Фо́рмула Герона — формула для вычисления площади треугольника по длинам его сторон :
- ,
где — полупериметр треугольника: .
Формула содержится в «Метрике» Герона Александрийского (I век н. э.) и названа в его честь (хотя она была известна ещё Архимеду). Герон интересовался треугольниками с целочисленными сторонами, площади которых тоже являются целыми, такие треугольники носят название героновых, простейшим героновым треугольником является египетский треугольник.
Доказательство 1 (тригонометрическое):
Доказательство 2 (на основе теоремы Пифагора):
Треугольник со сторонами a, b, c и высотой
h, разделяющей основание
c на
d и (c − d).
По теореме Пифагора имеем следующие равенства для гипотенуз: a2 = h2 + (c − d)2 и b2 = h2 + d2 — см. рисунок справа. Вычитая из первого равенства второе, получаем a2 − b2 = c2 − 2cd. Это уравнение позволяет нам выразить d через стороны треугольника:
Для высоты h у нас было равенство h2 = b2 − d2, в которое можно подставить полученное выражение для d и применить формулы для квадратов:
Замечая, что , , , , получаем:
Используя основное равенство для площади треугольника и подставляя в него полученное выражение для h, в итоге имеем:
ч.т.д.
Вариации и обобщения[править | править код]
- Формулу Герона можно записать с помощью определителя в виде[1]:
- Первый определитель последней формулы является частным случаем определителя Кэли — Менгера[en] для вычисления гиперобъёма симплекса.
- через длины высот , и и полусумму их обратных величин [3]:
- ;
- через углы треугольника , и , полусумму их синусов и диаметр описанной окружности [4]:
- Площадь вписанного в окружность четырёхугольника вычисляется по формуле Брахмагупты:
- ,
- где — полупериметр четырёхугольника; в данном случае треугольник оказывается предельным случаем вписанного четырёхугольника при устремлении длины одной из сторон к нулю. Та же формула Брахмагупты через определитель[5]:
- где:
- .
- где — полупериметр.
Примечания[править | править код]
- ↑ Weisstein, Eric W. Heron’s Formula. Архивная копия от 5 сентября 2015 на Wayback Machine From MathWorld–A Wolfram Web Resource.
- ↑ Benyi, Arpad, “A Heron-type formula for the triangle, « Mathematical Gazette» 87, July 2003, 324—326.
- ↑ Mitchell, Douglas W., “A Heron-type formula for the reciprocal area of a triangle, ” Mathematical Gazette 89, November 2005, 494.
- ↑ Mitchell, Douglas W., “A Heron-type area formula in terms of sines, ” Mathematical Gazette 93, March 2009, 108—109.
- ↑ Стариков В. Н. Заметки по геометрии// Научный поиск: гуманитарные и социально-экономические науки: сборник научных трудов. Выпуск 1/ Гл ред. Романова И .В Чебоксары: ЦДИП «INet», 2014. С. 37-39
- ↑ W. Kahan, «What has the Volume of a Tetrahedron to do with Computer Programming Languages?», [1] Архивная копия от 27 июня 2013 на Wayback Machine, pp. 16-17.
- ↑ Маркелов С. Формула для объёма тетраэдра// Математическое просвещение. Вып. 6. 2002. С. 132
Литература[править | править код]
- § 258 в А. П. Киселёв, Геометрия по Киселёву, arΧiv:1806.06942 [math.HO].
- Николаев Н. О площади треугольника // В.О.Ф.Э.М.. — 1890. — № 108. — С. 227—228.
- Raifaizen, Claude H. A Simpler Proof of Heron’s Formula (англ.) // Mathematics Magazine : magazine. — 1971. — Vol. 44. — P. 27—28. — доказательство формулы Герона на основе теоремы Пифагора
В данной публикации мы рассмотрим формулу Герона, пользуясь которой можно найти площадь треугольника. Также разберем примеры решения задач для того, чтобы закрепить представленный материал.
- Формула площади
- Примеры задач
Формула площади
Площадь треугольника (S) равняется квадратному корню из произведения его полупериметра (p) на разности полупериметра и каждой из его сторон (a, b, c).
S = √p(p-a)(p-b)(p-c)
Полупериметр (p) вычисляется таким образом:
Примечание: для использования формулы необходимо знать/найти длину всех сторон треугольника.
Формула получила такое название в честь греческого математика и механика Герона Александрийского, который изучал треугольники с целочисленными сторонами и площадью (героновские). К таким, например, относится прямоугольный треугольник с соотношением сторон 3:4:5, который также называют египетским.
Примеры задач
Задание 1
Найдите площадь треугольника со сторонами 6, 8 и 10 см.
Решение
Для начала найдем полупериметр:
p = (6 + 8 + 10) / 2 = 12 см.
Теперь воспользуемся формулой Герона, подставив в нее заданные значения:
S = √12(12 – 6)(12 – 8)(12 – 10) = √12 ⋅ 6 ⋅ 4 ⋅ 2 = 24 см2.
Задание 2
В прямоугольном треугольнике длина гипотенузы равняется 15 см, а одного из катетов – 9 см. Вычислите площадь фигуры.
Решение
Пусть гипотенуза – это c, известный катет – a, а неизвестный – b.
