Как найти площадь теплицы огэ

#хакнем_математика 👈 рубрика, содержащая интересный, познавательный контент по математике как для школьников, так и для взрослых 🥳

Изображение из открытых источников информации
Изображение из открытых источников информации

Продолжаем готовиться к ОГЭ по математике. В этой статье рассмотрим решение задач «с теплицей». В нашем канале мы уже публиковали задачи № 1 -5 из ОГЭ «на шины», «на мобильную связь», «на ОСАГО» и вот «теплицы». И каждый раз читаю комментарии вроде: «зачем?», «кому это надо?», «где пригодиться?», «да и вообще это не математика».

Так вот, как раз эти задачи о том — «где может пригодиться математика»! Это задачи практико-ориентированной направленности. А кто-то наоборот говорит: «И это экзамен для 9 –го класса?!», — намекая на слишком простые задания.

К сожалению, практика показывает, что именно такие задачи хуже всего решают 9-классники, им проще решить уравнения, неравенства, теорию вероятности и др. задачи.

Прежде, чем решать задачи, внимательно прочитайте условие, выпишите все величины и формулы, которые могут понадобиться.

Задача взята с сайта Сдам ГИА: Решу ОГЭ (oge.sdamgia.ru)
Задача взята с сайта Сдам ГИА: Решу ОГЭ (oge.sdamgia.ru)

Итак,

NP = 4,5 м = 450 см — длина теплицы;

Длина дуги MCDM (длина полуокружности) = 5,2 м — длина металлической дуги;

Напомню, что формула для вычисления длины окружности С = 2πR = = Dπ, где R — радиус, D — диаметр (в данном случае, D = MN — ширина теплицы).

Задание 1.

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Решение:

Суть задачи в том, что нужно длину теплицы NP разделить на промежутки (отрезки) длиной не более 60 см. Поэтому всю длину 450 см мы делим на 60 см:

450 : 60 = 7,5 частей (берём 8 частей).

Внимание: основная ошибка в том, что ребята ошибочно думают, что это и есть количество дуг, но это количество отрезков. Посмотрите на рисунок ниже — дуг на 1 больше, включая крайние дуги.

Задачи на теплицу из ОГЭ-2021 по математике — кажутся не по силам многим 9-классникам

Итак, 8 + 1 = 9

Ответ: 9.

Задание 2

Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.

Решение

1) Из условия задачи мы отметили, что MN = D (диаметр окружности), C = Dπ, следовательно, чтобы найти диаметр D, необходимо D = C / π

2) По условию, 5,2 м — длина полуокружности, следовательно, вся длина C = 5,2 × 2 = 10,4

3) D = 10,4 / π = 10,4 / 3,14 ≈ 3,312 ≈ 3,3 (округлили до десятых).

Т.о. MN = 3,3 м

Ответ: 3,3 м.

Задание 3

Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.

Решение

Как следует из условия, фундамент для теплицы имеет форму прямоугольника, таким образом, для того, чтобы найти площадь внутри теплицы, нужно найти площадь прямоугольника MNPK (см. рис.):

Задачи на теплицу из ОГЭ-2021 по математике — кажутся не по силам многим 9-классникам

S = MN × NP (MN нашли во 2 задаче, NP берём из условия)

S = 3,3 × 4,5 = 14,85 ≈ 15 квадратных метров (округлили до целых)

Ответ: 15.

Задание 4

Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.

Решение

1) Найдём сначала сколько понадобится квадратных метров плёнки для каркаса теплицы: это площадь прямоугольника со сторонами NP и длиной полуокружности (дуга MCDN) = 5,2 м.

S = 4,5 × 5,2 = 23,4 м^2

2) Передняя и задняя стенка, включая дверь, представляют собой две полуокружности или целую окружность, т.е. требуется найти площадь круга.

Задачи на теплицу из ОГЭ-2021 по математике — кажутся не по силам многим 9-классникам

3) Всего понадобится плёнки:

23,4 + 8,55 = 31,95 + 3,19 (добавили 10 %) = 35,14 ≈ 35 м^2

Ответ: 35.

