоугольного треугольника по двум катетам

Катет a

Катет b


Через гипотенузу и угол

Через гипотенузу и угол

Формула нахождения площади прямоугольного треугольника через гипотенузу и угол

Сторона c

Угол α


Через катет и угол

Через катет и угол

Формула нахождения площади прямоугольного треугольника через катет и угол:

Сторона b

Угол α


По отрезкам, на которые делит гипотенузу вписанная окружность

По отрезкам, на которые делит гипотенузу вписанная окружность

Формула нахождения площади прямоугольного треугольника по отрезкам, на которые делит гипотенузу вписанная окружность

Отрезок d

Отрезок e


Через гипотенузу и вписанную окружность

Через гипотенузу и вписанную окружность

Формула нахождения площади прямоугольного треугольника через гипотенузу и вписанную окружность

Сторона с

Радиус r

По формуле Герона

По формуле Герона

Формула Герона для нахождения площади прямоугольного треугольника:

Полупериметр: 

Сторона a

Сторона b

Сторона c

Таблица с формулами площади треугольника

исходные данные рисунок формула
Для всех треугольников
1 основание и высота
2 две стороны и угол между ними
3 радиус вписанной окружности и три стороны
4 радиус описанной окружности и три стороны
5 три стороны
(по формуле Герона)

где 

6 сторона и два прилежащих угла
Для равнобедренных треугольников
7 боковые стороны и основание
8 боковые стороны и угол между ними
9 боковые стороны, основание и угол между боковыми сторонами и основанием
10 основание и угол между боковыми сторонами
11 высота и основание
Для равносторонних треугольников
12 сторона
13 высота
14 радиус вписанной окружности
15 радиусу описанной окружности
Для прямоугольных треугольников
16 два катета
17 гипотенуза и угол
18 катет и угол
19 отрезки, на которые делит гипотенузу вписанная окружность
20 гипотенуза и радиус вписанной окружности
21 три стороны
(по формуле Герона)

где  

Определения

Катет

Катет — одна из двух сторон прямоугольного треугольника, образующих прямой угол. Противолежащая прямому углу сторона называется гипотенузой. Для непрямоугольного треугольника катеты не существуют.

Треугольник

Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади).

Площадь

Площадь — это численная характеристика, которая дает нам информацию о размере плоскости, ограниченной замкнутой геометрической фигурой.

Площадь треугольника определяется как общее пространство, занимаемое тремя сторонами треугольника в 2-мерной плоскости. Основная формула для площади треугольника равна половине произведения его основания и высоты, то есть A = 1/2 × b × h. Эта формула применима ко всем типам треугольников, будь то разносторонний треугольник, равнобедренный треугольник или равносторонний треугольник. Следует помнить, что основание и высота треугольника перпендикулярны друг другу.

В этом уроке мы изучим формулы площади треугольников для различных типов треугольников, а также некоторые примеры.

Что такое площадь треугольника?

Площадь треугольника — это область, заключенная между сторонами треугольника. В зависимости от длины сторон и внутренних углов, площадь треугольника варьируется от одного треугольника к другому. Единица площади измеряется в квадратных единицах, например м 2, см 2 и т. Д.

Добавить комментарий