Треугольник — это геометрическая фигура, которая образуется в результате пересечения трех отрезков, концы которых не лежат на одной прямой. У любого треугольника есть три стороны, три вершины и три угла.
Онлайн-калькулятор площади треугольника
Треугольники бывают различных видов. Например, существует равносторонний треугольник (тот, у которого все стороны равны), равнобедренный (в нем равны две стороны) и прямоугольный (в котором один из углов прямой, т. е. равен 90 градусам).
Площадь треугольника можно найти различными способами в зависимости от того, какие элементы фигуры известны по условию задачи, будь то углы, длины, либо же вообще радиусы окружностей, связанных с треугольником. Рассмотрим каждый способ отдельно с примерами.
Формула площади треугольника по основанию и высоте
S=12⋅a⋅hS= frac{1}{2}cdot acdot h,
aa — основание треугольника;
hh — высота треугольника, проведенная к данному основанию a.
Найти площадь треугольника, если известна длина его основания, равная 10 (см.) и высота, проведенная к этому основанию, равная 5 (см.).
Решение
a=10a=10
h=5h=5
Подставляем в формулу для площади и получаем:
S=12⋅10⋅5=25S=frac{1}{2}cdot10cdot 5=25 (см. кв.)
Ответ: 25 (см. кв.)
Формула площади треугольника по длинам всех сторон
S=p⋅(p−a)⋅(p−b)⋅(p−c)S= sqrt{pcdot(p-a)cdot (p-b)cdot (p-c)},
a,b,ca, b, c — длины сторон треугольника;
pp — половина суммы всех сторон треугольника (то есть, половина периметра треугольника):
p=12(a+b+c)p=frac{1}{2}(a+b+c)
Эта формула называется формулой Герона.
Найти площадь треугольника, если известны длины трех его сторон, равные 3 (см.), 4 (см.), 5 (см.).
Решение
a=3a=3
b=4b=4
c=5c=5
Найдем половину периметра pp:
p=12(3+4+5)=12⋅12=6p=frac{1}{2}(3+4+5)=frac{1}{2}cdot 12=6
Тогда, по формуле Герона, площадь треугольника:
S=6⋅(6−3)⋅(6−4)⋅(6−5)=36=6S=sqrt{6cdot(6-3)cdot(6-4)cdot(6-5)}=sqrt{36}=6 (см. кв.)
Ответ: 6 (см. кв.)
Формула площади треугольника по одной стороне и двум углам
S=a22⋅sinβsinγsin(β+γ)S=frac{a^2}{2}cdot frac{sin{beta}sin{gamma}}{sin(beta+gamma)},
aa — длина стороны треугольника;
β,γbeta, gamma — углы, прилежащие к стороне aa.
Дано сторону треугольника, равную 10 (см.) и два прилежащих к ней угла по 30 градусов. Найти площадь треугольника.
Решение
a=10a=10
β=30∘beta=30^{circ}
γ=30∘gamma=30^{circ}
По формуле:
S=1022⋅sin30∘sin30∘sin(30∘+30∘)=50⋅123≈14.4S=frac{10^2}{2}cdot frac{sin{30^{circ}}sin{30^{circ}}}{sin(30^{circ}+30^{circ})}=50cdotfrac{1}{2sqrt{3}}approx14.4 (см. кв.)
Ответ: 14.4 (см. кв.)
Формула площади треугольника по трем сторонам и радиусу описанной окружности
S=a⋅b⋅c4RS=frac{acdot bcdot c}{4R},
a,b,ca, b, c — стороны треугольника;
RR — радиус описанной окружности вокруг треугольника.
Числа возьмем из второй нашей задачи и добавим к ним радиус RR окружности. Пусть он будет равен 10 (см.).
Решение
a=3a=3
b=4b=4
c=5c=5
R=10R=10
S=3⋅4⋅54⋅10=6040=1.5S=frac{3cdot 4cdot 5}{4cdot 10}=frac{60}{40}=1.5 (см. кв.)
Ответ: 1.5 (см.кв.)
Формула площади треугольника по трем сторонам и радиусу вписанной окружности
S=p⋅rS=pcdot r,
pp — половина периметра треугольника:
p=a+b+c2p=frac{a+b+c}{2},
a,b,ca, b, c — стороны треугольника;
rr — радиус вписанной в треугольник окружности.
