Как найти площадь стрелки

Площадь фигуры (треугольник, четырёхугольник, трапеция и др.) по клеточкам (клеткам).

Какие есть формулы?

Есть способ, при котором надо воспользоваться формулой, основой которой будет понятие узла, узла внутреннего и узла внешнего. Узел это пересечение линий, образующих эти самые клеточки. Внешние узлы, это узлы, находящиеся на сторонах и вершинах геометрических фигур, площади которых нам надо найти. А внутренние узлы, это узлы внутри этих фигур. Клеточки у нас со сторонами равными одному сантиметру (1 см).

Формула, о которой идет речь, называется формула Пика.

Выглядит она вот так:

И по ней очень просто посчитать площадь фигуры S. В этой формуле M это количество внешних узлов, N – количество внутренних узлов.

Приведем пример, возьмем геометрическую фигуру параллелограмм:

Внутренние узлы – синие – N – их у нас 20.

Внешние узлы – красные – М – их у нас 18 и их количество нам надо поделить на два, получится 18/2 = 9 узлов.

Складываем 9 + 20 и вычитаем единицу: 20 + 9 – 1 = 28 см².

Еще один пример:

S = 14/2 + 43 – 1 = 49 см².

система выбрала этот ответ лучшим

Ксарф­акс
[156K]

6 лет назад 

Допустим, у нас есть произвольная фигура, построенная на листе в клетку. Необходимо вычислить её площадь.


Площадь фигуры по клеточкам

Для того, чтобы найти площадь любой фигуры по клеточкам, можно использовать формулу Пика.

Данная формула основана на подсчёте количества узлов, лежащих внутри фигуры и на её границе.

Узел – это точка, которая лежит на пересечении 2 линий данной сетки: вертикальных и горизонтальных.

Площадь фигуры по клеточкам находится по формуле:

как найти площадь фигуры по клеточкам

N – количество узлов, которые находятся внутри фигуры.

M – количество узлов, которые находятся на границах (на вершинах и сторонах).


Примеры нахождения площади по клеточкам

1) Найдём площадь треугольника. Будем считать, что одна клетка – это 1 см.

Отметим внутренние узлы и узлы, которые находятся на границах.

площадь фигуры по клеткам

N = 7 (внутренние).

M = 8 (узлы на границах).

Площадь треугольника S = 7 + 8/2 – 1 = 10 см².

2) Найдём площадь трапеции по клеточкам, одна клетка – это 1 см. Отметим все узлы и подсчитаем их количество.

площадь фигуры трапеции по клеточкам

N = 11 (внутренние).

M = 12 (узлы на границах).

Площадь трапеции S = 11 + 12/2 – 1 = 16 см².

3) Найдём площадь произвольного многоугольника. Одна клетка – это 1 см.

Отметим внутренние узлы и узлы, расположенные на границах фигуры. Подсчитаем их количество.

площадь фигуры многоугольника по клеткам

N = 6 (внутренние узлы).

M = 8 (узлы на границах).

Площадь многоугольника S = 6 + 10/2 – 1 = 10 см².

Марин­а Волог­да
[294K]

3 года назад 

Такие задачи очень часто встречаются, когда известен размер клеточки и дана фигура.

Вот пример таких задач:

Решение зависит от того, какая фигура дана и как именно она размещена относительно клеточек.

Возьмем простой пример, необходимо вычислить площадь вот такого треугольника:

Вспоминаем правило:

Теперь считаем, сколько клеточек треугольник в длину и сколько в высоту. У нас получается 2 в высоту и 6 в длину.

Подставляем к формуле:

S = 1/2 х 2 х 6 = 6 см2.

Считаем по клеточкам, подставляя формулу Пика:

Целых клеточек у нас 3.

Теперь считаем, сколько не целых: 6. Делим их на 2.

S = 3 + 6:2 = 6 см2.

А теперь высчитываем по формуле Пика: количество узлов сетки внутри – 2, количество узлов сетки, лежащих на границах – 10.

Подставляем к формуле и получаем – 2 + 10:2 – 1 = 6 см2.

Теперь давайте рассмотрим вот такой треугольник:

Чтобы найти площадь, вспоминаем правило:

Считаем клеточки и подставляем в формулу:

S = 1/2 х 2 х 6 = 6 см2.

А теперь находим по клеточкам: целых клеточек 2, не целых клеточек 8. Подставляем в формулу: 2 + 8:2 = 6 см2.

Пробуем сделать по формуле Пика: количество узлов сетки внутри – 3, количество узлов сетки, лежащих на границах – 8.

Подставляем к формуле и получаем – 3 + 8:2 – 1 = 6 см2.

Enot-Nina
[110K]

3 года назад 

Найти площадь геометрической фигуры можно самыми разными способами:

Самый простой вариант – это вручную посчитать клеточки – целые и половинки также поскладывать. Простой, хотя и не самый быстрый и может не самый точный способ, но он работает. Чтобы легче было считать, достаточно расчертить фигуру на более простые.

Есть еще один способ – это использовать давно разработанную формулу. Это так называемая формула Пика. Для нее нужно посчитать количество узлов – точек пересечения клеточек, что окружены фигурой (находятся внутри нее), а также подсчитать количество пограничных узлов – по контуру фигуры.

Вот на картинке наглядно показано, как ее можно применять, чтоб посчитать площадь любой фигуры по клеточкам:

Как посчитать площадь фигуры по клеточкам

Барха­тные лапки
[382K]

3 года назад 

Площадь любого многоугольника можно посчитать по клеточкам. Для этого применяем формулу Пика. На нашем рисунке В – количество узловых клеточек внутри фигуры, Г – количество узлов на границе . Узлы – пересечение двух линий. многоугольника. Площадь равна S = В + Г/2 – 1 Считаем точки на рисунке и подставляем в формулу. – 10 + 7/2 -1 = 12,5.

Таким образом можно посчитать площадь, если вершины фигуры лежат в узлах.