Примечание: непонятно, что это за плёнка, которая продаётся в форме окружности. В реальной жизни мы бы купили прямоугольник и вырезали из него круг. Но это уже вопрос не ко мне, а к составителю этих заданий. Но!!! Девятиклассник может подумать так же, и решит эту задачу именно практично и не получит свой заслуженный 1 балл.

Задание 5

Найдите примерную высоту входа в теплицу в метрах. Число π возьмите равным 3,14. Ответ округлите до десятых.

Задачи на теплицу из ОГЭ-2021 по математике — кажутся не по силам многим 9-классникам

1. Рассмотрим ∆ OCD — равносторонний, т.к.

CO = OD = R;

A — середина MO = R, B — середина ON = R (по условию), следовательно, AB = СD = R.

Таким образом, CO = OD = CD = R.

OH — высота, это и есть искомая высота входа в теплицу.

2. Рассмотрим ∆ DHO — прямоугольный, ∟D = 60 °,

Задачи на теплицу из ОГЭ-2021 по математике — кажутся не по силам многим 9-классникам

√3 ≈ 1,7; R = D / 2 = 3,3 / 2 = 1,65

OH = 1,7 ×1,65 / 2 = 1,4 м

Ответ: 1,4.

Почему я так подробно разбираю решение этих задач? Потому что цель моей статьи — помочь выпускникам 9-ых классов разобраться в этих задачах и успешно пройти это испытание. И я надеюсь, моя статья вам в этом поможет!

Читайте наш канал в телеграм – по этой ссылке

#хакнем_математика 👈 подпишись на рубрику, содержащую интересный, познавательный контент по математике как для школьников, так и для взрослых 🥳

Автор: #ирина_чудневцева главный редактор и соавтор канала Хакнем Школа, 43 года, город Ярославль

Другие статьи автора:

Хотите опубликовать свой пост в «Хакнем Школа»? Напишите нам на почту: story@haknem.com

Задачи на теплицу из ОГЭ-2021 по математике — кажутся не по силам многим 9-классникам

Версия для печати и копирования в MS Word

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Алексей Юрьевич решил построить на дачном участке теплицу длиной NP  =  4,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 5,2 м каждая и плёнку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB. Точки A и B  — середины отрезков MO и ON соответственно.

Спрятать решение

Решение.

Переведем 60 см  =  0,6 м. Найдем количество промежутков между дугами: 4,5 : 0,6  =  7,5, следовательно, наименьшее количество промежутков  — 8. Количество дуг на единицу больше, чем количество промежутков: 8 + 1  =  9.

Ответ: 9.

1

Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.


2

Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.


3

Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.


4

Найдите примерную высоту входа в теплицу в метрах. Число π возьмите равным 3,14. Ответ округлите до десятых.

В 2022 учебном году выпускники 9 классов будут сдавать ОГЭ по обновлённым заданиям. Представляем вам вариант тренировочной работы по математике в формате ОГЭ от СтатГрада. Обычно статградовские задания, используемые на пробных тестированиях в школах, максимально приближены к реальным экзаменационным вариантам. Рассказываем, как работать с новыми заданиями про теплицу.

Хотите БЕСПЛАТНО разобрать  с опытным преподавателем все детали новых усложнённых вариантов ОГЭ по математике 2023 года – приходите на пробное занятие в Lancman School.  Решите продолжить готовиться к ОГЭ вместе с нами весь год – дадим скидку после бесплатного пробного занятия. 

Любой вопрос смело пишите сюда. Мы 13 лет готовим к ОГЭ на высокие баллы. Прокачиваем знания даже самых слабых учеников. Гаранитруем получение оценки “5” на ОГЭ. Офисы Курсов ОГЭ Lancman School есть на каждой ветке московского метро. 