Пусть радиус вписанной окружности равен 2 (см.). Длины сторон возьмем из предыдущей задачи.
Решение
a=3a=3
b=4b=4
c=5c=5
r=2r=2
p=3+4+52=6p=frac{3+4+5}{2}=6
S=6⋅2=12S=6cdot 2=12 (см. кв.)
Ответ: 12 (см. кв.)
Формула площади треугольника по двум сторонам и углу между ними
S=12⋅b⋅c⋅sin(α)S=frac{1}{2}cdot bcdot ccdotsin(alpha),
b,cb, c — стороны треугольника;
αalpha — угол между сторонами bb и cc.
Стороны треугольника равны 5 (см.) и 6 (см.), угол между ними равен 30 градусов. Найти площадь треугольника.
Решение
b=5b=5
c=6c=6
α=30∘alpha=30^{circ}
S=12⋅5⋅6⋅sin(30∘)=7.5S=frac{1}{2}cdot 5cdot 6cdotsin(30^{circ})=7.5 (см. кв.)
Ответ: 7.5 (см. кв.)
Контрольная по геометрии недорого на сервисе Студворк от профильных экспертов!
Тест на тему “Плошадь треугольника”
Как найти площадь треугольника
На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.
Треугольник – это многоугольник с тремя сторонами.
По формуле Герона
Формула Герона для нахождения площади треугольника:
– полупериметр треугольника; a,b,c – стороны треугольника.
Через основание и высоту
Формула нахождения площади треугольника с помощью половины его основания и высоту:
a – основание треугольника; h – высота треугольника.
Через две стороны и угол
Формула нахождения площади треугольника через две стороны и угол между ними:
a,b – стороны треугольника; α – угол между сторонами.
Через сторону и два прилежащих угла
Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
<
a– сторона треугольника; α и β – прилежащие углы.
Площадь прямоугольного треугольника
Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.
Формула нахождения площади прямоугольного треугольника через катеты:
a, b – катеты треугольника.
Площадь равнобедренного треугольника через стороны
Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.
Формула нахождения площади равнобедренного треугольника через две стороны:
a, b – стороны треугольника.
Площадь равнобедренного треугольника через основание и угол
Формула нахождения площади равнобедренного треугольника через основание и угол:
a – основание равнобедренного треугольника; α – угол между сторонами.
Площадь равностороннего треугольника через стороны
Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.
Формула нахождения площади равностороннего треугольника через сторону:
a – сторона равностороннего треугольника.
Площадь равностороннего треугольника через высоту
Формула нахождения площади равностороннего треугольника через высоту:
h – высота равностороннего треугольника.
Площадь равностороннего треугольника через радиус вписанной окружности
Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:
r – радиус вписанной окружности равностороннего треугольника.
Площадь равностороннего треугольника через радиус описанной окружности
Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:
r – радиус описанной окружности равностороннего треугольника.
Площадь треугольника через радиус описанной окружности и три стороны
Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:
a, b, c – стороны треугольника; r – радиус описанной окружности треугольника.
Площадь треугольника через радиус вписанной окружности и три стороны
Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:
p – полупериметр треугольника;a, b, c – стороны треугольника; r – радиус вписанной окружности треугольника.
В этой статье собраны наиболее популярные формулы для нахождения площади треугольника.
Как найти площадь треугольника по высоте?
Если известно основание и высота, проведенная к основанию треугольника, можно вычислить площадь треугольника.
(S=frac{1}{2}a*h)
Калькулятор площади треугольника по высоте и основанию
Основание треугольника:
Высота треугольника:
Как найти площадь треугольника: формула Герона
Формула площади треугольника Герона помогает вычислить ее по трем сторонам фигуры:
(S=sqrt{p(p-a)(p-b)(p-c)})
где (a,b,c) – стороны треугольника, (p=frac{a+b+c}{2}) – его полупериметр.
Калькулятор площади треугольника по трем сторонам
Первая сторона треугольника:
Вторая сторона треугольника:
Третья сторона треугольника:
Формула нахождения площади треугольника по окружности
Как вычислить площадь треугольника, если известна окружность и три его стороны?