Ann Luka
[2.8K]

6 лет назад 

Чтобы найти площадь фигуры по клеточкам, нужно посчитать сколько в фигуре целых клеточек. Потом нужно посчитать сколько не целых и поделить их количество на 2. Добавить к получившемуся числу количество целых клеточек – это и будет правильный ответ.

Например. В треугольнике 3 целых клетки и 4 не целых. 3+4/2=5 пощадь треугольника 5 клеток.

Outli­ne
[18.3K]

3 года назад 

Для того, чтобы определить площадь фигуры на бумаге в клеточку есть универсальная формула Пика, позволяющая вычислить площадь изображения, но в только в том случае, если вершины искомой фигуры имеют целые (натуральные числа) координаты. Называется эта формула, в честь Георга Пика:

S=В + Г / 2 − 1

В этой формуле буквенные обозначения означают следующее:

В — количество целочисленных точек внутри многоугольника;

Г — количество целочисленных точек на границе (вершинах и сторонах) многоугольника;

S – площадь фигуры.

Здесь используется понятие “целочисленные” – это те, точки, которые расположены на пересечениях сетки (в ее узлах).

Для примера, найдем площадь треугольника:

Треугольник

Обозначим внутренние точки нашей фигуры красными кружками, а те, что на границах – синим цветом. Считаем красные и синие точки:

В=12, Г=4.

Исходя из подсчетов определяем площадь треугольника по формуле:

S=В+Г/2-1=12+2-1=13.

Можно убедиться в правильность проведенных выше расчетах. Рассчитываем площадь квадрата, обведенного красным, и вычитаем площади зеленого, синего и фиолетового треугольников:

Треугольник

S квадрата равна 36, площади треугольников: синего – 6, зеленого – 2, фиолетового – 15.

Исходя из полученных данных, S белого треугольника равна 13:

S=36-6-15-2=13.

Kriti­kSPb
[93.6K]

3 года назад 

Подсчет клеточек – дело полезное. С их помощью можно найти площадь геометрической фигуры.

Достаточно воспользоваться формулой, доказанной Георгом Пиком в 1899 году.

Подходит для расчета площади фигур с прямыми сторонами и целым количеством углов, чаще всего применяют для нахождения площади разносторонних треугольников и многоугольников с числом углов больше 4-х.

На теорему Пика есть задания в ЕГЭ.

12777­1
[272K]

3 года назад 

Сначала я подумал, что нужно будет фигуру, которая указана на рисунке в клеточку разбить по фигурам так, чтобы можно посчитать площадь каждой фигуры по-отдельности, но оказалось все намного проще. Существует для данной задачи специальная формула Пика, которая выглядит следующим образом:

Площадь = В + Г/2 – 1, где:

  • В – количество целочисленных точек внутри многоугольника.
  • Г – количество целочисленных точек на границе многоугольника.

Теперь разберемся на примере, у нас есть такой пример:

Перед нами трапеция. Допустим площадь одной клетки 1 кв.см. Теперь можно воспользоваться формулой:

11+12/2-1=16 кв.см.

Бекки Шарп
[71.2K]

3 года назад 

Найти площадь фигуры можно если вершины фигуры находятся в уголках клеточек, так называемые Целочисленные вершины или узловые точки. Решать задачу будем по формуле Пика, где

  • В – количество внутренних узловых точек,
  • Г – количество граничных узловых точек,

Вот такая фигура у нас –

Считаем точки и подставляем в формулу: S = 17 + 14/2 – 1 = 23

Ответ мы получаем в квадратных единицах, то есть клеточках.

Знаете ответ?

Содержание материала

  1. Длина дуги
  2. Видео
  3. Площадь сегмента круга по хорде и высоте
  4. Задача
  5. Площадь круга подробнее
  6. Площадь сектора круга через радиус и угол сектора
  7. Задача
  8. Сектор круга. Площадь сектора
  9. Формулы площади кругового сектора
  10. Формула площади сектора круга по радиусу и длине дуги
  11. Формулы нахождения площади сектора круга
  12. Через длину дуги и радиус круга
  13. Через угол сектора (в градусах) и радиус круга
  14. Через угол сектора (в радианах) и радиус круга
  15. Площадь других частей круга
  16. Площадь сектора

Длина дуги

      Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

Рис.3

Рис.3

      В случае, когда величина α выражена в градусах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

      В случае, когда величина &alp

      В случае, когда величина α выражена в радианах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

Видео

Видео

Площадь сегмента круга по хорде и высоте

Пусть градусная мера ограничивающей дуги мала, длина хорды равна a, h — высота сегмента (перпендикуляр, опущенный из точки на окружности к середине хорды). Примечание: часто высота сегмента называется «стрелкой».

Тогда можно приближённо считать, что

Погрешность такого вычисления уменьшается вместе с отношением .

В частности, когда дуга содержит угол, меньший 50º, то есть, 

погрешность оказывается менее 1%.

Более точной является формула для любого сегмента меньшего полукруга:

Точный расчёт производится, исходя из свойства нахождения сложной фигуры, являющейся суммой или разностью двух и более объектов.

Сегмент является частью сектора, к которому либо добавлен треугольник, содержащий центральный угол (для дуг больших 180º), либо убран (соответствующий центральный угол меньше 180º).

Отсюда следует, что

Задача

Вычислить стрелку и площадь сегмента, если центральный угол содержит 60º, а 

.

Решение.

Для нахождения стрелки достаточно из радиуса вычесть высоту треугольника AOB. Поскольку угол AOB по условию равен 60º, то треугольник AOB равносторонний. Поэтому его высота в √3/2 раз отличается от стороны (от радиуса). 

Отсюда следует, что:

Площадь по первой формуле будет приблизительно равна

По второй:

Применяя точную формулу и учитывая, что

находим:

Ответ: Sсегм = 1,26 см2.