Если хотите сэкономить, но получить при этом качественную подготовку, записывайтесь на наши онлайн-курсы ОГЭ-2023 по русскому языку, математике, обществознанию и английскому языку.

ОГЭ математика теплица

Алексей Юрьевич решил построить на дачном участке теплицу длиной NP = 4,5 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Алексей Юрьевич заказывает металлические дуги в форме полуокружностей длиной 5,2 м каждая и плёнку для обтяжки. В передней стенке планируется вход, показанный на рисунке прямоугольником ACDB. Точки A и B — середины отрезков MO и ON соответственно.

1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Решение:

Решать подобные задания лучше наглядным способом, то есть нарисовать предварительно дугу и делать на ней необходимые пометки.

ОГЭ математика теплица

Ответ: 9.

2. Найдите примерную ширину MN теплицы в метрах. Число π возьмите равным 3,14. Результат округлите до десятых.

Решение:

Длину МN необходимо искать, исходя из дуги, используя формулу длины окружности. Поскольку MN – это полуокружность, то ее длина равна πR.

πR=5,2

3,14R=5,2

R=5,2/3,14

MN=2 × 520/314=520/157

MN=3,31

Ответ: 3,3

3. Найдите примерную площадь участка внутри теплицы в квадратных метрах. Ответ округлите до целых.

Решение:

Площадь участка внутри теплицы представляет собой прямоугольник, и его площадь равна MN × NP.

S=520/157 × 4,5= 2340/157=14,9… При округлению получаем 15.

Можно взять ответ в 3,3 из предыдущего задания для решения.

S=3,3 × 4,5=14,85. При округлении тоже получаем 15.

Ответ: 15.

4. Сколько квадратных метров плёнки нужно купить для теплицы с учётом передней и задней стенок, включая дверь? Для крепежа плёнку нужно покупать с запасом 10 %. Число π возьмите равным 3,14. Ответ округлите до целых.

Решение:

Для начала необходимо посчитать площадь крыши теплицы. Она представляет собой прямоугольник со сторонами, равными 4,5 и 5,2.

S крыши=5,2 × 4,5=23,4

Остаётся посчитать площадь двух полуокружностей (перед и задняя часть теплицы). Вместе это одна окружность – значит, можно не считать площадь 2 раза.

S стенок=3,14 × (260/157)в квадрате=314/100 × 260/157 × 260/157=1352/157

К данной площади необходимо добавить 10%, поскольку плёнки надо купить с запасом. Прибавляем по 10% к уже имеющимся цифрам.

S крыши=25,74

S стенок=9,47…

Складываем и округляем. Получаем примерно 35 метров плёнки.

Ответ: 35.

5. Найдите примерную высоту входа в теплицу в метрах. Число π возьмите равным 3,14. Ответ округлите до десятых.

Решение:

Задача геометрическая: нам надо представить, что перед нами равносторонний треугольник.

ОГЭ математика теплица

Итак, перед нами равносторонний треугольник СOD. Найдя его высоту, мы найдём высоту входа в теплицу. Будем использовать формулу высоты равностороннего треугольника. Сторона треугольника COD равна радиусу окружности, которую мы уже знаем (260/157).

h=1,40… Округляем до 1,4.

Ответ: 1,4.


Ваш ребёнок – школьник 1-11 класса? Вы учитель? Отлично! Мы пишем для вас. Узнавайте от нас первыми новости образования, актуальную информацию об экзаменах и просто полезные советы. Кнопка подписки прямо под постом!

Фото: pixabay.com

Прочитайте внимательно текст и выполните залдания 1 — 5.

Сергей Петрович решил построить на дачном участке теплицу длиной 4 м. Для этого он сделал прямоугольный фундамент.

Сергей Петрович решил построить на дачном участке теплицу

Задание 1 (ОГЭ 2020)

Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 60 см?

Решение:   Длина теплицы составляет 4 м = 400 см. Рассчитаем количество дуг для теплицы, соблюдая условие: расстояние между соседними дугами меньше или равно 60 см. Разделим 400 на 60. Получится 6 дуг и в остатке 40 см. Учитывая две крайние дуги, получается:6 + 2 = 8 (дуг).