(S=frac{a*b*c}{4R})
Калькулятор площади треугольника по трем сторонам и радиусу описанной окружности
Первая сторона треугольника:
Вторая сторона треугольника:
Третья сторона треугольника:
Радиус описанной окружности R:
Как найти площадь прямоугольного треугольника
Чтобы найти площадь прямоугольного треугольника, необходимо знать длины двух катетов. После этого можно воспользоваться формулой:
S = (a * b) / 2
, где a и b – длины катетов. Просто перемножьте значения длин катетов и разделите результат на два, чтобы найти площадь прямоугольного треугольника.
Как узнать площадь треугольника по радиусу и полупериметру
Можно найти площадь треугольника, когда мы знаем полупериметр и радиус вписанной окружности:
(S=pr)
где r – радиус вписанной окружности, (p=frac{a+b+c}{2})– его полупериметр.
Калькулятор площади треугольника по трем сторонам и радиусу вписанной окружности
Первая сторона треугольника:
Вторая сторона треугольника:
Третья сторона треугольника:
Радиус вписанной окружности R:
Как найти площадь треугольника по стороне и тангенсу: формула
Формула нахождения площади по стороне и тангенсу углов треугольника:
(S=frac{c^2}{2(ctgA+ctgB)})
Основные формулы площади треугольника для учащихся 5-6 классов
Для ученика 5-6 класса обычно достаточно знать две формулы для вычисления площади треугольника:
-
Формула площади произвольного треугольника по основанию и высоте:
S = (a * h) / 2
где S – площадь треугольника, a – длина основания треугольника, h – высота треугольника, опущенная на это основание.
-
Формула Герона:
S = sqrt(p * (p – a) * (p – b) * (p – c))
где S – площадь треугольника, a, b, c – длины сторон треугольника, p – полупериметр треугольника, равный половине суммы длин сторон:
p = (a + b + c) / 2
Здесь sqrt означает извлечение квадратного корня. Обе формулы могут быть использованы для вычисления площади треугольника в зависимости от имеющихся данных.
Как найти площадь равнобедренного и равностороннего треугольника
Чтобы найти площадь равнобедренного треугольника, необходимо знать длину боковой стороны и высоту, проведенную к основанию. После этого можно воспользоваться формулой:
S = (a * h) / 2
, где a – длина основания, а h – высота, опущенная на основание.
Чтобы найти площадь равностороннего треугольника, необходимо знать длину любой стороны. После этого можно воспользоваться формулой:
S = (a^2 * sqrt(3)) / 4
, где a – длина любой стороны. Также можно использовать формулу через высоту:
S = (a * h) / 2
, где h – высота, опущенная из вершины на основание, а a – длина любой стороны.
Все формулы площади треугольника
Не знаете, как посчитать площадь треугольника? Собрали для вас все возможные формулы. как находить площадь треугольника:
-
Формула площади треугольника по основанию и высоте:
S = (a * h) / 2
где S – площадь треугольника, a – длина основания треугольника, h – высота треугольника, опущенная на это основание.
-
Формула Герона:
S = sqrt(p * (p – a) * (p – b) * (p – c))
где S – площадь треугольника, a, b, c – длины сторон треугольника, p – полупериметр треугольника, равный половине суммы длин сторон:
p = (a + b + c) / 2
-
Формула площади треугольника через две стороны и угол между ними:
S = (a * b * sin(C)) / 2
где S – площадь треугольника, a и b – длины двух сторон треугольника, C – угол между этими сторонами (в радианах), sin – функция синуса.
-
Формула площади треугольника через радиус вписанной окружности:
S = (a * b * c) / (4 * R)
где S – площадь треугольника, a, b, c – длины сторон треугольника, R – радиус вписанной в треугольник окружности.
-
Формула площади треугольника через радиус описанной окружности:
S = (a * b * c) / (4 * R)
где S – площадь треугольника, a, b, c – длины сторон треугольника, R – радиус описанной вокруг треугольника окружности.
Часто задаваемые вопросы
✅ Какие есть формулы площади треугольника?
↪ Формула площади треугольника по основанию и высоте: S = (a * h) / 2
Формула Герона: S = sqrt(p * (p – a) * (p – b) * (p – c)), где p = (a + b + c) / 2
Формула площади треугольника через две стороны и угол между ними: S = (a * b * sin(C)) / 2
Формула площади треугольника через радиус вписанной окружности: S = (a * b * c) / (4 * R)
Формула площади треугольника через радиус описанной окружности: S = (a * b * c) / (4 * R)
✅ Как найти площадь треугольника формуле Герона?