Площадь круга подробнее

( displaystyle S=pi {{R}^{2}}),

( displaystyle R) — радиус,( displaystyle pi ) – число ( displaystyle approx 3,1415)

Производит впечатление? Представляешь, сколько времени математики думали, пока не додумались, что…

…площадь круга радиуса ( displaystyle R) ровно (!) в ( displaystyle pi ) раз больше площади квадрата со стороной ( displaystyle R).

Ну вот, а теперь – площадь части круга.

Площадь сектора круга через радиус и угол сектора

Если известна градусная мера центрального угла (n°), то, находя отношение её к полному кругу (к 360º), также умножают результат на площадь круга:

Задача

Решение.

Центральный угол изображённого сектора равен

360° — 90° = 270°

Подставляя в формулу величины, несложно получить искомый результат:

Ответ: Sсект = 27 см2.

Также аналогичным образом решаются обратные задачи.

Сектор круга. Площадь сектора

Сектор — это часть круга, ограниченная двумя радиусами и дугой. Два радиуса разделяют круг на два сектора:

Чтобы найти площадь сектора, дуга которого содержи

Чтобы найти площадь сектора, дуга которого содержит  ,  надо площадь круга разделить на  360  и полученный результат умножить на  n.

Формула площади сектора:

Формула площади сектора:

S πr2  · n πr2n ,
360 360

где  S  — площадь сектора. Выражение

можно представить в виде произведения

πr2n  = n ·  πr  ·  r ,
360 180 2
где   nπr   — это длина дуги сектора.
180

Следовательно, площадь сектора равна длине дуги сектора, умноженной на половину радиуса:

где  S  — это площадь сектора,  s  — длина дуги данного сектора,  r  — радиус круга.

Формулы площади кругового сектора

Площадь кругового сектора выражается через центральный угол дуги. Как известно, угол может быть задан в радианной мере или в градусной.

Обозначим:

  • центральный угол, выраженный в угловых градусах — α;
  • длину дуги —L;
  • радиус — R.

Тогда выражение для вычисления площади кругового сектора через радиус и длину дуги будет иметь вид:

Формула 1

S=R·L2

Из курса геометрии (8-9 классы) известно следующее выражение для нахождения длины дуги сектора круга:

Формула 2

L=αрад·R

где αрад — центральный угол, Рад.

Узнаем, как найти площадь сектора через центральный угол, заданный в радианах. Для этого подставим в выражение для L в формулу площади.

Формула 3

S=R·L2=R·αрад·R2=αрад·R22

Теперь переведем угол в радианах в градусы и приведем соответствующую формулу для расчета площади.

Формула 4

S=αрад·R22=R2·α·π2·180°=παR2360°

Формула площади сектора круга по радиусу и длине дуги

S=12⋅r⋅lS=frac{1}{2}cdot rcdot lS=21rl

rrr — радиус круга; lll — длина дуги.

Рассмотрим решение задачи.

Пример

Найдите площадь кругового сектора, если известно, что длина дуги равна 20 (см.), а радиус круга равен 5 (см.).

Решение

r=5r=5r=5 l=20l=20l=2

В данной задаче сразу можно подставить наши числа в исходную формулу и вычислить площадь: S=12⋅r⋅l=12⋅5⋅20=50S=frac{1}{2}cdot rcdot l=frac{1}{2}cdot 5cdot 20=50S=21rl=2152=5 (см. кв.)

Ответ: 50 см. кв.

Формулы нахождения площади сектора круга

Через длину дуги и радиус круга

Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).

Через угол сектора (в градусах) и радиус круга

Через угол сектора (в градусах) и радиус круга

Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах (α°) и деленной на 360°.

Через угол сектора (в радианах) и радиус круга

Через угол сектора (в радианах) и радиус круга

Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.

Площадь других частей круга

Иногда бывает, что нужно посчитать площадь какой-нибудь странной части круга. Эта часть может не быть ни сектором, ни сегментом.

Как тогда быть?

Давай рассмотрим два примера.

Площадь сектора

      Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

Рис.4

Рис.4

      В случае, когда величина α выражена в градусах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

      В случае, когда величина &alp

      В случае, когда величина α выражена в радианах, справедлива пропорция

 из которой вытекает равенство:

из которой вытекает равенство:

Теги

Теги

Как рассчитать площадь сектора круга

На данной странице калькулятор поможет рассчитать площадь сектора круга онлайн. Для расчета задайте радиус, длину дуги или угол сектора круга.

Сектор круга – это часть круга, окружности ограниченная дугой и двумя радиусами, проведенными к концам дуги.

Через длину дуги и радиус

Формула для нахождения площади сектора круга:

Через угол и радиус

Формула для нахождения площади сектора круга:

Нахождение площади сектора круга

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить площадь сектора круга, а также разберем примеры решения задач для демонстрации их практического применения.

Определение сектора круга

Сектор круга – это часть круга, образованная двумя его радиусами и дугой между ними. На рисунке ниже сектор закрашен зеленым цветом.

  • AB – дуга сектора;
  • R (или r) – радиус круга;
  • α – это угол сектора, т.е. угол между двумя радиусами. Также его иногда называют центральным углом.

Формулы нахождения площади сектора круга

Через длину дуги и радиус круга

Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).

Через угол сектора (в градусах) и радиус круга

Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах ( α°) и деленной на 360°.

Через угол сектора (в радианах) и радиус круга

Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.

Примеры задач

Задание 1
Дан круг радиусом 6 см. Найдите площадь сектора, если известно, что длина его дуги составляет 15 см.

Решение
Воспользуемся первой формулой, подставив в нее заданные значения:

Задание 2
Найдите угол сектора, если известно, что его площадь равна 78 см 2 , а радиус круга – 8 см.

Решение
Выведем формулу для нахождения центрального угла из второй формулы, рассмотренной выше:

Площадь сектора круга – формулы и примеры расчетов

Выполняя инженерные расчёты при проектировании различных объектов строительства, создании роботов, автоматизированных систем, станков, машин, самолётов, ракет, современных средств вооружения часто бывает необходимо найти площадь сектора круга.