Ответ: 8.

Задание 2 (ОГЭ 2020)

Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продается в упаковках по 6 штук?

Решение: Из условия задачи имеем, что грядок в теплице планируется 3. Дорожек будет 2. Длина дорожки совпадает с длиной теплицы, то есть 4 м = 400 см. Ширина дорожки — 40 см. Найдем площадь двух дорожек. 2 * 40 * 400 = 32000 (кв. см).

Площадь одной плитки: 20 * 20 = 400 (кв. см).

32000 : 400 = 80 (штук) плиток нужно купить для двух дорожек.

80 : 6 = 13 (остаток 2).

Понадобится 13 + 1 = 14 упаковок плитки.

Ответ: 14.

Задание 3 (ОГЭ 2020)

Найдите ширину теплицы. Ответ дайте в метрах с точностью до десятых.

Решение:

Найдите ширину теплицы

Дуги для теплицы имеют форму полуокружности. Чтобы найти ширину теплицы, нужно достроить окружность и найти радиус окружности OD.

Ширина теплицы AD является диаметром окружности. AD = 2 * OD.

Длина дуги теплицы равна 5 м и вычисляется по формуле П * OD (это длина полуокружности).

OD = 5 : 3,14 = 1,6 (м).

AD = 2 * OD = 2 * 1,6 = 3,2 (м).

Ответ: 3,2.

Задание 4 (ОГЭ 2020)

Найдите ширину центральной грядки, если она в два раза больше ширины узкой грядки. Ответ дайте в сантиметрах с точностью до десятых.

Решение: Ширина теплицы 3,2 м = 320 см. В теплице есть 2 дорожки по 40 см и три грядки. Пусть ширина узкой грядки х см, тогда широкой грядки — 2х см.

Составим уравнение 2х + х + х + 2 * 40 = 320 и решим его.

4х + 80 = 320,

4х = 320 — 80,

4х = 240,

х = 60 (см) — ширина узкой грядки.

Найдем ширину центральной грядки (широкой). 2х = 2 * 60 = 120 (см).

Ответ: 120.

Задание 5 (ОГЭ 2020)

Найдите высоту входа в теплицу. Ответ дайте в сантиметрах.

Найдите высоту входа в теплицу

Чтобы найти высоту входа в теплицу,нужно рассмотреть прямоуголный треугольник OC1A. Применив теорему Пифагора, вычислим высоту CC1 теплицы.

По условию AB = BO = OC = CD = 320 см : 4 = 80 см.

ОС1 = OD = 160 см — радиусы.

По теореме Пифагора имеем: СС1 = 80√3 см = 136 см.

Ответ: 136.

Подробный  ОГЭ 2020 — земледелец устраивает на склонах гор терассы — задания 1 — 5.

Сергей Петрович решил построить на дачном участке теплицу длиной 4 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Сергей Петрович заказал металлические дуги в форме полуокружностей длиной 5 м каждая и покрытие для обтяжки.

Отдельно требуется купить плёнку для передней и задней стенок теплицы. Внутри теплицы Сергей Петрович планирует сделать три грядки по длине теплицы — одну центральную широкую грядку и две узкие грядки по краям. Между грядками будут дорожки шириной 40 см, для которых необходимо купить тротуарную плитку размером 20 х 20 см. Высота теплицы показана на рисунке отрезком HF.

1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 70 см?

2. Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продаётся в упаковках по 12 штук?

3. Найдите высоту теплицы. Ответ дайте в метрах с точностью до десятых.

4. Найдите площадь участка, отведённого под теплицу. Ответ дайте в квадратных метрах. Результат округлите до целых.

5. Сколько квадратных метров плёнки необходимо купить для передней и задней стенок, если с учётом крепежа её нужно брать с запасом 10 % ? Ответ округлите до десятых.

Добавить комментарий