↪ Формула площади треугольника Герона помогает вычислить ее по трем сторонам фигуры.
Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!
Запишитесь на бесплатное тестирование знаний!
Площадь треугольника. Онлайн-калькулятор
Онлайн-калькулятор для расчета площади треугольника поможет Вам найти площадь треугольника несколькими способами в зависимости от известных данных. Наш калькулятор не просто рассчитает площадь треугольника, но и покажет подробное решение, которое будет показано под калькулятором. Поэтому данный калькулятор удобно использовать не только для быстрых расчетов, но и для проверки своих вычислений. С помощью данного калькулятора вы сможете найти площадь треугольника по следующим формулам: через основание и высоту, через две стороны и угол, по трем сторонам (формула Герона), через радиус вписанной окружности, через радиус описанной окружности.
Выберите способ расчета площади:
Основание треугольника:
a =
Рассчитать
Треугольник – это геометрическая фигура, которая образована тремя отрезками. Эти отрезки называются сторонами треугольниками, а точки соединения отрезков – вершинами треугольника. В зависимости от соотношения сторон треугольники бывают нескольких видов: равнобедренный треугольник (две стороный треугольника равны между собой, эти стороны называются боковыми сторонами, а третья сторона называется основанием треугольника), равносторонний треугольник (у треугольника все три стороны равны), прямоугольный треугольник (один угол треугольника прямой).
Как найти площадь треугольника?
Найти площадь треугольника очень просто, достаточно воспользоваться нашим калькулятором или рассчитать самостоятельно, воспользовавшись формулой площади треугольника. В зависимости от того, какие данные известны, для расчета площади треугольника использует несколько способов:
1) через основание и высоту
a – основание треугольника,
h – высота треугольника.
2) через две стороны и угол
a, b – стороны треугольника,
α – угол между сторонами.
3) По трем сторонам. Формула Герона.
a, b, с – стороны треугольника,
p – полупериметр треугольника.
4) Через радиус вписанной окружности.
a, b, с – стороны треугольника,
p – полупериметр треугольника,
r – радиус вписанной окружности.
5) Через радиус описанной окружности.
a, b, с – стороны треугольника,
R – радиус описанной окружности.
Вы всегда сможете проверить правильность расчета площади треугольника с помощью нашего калькулятора.
Содержание:
- Формула
- Примеры вычисления площади равнобедренного треугольника
Формула
Чтобы найти площадь равнобедренного треугольника (рис. 1), необходимо вычислить произведение половины основания этого треугольника на его высоту:
$$mathrm{S}_{Delta}=frac{1}{2} a h_{a}$$
Напомним, что треугольник называется равнобедренным, если его две стороны равны. Равные стороны
называются боковыми сторонами рассматриваемого треугольника, а третья сторона – основанием.
Примеры вычисления площади равнобедренного треугольника
Пример
Задание. Найти площадь равнобедренного треугольника
$ABC$, если известно, что его основание равно
4 м, а высота, проведенная к этому основанию – 6 м.
Решение. Искомая площадь равна произведению высоты на основание, деленному на два:
$mathrm{S}_{Delta A B C}=frac{4 cdot 6}{2}=frac{24}{2}=12$ (м2)
Ответ. $mathrm{S}_{Delta A B C}=12$ (м2)
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Найти площадь равнобедренного треугольника, боковая сторона которого равна 5 см, а основание 8 см.
Решение. Сделаем чертеж (рис. 2).
Проведем высоту $BH$. По свойству равнобедренного
треугольника она является и медианой. Поэтому
$A H=H C=frac{8}{2}=4$ (см)
Рассмотрим прямоугольный треугольник $ABH$. По теореме
Пифагора найдем его катет $BH$ :
$B H=sqrt{A B^{2}-A H^{2}}=sqrt{5^{2}-4^{2}}=sqrt{25-16}=sqrt{9}=3$ (cм)
А тогда искомая площадь
$mathrm{S}_{Delta A B C}=frac{1}{2} A C cdot B H=frac{8 cdot 3}{2}=4 cdot 3=12$ (см2)
Ответ. $mathrm{S}_{Delta A B C}=12$ (см2)
Остались вопросы?
Здесь вы найдете ответы.