Геометрия помогает при этом решать задачи на нахождение центра тяжести (центр масс), вычислять его координаты для плоских пластин, имеющих, в частности, форму правильного многоугольника.

Измерять и вычислять величины считается базовым умением. Оно включено в первую часть профильной программы выпускного экзамена ЕГЭ и ОГЭ по математике.

Сектор круга

Существует несколько определений, каждое из которых отличается только формулировкой, не меняющей подход к рассмотрению понятия:

Часть плоскости, ограниченная центральным углом и соответствующей дугой окружности.

Часть круга, заключённая между двумя радиусами.

Часто эту формулировку заменяют похожей, описывающей построение непосредственно: часть круга, лежащего внутри соответствующего центрального угла.

Площадь сектора круга через радиус и длину дуги

Пусть известны радиус круга R, длина дуги l. Как в этом случае определить площадь сектора, стягиваемого данной дугой?

Для ответа на вопрос понадобится формула нахождения длины окружности:

Определение, представленное через третью формулировку, даёт возможность соотнести численные величины понятий: сектор и круг, дуга и окружность, центральный и полный углы.

Поскольку отношения постоянны, то для ответа на поставленный вопрос достаточно найти отношение части к целому, затем умножить полученный результат на площадь круга S = πR 2 .

После сокращения дроби получают формулу:

Примеры решения задач

Задача №1

Найти площадь сектора круга радиусом 2 см, имеющего длину дуги 4 см.

Подставляя имеющиеся величины в формулу, получаем:

Sсект = (4 * 2) / 2 = 4.

Ответ: Sсект = 4 см 2 .

Задача №2

Подставив известные данные в формулу, получим:

Тот же результат получился бы при первоначальной работе в «общем виде»:

Площадь сектора круга через радиус и угол сектора

Если известна градусная мера центрального угла (n°), то, находя отношение её к полному кругу (к 360º), также умножают результат на площадь круга:

Задача №3

Чему равна площадь фигуры, изображённой на рисунке?

Центральный угол изображённого сектора равен

Подставляя в формулу величины, несложно получить искомый результат:

Ответ: Sсект = 27 см 2 .

Также аналогичным образом решаются обратные задачи.

Площадь сектора круга через угол сектора в радианах

Пусть центральный угол задан своей радианной мерой. Учитывая, что

несложно получить искомую формулу:

Задача №4

Чему равен центральный угол сектора в радианах (рад.), если его площадь равна 32, а радиус – 4?

Выразив α, затем подставив числовые данные, легко получить результат:

Благодаря этой формуле, несложно доказать, что площади двух секторов с равными центральными углами относятся как квадраты радиусов соответствующих окружностей:

С другой стороны, площадь части кольца находится из условия:

Сегмент круга

Существует два подхода к определению понятия:

Геометрическая фигура, являющаяся общей частью круга и полуплоскости, называется сегментом круга.

Часть плоскости, заключённая между хордой и окружностью.

Оба определения характеризуют один и тот же объект с разных сторон, выражая, по сути одно и то же.

Иногда проводится описательное построение. В этом случае второй вариант быстрее приводит к данному термину.

Площадь сегмента круга по хорде и высоте

Пусть градусная мера ограничивающей дуги мала, длина хорды равна a, h – высота сегмента (перпендикуляр, опущенный из точки на окружности к середине хорды). Примечание: часто высота сегмента называется «стрелкой».

Тогда можно приближённо считать, что

Погрешность такого вычисления уменьшается вместе с отношением

В частности, когда дуга содержит угол, меньший 50º, то есть,

погрешность оказывается менее 1%.

Более точной является формула для любого сегмента меньшего полукруга:

Точный расчёт производится, исходя из свойства нахождения сложной фигуры, являющейся суммой или разностью двух и более объектов.

Сегмент является частью сектора, к которому либо добавлен треугольник, содержащий центральный угол (для дуг больших 180º), либо убран (соответствующий центральный угол меньше 180º).

Отсюда следует, что

Задача №5

Вычислить стрелку и площадь сегмента, если центральный угол содержит 60º, а

Для нахождения стрелки достаточно из радиуса вычесть высоту треугольника AOB. Поскольку угол AOB по условию равен 60º, то треугольник AOB равносторонний. Поэтому его высота в √3/2 раз отличается от стороны (от радиуса).

Отсюда следует, что:

Площадь по первой формуле будет приблизительно равна

Применяя точную формулу и учитывая, что

Ответ: Sсегм = 1,26 см 2 .

Площадь сегмента круга через синус угла

Рассматривая точную формулу, площадь треугольника можно находить, используя половину произведения сторон на синус угла между ними. А значит:

Многие вычисления помогает провести онлайн калькулятор. Достаточно ввести исходные данные и запросить результат.

[spoiler title=”источники:”]

http://nauka.club/matematika/geometriya/ploshchad-sektora-kruga.html

[/spoiler]


Загрузить PDF


Загрузить PDF

Очень легко вычислить площадь правильного треугольника (это многоугольник!) и очень непросто сделать это в случае неправильного одиннадцатиугольника (это тоже многоугольник!). Данная статья расскажет вам, как вычислять площадь различных многоугольников.

  1. Изображение с названием Calculate the Area of a Polygon Step 1

    1

    Формула для нахождения площади правильного многоугольника: Площадь = 1/2 х периметр х апофема.

    • Периметр – сумма сторон многоугольника.
    • Апофема – отрезок, соединяющий центр многоугольника и середину любой из его сторон (апофема перпендикулярна стороне).
  2. Изображение с названием Calculate the Area of a Polygon Step 2

    2

    Найдите апофему. Она, как правило, дана в условии задачи. Например, дан шестиугольник, апофема которого равна 10√3.

  3. Изображение с названием Calculate the Area of a Polygon Step 3

    3

    Найдите периметр. Если периметр не дан в условии задачи, то его можно найти по известной апофеме.