Площадь равнобедренного треугольника с прямым углом составляет 16 см кв.
Каким образом можно вычислить длину гипотенузы данной треугольной фигуры?
Обозначим через х катет имеющегося равнобедренного треугольника, имеющего
прямой угол. В этом случае его площадь будет представлять собой ½ длины
его катета, возведенную в квадратную степень. Это значит, что квадрат
катета равен двум площадям треугольника (2S). В нашем случае это:
2S = 2*16 = 32 см кв.
Для того чтобы найти длину катета, нужно извлечь корень квадратный из
числа 32:
х = 4*√2 см.
Теперь можно высчитать длину гипотенузы, которая будет равна:
х / sin45 = 8 см.
Ответ: Длина гипотенузы равна 8 см.
Имеется равнобедренный треугольник площадью 192 см кв. Его основание
составляет 32 см. Как можно вычислить периметр данной треугольной фигуры?
Дан треугольник АВС, в котором АВ=ВС и АС=32 см.
Проведем к основанию треугольника высоту ВН, также являющуюся медианой.
Площадь треугольника равна половине произведения длины его основания на
высоту:
S=АС*ВН/2
Из этой формулы можно выразить ВН:
ВН=2S/АС=2*192/32=12 см.
Известно, что в равнобедренном треугольнике две стороны равны:
АВ=ВС=√(ВН²+(АС/2)²)=√(144+256)=20 см.
Теперь можно высчитать периметр (Р) треугольника АВС, который будет равен
сумме длин его сторон:
Р=2АВ+АС=40+32=72 см.
Ответ: Периметр равнобедренного треугольника АВС равен 72 см.
Длина гипотенузы равнобедренного треугольника, имеющего прямой угол,
составляет 12 см. Как найти площадь данного треугольника?
Обозначим буквой х катет имеющегося треугольника. Тогда по теореме
Пифагора:
12²=x² + x², что равно 144=2х²
Отсюда находим значение х:
x²=72, x=√72
Зная длину катета равнобедренного треугольника, можно найти его площадь
(S):
S = √72 * √72/2 = 36 см кв.
Ответ: Площадь треугольника равна 36 см кв.
Дан равнобедренный треугольник, угол в основании которого составляет 25
градусов. Площадь данной фигуры равна 16 см кв. Есть еще один равнобедренный
треугольник с углом 130 градусов и площадью 4з см кв. Чему будет равно
отношение оснований этих двух треугольных фигур?
Разберемся с первым из треугольников. Так как он является равнобедренным,
то оба угла при его основании будут равны. Зная о том, что сумма всех
углов треугольника равна 180 градусом, мы можем найти третий угол
треугольника, находящийся при его вершине:
180-25-25=130 градусов.
Переходим ко второму треугольнику. Известно, что угол при его вершине
равен 230 градусом. Исходя из этого можно рассчитать величины его углов,
расположенных в основании фигуры:
(180-130)/2=25 градусов.
Очевидно, что треугольники являются подобными на основании равенства
углов.
Следует определить коэффициент подобия двух треугольных фигур. Квадрат
коэффициента подобия будет равен отношению площадей треугольников:
49/16=kˆ2
Отсюда выражаем k:
k=7/4
Коэффициент подобия представляет собой отношение основания первой подобной
треугольной фигуры ко второй. Это значит, что:
С/c=k = 7/4
Ответ: Отношение оснований двух треугольников равно 7/4.
Чему равна площадь равнобедренного треугольника с прямым углом при условии,
что длина его гипотенузы составляет с?
Площадь (S) треугольника с прямым углом составляет ½ часть произведения
его катетов. Принимая во внимание тот факт, что треугольник является
равнобедренным, можно утверждать, что длины его катетов равны. Их можно
обозначить через х. В этом случае формулу для расчета площади треугольника
можно записать в следующем виде:
S=½x*x=½x²
Согласно теореме Пифагора, действительной для прямоугольного треугольника:
с²=х²+х²=2x²
x²=½c²
Подставим в формулу площади получившееся равенство:
S=½*½с²=¼с² см.кв.
Ответ: Площадь равнобедренного треугольника равна ¼с² см кв.
Как можно рассчитать площадь равнобедренного треугольника, если длина его
высоты и основания – величины известные?
Площадь (S) любой треугольной фигуры рассчитывается путем деления пополам
произведения длины его основания (с) и высоты (h):
S = ½ c*h
Как найти площадь равнобедренного треугольника?
Площадь каждого треугольника, в том числе и равнобедренного,
рассчитывается как половина, взятая от произведения длины высоты
треугольника и его основания. Формула имеет следующий вид:
S=1/2 *a*h
Пусть а = 150 см.
Проводим высоту к основанию треугольника. Она же будет являться и медианой
по той причине, что треугольник равнобедренный. В результате образовался
треугольник с прямым углом и гипотенузой, длина которой равна 85 см. Один
из катетов треугольника равен h, а второй рассчитывается как а/2:
150/2=75 см.
Теперь можно рассчитать длину второго катета (на основании теоремы
Пифагора):
h=√85²-75²=√7225-5625=√1600=40 см.
Когда все необходимые для расчета площади треугольника величины известны,
можно найти ее значение:
S=1/2 *a*h=1/2 *150*40=3000 см.
Как можно найти площадь треугольника при условии, что он является
равнобедренным, и его периметр равен 100 см, а основание – 48 см?
Вычислим длину боковой стороны равнобедренного треугольника, отняв от его
периметра длину основания и разделив полученное число на 2:
(100-48):2=26 см.
Тогда площадь равнобедренного треугольника с заданными параметрами будет
равна:
S=b/4*√(4a²-b²)=12*√(2704-2304)=12*20=240 cм кв.
Чему равна площадь равнобедренного треугольника, длины сторон которого
составляют 10 см и 12 см (сумма длин его катетов)?
К основанию равнобедренного треугольника проведем высоту, делящую его на
две равные треугольные фигуры, каждая из которых имеет угол 90 градусов и
катет длиной 12/2 = 6 см. Гипотенуза подобных треугольников имеет длину 10
см.
В случае с прямоугольным треугольником может быть применима теорема
Пифагора, которая поможет найти катет, являющийся высотой треугольника:
h² = 10² – 6² = 64 см
Избавимся от квадратов:
h = 8 см.
Тогда площадь треугольника будет равна:
S = 12 * 8 : 2 = 48 см кв.
Как рассчитать площадь равнобедренного треугольника, если известно о том,
что длина его гипотенузы составляет 44 см?
Введем условные обозначения, согласно которым х – это длина одного из
катетов равнобедренного треугольника. В этом случае длина второго катета
тоже будет равна х. Зная длину гипотенузы, можно записать формулу теоремы
Пифагора для имеющегося треугольника:
х²+ х² = 44²
2х² = 1936
Отсюда можем найти значение х:
x=√968
Найдя длину катета равнобедренного треугольника, можно вычислить его
площадь (S), равную ½ произведения длин его катетов:
S = √968*√968/2 = 484 см кв.
Каким образом возможно высчитать площадь равнобедренного треугольника через
стороны и длину его основания?
Располагая сведениями о длине основания (b) и стороны (a) треугольной
фигуры с равными катетами, возможно рассчитать площадь (S) этой фигуры. С
этой целью следует пользоваться приведенной ниже формулой:
S = b/4×√ 4× a²-b².
Возможно ли определить площадь равнобедренного треугольника через его
боковые стороны и образованный ими угол?
Информация о длине боковых сторон (а) треугольной фигуры с катетами равной
длины и размере угла (α), который образован этими катетами, позволит
определить площадь этой фигуры. В этом поможет следующая формула:
S = 1/2a2 * sin(α).
Как можно высчитать площадь равнобедренного треугольника при условии, что
известна длина его основания и угол?
Для расчета площади треугольной фигуры с катетами равной длины, при
условии, что известна их длина (а), основание (b) и угол, который
образован основанием и одним из катетов(α), используется следующая
формула:
S = ½ * a * b * sin(α)
Длина основания равнобедренного треугольника превышает длину его боковой
стороны на 3 см. Периметр данной треугольной фигуры равен 30 см. Как можно
высчитать длину основания данного равнобедренного треугольника?
Примем неизвестную длину основания равнобедренного треугольника за х. В
данном случае длина каждой из боковых сторон, которые в равнобедренном
треугольнике равны, будет составлять (х-3). Известно, что периметр (Р)
треугольника равен 30 см. Тогда:
Р = 3х-6 = 30 см.