    • Шестиугольник можно разбить на 6 равносторонних треугольников. Апофема делит одну сторону пополам, создавая прямоугольный треугольник с углами 30-60-90 градусов.
    • В прямоугольном треугольнике сторона, противолежащая углу в 60 градусов, равна x√3; углу в 30 градусов равна «х»; углу 90 градусов равна 2x. Если значение стороны x√3 равно 10√3, то х = 10.
    • «х» – это половина длины основания треугольника. Удвойте ее и найдете полную длину основания. В нашем примере основание треугольника равно 20 единицам. В свою очередь основание треугольника есть сторона шестиугольника. Таким образом, периметр шестиугольника равен 20 х 6 = 120.
  4. Изображение с названием Calculate the Area of a Polygon Step 4

    4

    Подставьте значения апофемы и периметра в формулу. В нашем примере:

    • площадь = 1/2 х 120 х 10√3
    • площадь = 60 х 10√3
    • площадь = 600√3
  5. Изображение с названием Calculate the Area of a Polygon Step 5

    5

    Упростите ответ. Возможно, вам придется записать ответ в виде десятичной дроби (то есть избавиться от корня). С помощью калькулятора найдите √3 и полученное число умножьте на 600: √3 х 600 = 1039,2. Это ваш окончательный ответ.

    Реклама

  1. Изображение с названием Calculate the Area of a Polygon Step 6

    1

    Найдите площадь треугольника. Формула: Площадь = 1/2 х основание х высота.

    • Если вам дан треугольник с основанием 10 и высотой 8, то его площадь = 1/2 х 8 х 10 = 40.
  2. Изображение с названием Calculate the Area of a Polygon Step 7

    2

    Найдите площадь квадрата. Чтобы найти площадь квадрата, просто возведите в квадрат длину одной его стороны. Если умножить основание квадрата на его высоту, мы получим тот же ответ, так как основание и высота равны.

    • Если сторона квадрата равна 6, то его площадь = 6 х 6 = 36.
  3. Изображение с названием Calculate the Area of a Polygon Step 8

    3

  4. Изображение с названием Calculate the Area of a Polygon Step 9

    4

    Найдите площадь трапеции. Формула: Площадь = [(основание1 + основание2) х высота] / 2.

    • Например, дана трапеция с основаниями 6 и 8 и высотой 10. Ее площадь = [(6 + 8)•10]/2 = (14 х 10)/2 = 140/2 = 70.

    Реклама

  1. Изображение с названием Calculate the Area of a Polygon Step 10

    1

    Используйте координаты вершин неправильного многоугольника. Зная координаты вершин, можно определить площадь неправильного многоугольника.

  2. Изображение с названием Calculate the Area of a Polygon Step 11

    2

    Сделайте таблицу. Запишите координаты вершин (х,у) (вершины выбирать последовательно в направлении против часовой стрелки). В конце списка еще раз напишите координату первой вершины.

  3. Изображение с названием Calculate the Area of a Polygon Step 12

    3

    Умножьте значение координаты «х» первой вершины на значение координаты «у» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна 82).

  4. Изображение с названием Calculate the Area of a Polygon Step 13

    4

    Умножьте значение координаты «у» первый вершины на значение координаты «х» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна -38).

  5. Изображение с названием Calculate the Area of a Polygon Step 14

    5

    Вычтите сумму, полученную в шаге 4, из суммы, полученной в шаге 3. В нашем примере: (82) – (-38) = 120.

  6. Изображение с названием Calculate the Area of a Polygon Step 15

    6

    Разделите полученный результат на 2, чтобы найти площадь многоугольника: S=120/2 = 60 (квадратных единиц).

    Реклама

Советы

  • Если вы записываете координаты вершин в направлении по часовой стрелке, вы получите отрицательную площадь. Таким образом, это можно использовать для описания цикла или последовательности данного набора вершин, формирующих многоугольник.
  • Данная формула находит площадь с учетом формы многоугольника. Если многоугольник имеет форму цифры 8, то необходимо из площади с вершинами против часовой стрелки вычесть площадь с вершинами по часовой стрелке.

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 438 691 раз.

Была ли эта статья полезной?

Как найти площадь геометрической фигуры по координатам?

Как найти (вычислить) площадь фигуры (треугольник, четырехугольник, трапеция, многоугольник и др.) по координатам?

Какие есть формулы и методы, позволяющие находить площадь через координаты?

Для вычисления площади простого многоугольника с любым количеством вершин, представленных в виде списка координат, при последовательном обходе которых, не образуются пересекающиеся линии, применяется формула Гаусса, иначе называемая “формулой землемера”, “формулой геодезиста”, “формулой шнурования”, “алгоритмом шнурования”, а так же “методом треугольников”.

Суть метода заключается в построении треугольников, состоящих из сторон многоугольника и лучей проведённых из начала координат к вершинам многоугольника, и сложении площадей треугольников, включающих внутреннюю часть многоугольника с вычитанием площадей треугольников, расположенных снаружи.

Площадь, вычисленная по приведенной формуле, будет иметь отрицательное значение при обходе фигуры по часовой стрелке и положительное при обходе против часовой стрелки.

Фигура многоугольника может иметь произвольную геометрию. Например:

Список координат многоугольника представлен в виде массива: (x1, y1), (x2, y2), (x3, y3). (xn, yn).

Для многоугольника на первом рисунке он задан точками: (3,4), (5,11), (12,8), (9,5), (5,6). Его площадь будет равна:

Существует также метод трапеций, основанный на сложении и вычитании площадей трапеций, образованных каждой из сторон многоугольника, её проекцией на ось абсциссы и перпендикулярами, опущенных из вершин на абсциссу. При обходе вершин по часовой стрелке учитывается величина координаты вершин. Если первая вершина меньше второй, то площадь трапеции прибавляется, если нет, то отнимается.

Для многоугольника ABCDE на левом нижнем рисунке существует 5 трапеций : ABJH, CBJF, CDIF, EDIG и EAHG.

Так как X1<X2, X3<X4 и X5<X1, то площади трапеций ABJH, CDIF и EAHG складываются, а X3>X4 и X4<X5, следовательно, площади трапеций CBJF и EDIG вычитаются:

S = S(ABJH) – S(CBJF) + S(CDIF) – S(EDIG) + S(EAHG)

Площади трапеций рассчитываются по формуле;

Sтрапеции = 1/2 *((a+b))*h,

где a, b – основания трапеции,

h – высота трапеции.

Значения a, b и h вычисляются по координатам.

В декартовых координатах круг может быть представлен двумя точками: центр А и любая точка В, лежащая на окружности. Для расчета площади круга необходимо вычислить его радиус по формуле:

Площадь фигуры по координатам вершин

Если известны координаты всех вершин, то площадь заданной геометрической фигуры (треугольника, прямоугольника, трапеции, ромба и т.д) можно найти по стандартным формулам. Но предварительно нужно найти длину сторон, диагоналей и т.п. (всё зависит от фигуры) с помощью формулы нахождения длины отрезка по заданным координатам.

Эта формула выглядит следующим образом:

точка A имеет координаты (x1, y1),

точка B имеет координаты (x2, y2).

Рассмотрим несколько примеров.

1) Треугольник ABC имеет координаты A(2,3); B(6,7); C(5,0). Его площадь можно найти по формуле Герона:

S — площадь треугольника,

p — полупериметр, который равен половине суммы сторон a, b и c.

Найдём, чему равны стороны треугольника по формуле нахождения длины отрезка по координатам:

AB = √(4² + 4²) = √32 ≈ 5,66.

AC = √(3² + (-3)²) = √18 ≈ 4,24.

BC = √((-1)² + (-7)²) = √50 ≈ 7,07.

Полупериметр треугольника будет равен (5,66 + 4,24 + 7,07) / 2 ≈ 16,97 / 2 ≈ 8,49.

Отсюда площадь треугольника ABC ≈ √(8,49 * 2,83 * 4,25 * 1,42) ≈ √145 ≈ 12,04.

2) Ромб ABCD имеет координаты A(1,2); B(3,4); C(5,2); D(3,0). Площадь можно найти через диагонали:

S — площадь ромба,

d1 и d2 — диагонали.

Таким образом, нам нужно найти диагонали AC и BD.

AC = √(4² + 0) = √16 = 4.

BD = √(0 + (-4)²) = √16 = 4.

Отсюда площадь ромба ABCD = 0,5 * 4 * 4 = 8.

3) Трапеция ABCD имеет координаты A(1,1); B(3,4); C(5,4); D(6,1). Стандартная формула площади трапеции такая:

S — площадь трапеции,

a и b — основания,

Высота трапеции (пусть это будет BE) — это перпендикуляр, который был опущен из вершины трапеции (из точки B) на её основание (в нашем случае это AD).

Определим координаты её отрезка:

  • координаты первой точки совпадают с точкой B, это (3,4).
  • координаты 2 точки (точка E) будут (3,1) — так как абсцисса совпадает с абсциссой точки B, а ордината совпадает с ординатой точек A и D.

Высота трапеции BE = √(0 + (-3)²) = √9 = 3.

Теперь посчитаем длину оснований:

AD = √(5² + 0) = √25 = 5.

Таким образом, площадь трапеции ABCD = 3 * 0,5 * (2 + 5) = 10,5.

Первоначально нужно вычислить длины сторон. В этом здесь будет основная задача. Получив стороны, вычисляем площади по стандартным формулам.

Самый простой случай — для прямоугольника, когда его стороны параллельны осям координат. Тогда одна сторона будет равна разнице абсцисс, вторая ординат.

Треугольник. Допустим, основание параллельно оси абсцисс. Вычисляем его длину, как разницу абсцисс. Далее нужно найти высоту. Она будет равна разнице ординат третьей вершины и ординаты любой из вершин основания. Затем — площадь по формуле: половина произведения основания на высоту.

Если же стороны фигуры не параллельны осям, то находить длины сторон придется уже более сложными расчетами. Допустим, прямоугольник. Первую сторону будем искать, как если бы она была гипотенузой в составе прямоугольного треугольника. Каждая сторона будет равна квадратному корню из суммы квадратов абсцисс и ординат концов отрезков стороны.

Так и для любой фигуры. Вначале определяем длины сторон как гипотенузу треугольника. После чего применяем стандартные формулы площадей.

Вычислительная геометрия, или как я стал заниматься олимпиадным программированием.Часть 1

Здравствуйте, уважаемые хабравчане! Это моя вторая статья, и мне хотелось бы поговорить о вычислительной геометрии.

Немного истории

Я являюсь студентом уже 4 курса математического факультета, и до того как я начал заниматься программированием, я считал себя математиком на 100 процентов.

В конце первого курса мой преподаватель по информатике, который занимается олимпиадным программированием, обратил на меня внимание. Им как раз не хватало одного математика в команду. Так потихоньку меня начали приучать к олимпиадному программированию. Скажу честно, для меня это было очень сложно: для человека, который узнал слово Delphi на первом курсе. Однако мой преподаватель оказался очень грамотным специалистом и нашел хороший подход ко мне. Он начал давать мне математические задачи, который я сначала решал чисто математически, а уже потом писал код (с грехом пополам).

Мне очень нравится подход моего преподавателя: «разберись с этой темой, а потом расскажи нам, да так чтоб мы все поняли».

Итак, первой на самом деле важной задачей, с которой мне поручили разобраться, было именно вычислительная геометрия, необходимо было разобраться в типичных задач этого раздела информатики. И я решил подойти к этой задаче со всей ответственностью.

Я помню, как долго мучился с этими задачами, чтобы они прошли все тесты на сайте informatics.mccme. Зато теперь я очень рад, что прошел через все испытания и знаю, что же такое задачи вычислительной геометрии.

Вступление

«Вычислительная геометрия – это раздел информатики, изучающий алгоритмы решения геометрических задач. Такие задачи возникают в компьютерной графике, проектировании интегральных схем, технических устройств и др. Исходными данными в такого рода задачах могут быть множество точек, набор отрезков, многоугольники и т.п. Результатом может быть либо ответ на какой-то вопрос, либо какой-то геометрический объект».