Отсюда можно вывести х:
х = (30+6)/3 = 12 см.
Ответ: Длина основания равна 12 см.
Высота, проведенная в равнобедренном треугольнике, равна 15 см. Длина
основания данной фигуры превышает длину его боковой стороны на 15 см. Как
найти основание равнобедренного треугольника в этом случае?
Примем х за длину основания равнобедренного треугольника. Тогда длина его
боковой стороны будет составлять (х-15). Высота, проведенная в
треугольнике с прямым углом, также представляет собой его медиану, которая
делит его на две равных треугольных фигуры. Следует рассмотреть одну из
образовавшихся треугольных фигур. Для начала вычислим ее основания,
используя теорему Пифагора:
с2 = а2 + b2 = (15)²+(0,5x)²=(x-15)²
Из этого получается:
225-x²-30x+225-0,25x²
0=0,75x²-30x
x(0,75x-30)=0
x¹=0 см.
x=40 см.
Очевидно, что сторона треугольной фигуры не может иметь длину, равную 0см.
Поэтому можно сделать вывод о том, что ее длина составляет 40 см.
По какой формуле можно высчитать площадь равнобедренного треугольника?
Для ответа на поставленный вопрос следует провести высоту из вершины того
угла равнобедренного треугольника, который является противоположным его
основанию. После этого длину проведенной высоты (а) нужно умножить на
длину основания фигуры (b), а затем разделить полученное значение на два.
Формула расчета площади треугольной фигуры, которая является
равнобедренной, выглядит следующим образом:
S=a*b/2, или S=1/2a* b.
В равнобедренном треугольнике к его основанию проведена высота, длина
которой равна 1,2 см. Длина самого основания фигуры составляет 3,2 см. Как
рассчитать длину боковой стороны этого равнобедренного треугольника?
Вычислим половину длины основания данного равнобедренного треугольника:
3,2/2 = 1,6 см.
Имеется треугольник с прямым углом и катетами, длины которых равны 1,2 см
и 1,6 см. Требуется определить длину его гипотенузы. Ее можно вычислить,
используя теорему Пифагора:
с²=а²+в²
с² = 1,2² + 1,6² = 1,44 + 2,56 = 4
Осталось только извлечь корень квадратный из 4:
с=√4=2 см.
Ответ: Длина боковой стороны равнобедренного треугольника равна 2 см.
Один из углов равнобедренного треугольника является тупым. Одна сторона
данной фигуры составляет 14 см, а другая – 8 см. Чему равно основание
треугольника с двумя равными сторонами?
Известно, что углы, расположенные у основания равнобедренного
треугольника, всегда являются острыми, иначе сумма всех трех углов
превышала бы 180 градусов. Исходя из этого, можно сделать вывод о том, что
тупой угол расположен у вершины данной треугольной фигуры.
Доказанным фактом является то, что та сторона фигуры, которая расположена
напротив тупого угла, имеет большую длину, чем сторона, лежащая против
острого угла треугольника. Это позволяет утверждать, что длина основания
данного треугольника больше длины его боковой стороны. По причине того,
что треугольная фигура является равнобедренной, и известны длины двух ее
сторон (8 см и 14 см), можно говорить о том, что неизвестная сторона будет
составлять 8 см или 14 см. Если предположить, что длина неизвестной
стороны равна 14 см, тогда длина основания будет составлять 8 см, что
невозможно, так как противоречит утверждению о расположении больших сторон
напротив тупых углов. Это означает, что длина третьей стороны треугольника
равна 8 см, а основание в данном случае составляет 14 см.
Равнобедренный треугольник имеет сторону длиной 29 см. Высота, проведенная в
нем, составляет 21 см. Чему равно основание треугольника с указанными
параметрами?
Для решения данной задачи следует воспользоваться теоремой Пифагора:
с²=а²+в²
Отсюда можно выразить квадрат длины неизвестной стороны, который будет
равен разности квадратов известной стороны и высоты:
29²-21² = 400.
Для того чтобы узнать длину основания равнобедренного треугольника, нужно
извлечь корень квадратный из числа 400, а затем умножить полученное число
на 2:
√400*2 = 20*2 = 40 см.
Ответ: Длина основания равнобедренного треугольника равна 40 см.
Читать дальше: как найти площадь равностороннего треугольника.