Поскольку статья является достаточно большой я решил разбить ее на две части: первая часть посвящена многоугольникам, вторая – взаимному расположению различных геометрических объектов.

Немного теории о векторах

Отрезок, для которого указано, какой из его концов считается началом, а какой — концом, называется вектором. Любая точка пространства также может рассматриваться как вектор. Такой вектор называется нулевым. Начало и конец нулевого вектора совпадают, и он не имеет какого-либо определенного направления.
image

Длиной ненулевого вектора AB называется длина отрезка AB. Длина нулевого вектора считается равной нулю.
Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Если два ненулевых вектора AB и CD коллинеарны и если при этом лучи AB и CD сонаправлены, то векторы AB и CD называются сонаправленными, а если эти лучи не являются сонаправленными, то векторы AB и CD называются противоположно направленными. Нулевой вектор принято считать сонаправленным с любым вектором.

Скалярное произведение векторов

Скалярное произведение векторов — это число, равное произведению длин этих векторов на косинус угла между ними.
(a, b) = |a||b|cos∠(a, b)
image
Если векторы заданы своими координатами a(x1, y1), b(x2, y2) то скалярное произведение (a, b) = x1x2 + y1y2.

Косое произведение векторов

Псевдоскалярным или косым произведением векторов на плоскости называется число
[a, b] = |a||b|sinθ
где image— угол вращения (против часовой стрелки) от a к b. Если хотя бы один из векторов a и b нулевой, то полагают [a, b] = 0.
Если векторы заданы своими координатами a(x1, y1), b(x2, y2) то косое произведение [a, b] = x1y2 — x2y1.
Геометрически косое произведение векторов представляет собой ориентированную площадь параллелограмма, натянутого на эти вектора.
image

Косое произведение векторов в задачах вычислительной геометрии занимает такое же почетное место, как рекурсии в комбинаторике. Это своего рода жемчужина вычислительной геометрии. Практически каждая задача вычислительной геометрии имеет более простое решение с помощью косового произведение вместо лобового решения.

А теперь займемся практикой

Начнем с треугольников
image

Задача №1

Задача очень простая, а именно: по введенным трем числам a, b, c определить существует ли треугольник с такими сторонами.

Решение
Понятно, что здесь нужно только проверить неравенство треугольника: a + b > c, a + c > b, b + c > a. Интересно, при изучении неравенства треугольника только ли у меня возник вопрос: не могут ли отрицательные числа тоже удовлетворять этим трем неравенствам? Оказывается, нет! Если мы сложим каждое неравенство, то получим a > 0, b > 0, c > 0. Поэтому неравенство треугольника является необходимым и достаточным условием существования треугольника.

Задача №2

Задача является очень похожей на предыдущую с той разницей, что треугольник задан не сторонами, а координатами вершин.

Решение
С первого взгляда решение кажется очевидным: вычислить стороны треугольника и свести задачу к предыдущей. Однако поскольку расстояние между двумя точками A(x1, y1), B(x2, y2) вычисляется по формуле √(x1-x2) 2 +(y1-y2) 2 то при извлечении корня возможна потеря точности, что плохо скажется на проверке неравенства треугольника. Оказывается, что если треугольник задан координатами своих вершин, то вычислять длины его сторон и проверять неравенство треугольника не требуется. В этом случае треугольника не существует тогда и только тогда, когда данные три точки лежат на одной прямой. А это легко проверяется через косое произведение векторов. Если оно равно нулю, то векторы коллинеарные, то есть все три точки лежат на одной прямой.
image

Во всех следующих задачах будем считать, что треугольник существует, поскольку процедуру проверки существования треугольника мы только что рассмотрели.

Задача №3

Треугольник задан своими сторонами. Определить тип треугольника: тупоугольный, прямоугольный или остроугольный.

Решение
Вспомним, что представляют собой каждый вид треугольника.

image

  1. Угол больше 90° – треугольник тупоугольный
  2. Угол меньше 90°– треугольник остроугольный
  3. Угол равен 90°– треугольник прямоугольный
  • Если cosα > 0, то a 2 < b 2 + c 2 – треугольник остроугольный
  • Если cosα = 0, то a 2 = b 2 + c 2 – треугольник прямоугольный
  • Если cosα < 0, то a 2 > b 2 + c 2 – треугольник тупоугольный
Задача №4

Задача аналогична предыдущей задаче, только треугольник задан не своими сторонами, а координатами вершин.

Решение
Аналогично задаче 2 можно сказать, что эта задача полностью сводится к предыдущей задаче (так оно и есть). Однако, как и во второй задаче, решение можно упростить. Вообще, если треугольник задан координатами своих вершин, то всегда легче работать с ним через вектора, нежели вычислять стороны. Аналогично предыдущей задаче, необходимо определить каким является наибольший из углов треугольника. Вид угла легко определяется по знаку скалярного произведения образующих его векторов: оно положительно для острого угла, равно нулю для прямого угла и отрицательно для тупого угла. Поэтому необходимо посчитать все три скалярных произведения и перемножить их и по знаку данного числа можно судить о типе треугольника.

Задача №5

По данным сторонам треугольника найти его площадь.

Решение
Очевидно решение, заключается в применение формулы Герона.
image
Кстати, никого не интересовало доказательство этой формулы?

image
Вот и все!

Задача №6

Вычислить площадь треугольника заданного координатами своих вершин.

Решение
Не будем говорить о решении, которое сводится к предыдущей задачи, а попробуем воспользоваться геометрическим смыслом косового произведения. Геометрически косое произведение двух векторов определяет ориентированную площадь параллелограмма натянутого на эти вектора. Поскольку диагональ параллелограмма разбивает его на два равновеликих треугольника, то можем найти площадь нашего треугольника, как половину площади параллелограмма.
Для векторов a(x1, y1), b(x2, y2)
image
S = (x1y2 — x2y1) / 2 — ориентированная площадь треугольника

Задача №7

Дана точка и треугольник заданный координатами своих вершин. Определить лежит ли точка внутри, на границе или вне этого треугольника.

Решение
У этой задачи есть два принципиально разных решения. Начнем с наименее привлекательного.

Метод площадей

image
Если сумма площадей треугольников AKB, AKC, BKC (не ориентированных, а «обычных») больше площади треугольника ABC точка лежит вне треугольника. Если же сумма первых трех площадей равна четвертой, то нужно проверить, не равна ли нулю одна из трех площадей. Если равна, то точка лежит на границе треугольника, иначе – внутри.
Вычислять площади треугольников, естественно, надо через косое произведение векторов. Этот метод не очень хороший. Поскольку здесь используются сравнение чисел с плавающей точкой, а это в свою очередь может привести к принятию неверного решения при сравнении. Второй метод опять таки опирается на вектора, он намного эффективнее во всех отношениях.

Проверка полуплоскостей

Если хотя бы одна из сторон треугольника «разводит» противолежащую ей вершину и точку по разным полуплоскостям, то точка лежит вне треугольника. Иначе, если точка принадлежит хотя бы одной из прямых, содержащих стороны треугольника, то она находится на границе треугольника. Иначе точка лежит внутри треугольника.
image
В первом примере сторона AB разводит вершину C и точку K по разным полуплоскостям, поэтому точка лежит снаружи.

Задача №8

Вычисление площади многоугольника заданного координатами своих вершин.

Решение
Под многоугольником будем подразумевать простой многоугольник, то есть без самопересечений. При этом он может быть как выпуклым, так и не выпуклым.

Данную задачу можно решить двумя способами: вычисляя ориентированные площади трапеций и треугольников.

Метод трапеций

image
Для того чтобы посчитать площадь многоугольника нужно разбить его на трапеции, так как это показано на рисунке, а затем сложить ориентированные площади полученных трапеций это будет ориентированной площадью исходного многоугольника.
S = SA1A2B2B1 + SA2A3B3B2 + SA3A4B5B3 + SA4A5B6B5 + SA5A6B4B6 + SA6A1B1B4
Площади трапеций считаем по известной формуле: полусумма оснований на высоту
SA1A2B2B1 = 0.5 * (A1B1 + A2B2) *(B2 — B1)

Поскольку полученная площадь является ориентированной, необходимо вычислить ее модуль.

Метод треугольников

image

Как вы видите задача вычисления площади многоугольника достаточна проста. Не знаю, почему, но мне больше нравится решать эту задачу методом разбиения на трапеции (наверно потому, что на всех олимпиадах я ее так решал). Тем более, что при втором решении площади треугольников надо вычислять через косое произведение. О формуле Герона надо забыть.

Задача №9

Многоугольник задан координатами своих вершин в порядке его обхода. Необходимо проверить является ли многоугольник выпуклым.

Решение
Напомню, что многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону.
image

Задача опять сводится к вычислению косового произведения векторов, а именно у выпуклого многоугольника знаки косых произведений [Ai Ai+1, Ai+1 Ai+2] либо положительны, либо отрицательны. Поэтому если мы знаем направление обхода, то знак косых произведений для выпуклого многоугольника одинаков: он неотрицателен при обходе против часовой стрелки и неположителен при обходе по часовой стрелки.

Задача №10

Многоугольник (не обязательно выпуклый) на плоскости задан координатами своих вершин. Требуется подсчитать количество точек с целочисленными координатами, лежащих внутри него (но не на его границе).

Решение
Для решения этой задачи рассмотрим вспомогательную задачу: отрезок задан координатами своих концов, являющихся целыми числами. Необходимо посчитать количество целочисленных точек лежащих на отрезке. Понятно, что если отрезок вертикальный или горизонтальный, то необходимо вычесть координаты концов и добавить единицу. Интерес представляет случай, когда отрезок не является вертикальным или горизонтальным. Оказывается в этом случае необходимо достроить отрезок до прямоугольного треугольника и ответом будет число равное наибольшему общему делителю длин катетов этого треугольника плюс единица.
image

Для любого многоугольника с целочисленными координатами вершин справедлива формула Пика: S = n + m/2 — 1, где S – площадь многоугольника, n – количество целых точек лежащих строго внутри многоугольника, m – количество целых точек лежащих на границе многоугольника. Поскольку площадь многоугольника мы знаем как вычислять, то S известно. Так же мы можем вычислить количество целых точек лежащих на границе многоугольника, поэтому в формуле Пика остается лишь одна искомая неизвестная которую мы можем найти.
Рассмотрим пример:
image
S = 16 + 4 + 4,5 + 6 + 1 + 2 = 33,5
m = 15
n = 33,5 – 7,5 +1 = 27 — точек лежит строго внутри многоугольника
Вот так вот решается эта задачка!

Площадь многоугольника по координатам онлайн

Калькулятор позволяет высчитывать по заданным координатам вершин площадь многоугольника (треугольника, трапеции, параллелограмма , пятиугольника и т.д) а также любых других непересекающихся многоугольников.

площадь многоугольника

Используется метод трапеций, суть которого заключается в том, что многоугольник представляет собой сумму трапеций, две вершины из которого это две соседние вершины многоугольника, а две другие вершины трапеции, есть абсциссы координат двух вершин многоугольника.

Такой метод позволяет рассчитывать не только выпусклые многоугольники, но и любые другие, главное, что бы линии этого многоугольника не пересекались.

Кроме этого стоит обратить внимание на такие материалы как: Касательная к кривой второго порядка

Координаты вершин задаются в общей строке вида x1:y1 x2:y2 x3:y3 . xn:yn

Координаты вершин являются действительные числа.

Координата каждой точки (абсцисса и ордината) записывается через двоеточие(без пробелов!)

Координаты вершин вводятся ПОСЛЕДОВАТЕЛЬНО по часовой или(!) против часовой стрелки.

Добавить комментарий