Применим Теорему Пифагора, чтобы найти длину катета b:
b2 = c2 – a2 = 152 – 92 = 144 см2, следовательно, b = 12 cм.
Полупериметр треугольника равен:
p = (9 + 12 + 15) / 2 = 18 см.
Остается только использовать формулу для нахождения площади:
S = √18(18 – 9)(18 – 12)(18 – 15) = √18 ⋅ 9 ⋅ 6 ⋅ 3 = 54 см2.
Как найти площадь треугольника
На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.
Треугольник – это многоугольник с тремя сторонами.
По формуле Герона
Формула Герона для нахождения площади треугольника:
– полупериметр треугольника; a,b,c – стороны треугольника.
Через основание и высоту
Формула нахождения площади треугольника с помощью половины его основания и высоту:
a – основание треугольника; h – высота треугольника.
Через две стороны и угол
Формула нахождения площади треугольника через две стороны и угол между ними:
a,b – стороны треугольника; α – угол между сторонами.
Через сторону и два прилежащих угла
Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
<
a– сторона треугольника; α и β – прилежащие углы.
Площадь прямоугольного треугольника
Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.
Формула нахождения площади прямоугольного треугольника через катеты:
a, b – катеты треугольника.
Площадь равнобедренного треугольника через стороны
Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.
Формула нахождения площади равнобедренного треугольника через две стороны:
a, b – стороны треугольника.
Площадь равнобедренного треугольника через основание и угол
Формула нахождения площади равнобедренного треугольника через основание и угол:
a – основание равнобедренного треугольника; α – угол между сторонами.
Площадь равностороннего треугольника через стороны
Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.
Формула нахождения площади равностороннего треугольника через сторону:
a – сторона равностороннего треугольника.
Площадь равностороннего треугольника через высоту
Формула нахождения площади равностороннего треугольника через высоту:
h – высота равностороннего треугольника.
Площадь равностороннего треугольника через радиус вписанной окружности
Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:
r – радиус вписанной окружности равностороннего треугольника.
Площадь равностороннего треугольника через радиус описанной окружности
Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:
r – радиус описанной окружности равностороннего треугольника.
Площадь треугольника через радиус описанной окружности и три стороны
Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:
a, b, c – стороны треугольника; r – радиус описанной окружности треугольника.
Площадь треугольника через радиус вписанной окружности и три стороны
Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:
p – полупериметр треугольника;a, b, c – стороны треугольника; r – радиус вписанной окружности треугольника.
Треугольник – это фигура, которая образуется после соединения трех точек, не лежащих на одной прямой отрезками. Точки называются вершинами, а отрезки сторонами. Для расчета треугольника существует множество формул, которые помогают найти как длины сторон, радиусы углов и прочие составляющие фигуры, так и площадь треугольника.
Самой распространенной формулой для расчета площади треугольника по трем сторонам является формула Герона . Если известны длины всех сторон, то можно вычислить площадь фигуры, применив формулу Герона для площади треугольника.
где a, b, c – длины сторон, а p– полупериметр.
Полупериметр – это сумма длин всех сторон поделенная на два.
Пример расчета формулы Герона для площади треугольника
Дан треугольник, в котором a = 5, b = 6, c = 7. Найдем полупериметр:
Теперь подставим данные в формулу для нахождения площади:
В итоге мы нашли площадь треугольника. Она равна 14,7 кв. см.
Сторона a= | Сторона b= | Сторона c= | |
Ответ: Площадь треугольника = 6.000 |
Основные понятия
Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.
Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.
Популярные единицы измерения площади:
-
квадратный миллиметр (мм2);
-
квадратный сантиметр (см2);
-
квадратный дециметр (дм2);
-
квадратный метр (м2);
-
квадратный километр (км2);
-
гектар (га).
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Узнай, какие профессии будущего тебе подойдут
Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас
Формула площади треугольника
Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.
Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.
Пройдите тест и узнайте, какие темы отделяют от пятёрки по математике
Добро пожаловать в школу магии.
О нет! Мальчик-молния случайно попал в школьные часы. Теперь они отстают. Мы все можем задержаться в школе
Жми на стрелки сверху, чтобы путешествовать в истории→
Одна ученица когда-то была в школьной кладовке и видела там схему часов
Но в кладовку просто так не попадёшь→
Реши два примера от волшебной статуи на входе в кладовку
frac{1}{7} + frac{3}{7} =
frac{4}{7}
frac{5}{7}
frac{4}{14}
frac{2}{7}
frac{4}{15} – frac{1}{15} =
frac{1}{3}
frac{1}{5}
frac{3}{30}
frac{1}{10}
Схема у нас!
Деталь можно сделать из проволоки и формы для заливки металла. Найди их на картинке
Теперь осталось взять инструменты у садовника! Он обменяет их на волшебные бобы для его сада
Для починки часов нужны: молоток, отвертка и плоскогубцы.
Ты можешь либо одолжить у садовника набор, либо отдельные инструменты, либо и то, и другое. Какое минимальное количество волшебных бобов ты можешь отдать садовнику?
Ответ:
562 боба
400 бобов
553 боба
Деталь имеет форму прямоугольника со сторонами 5 см и 12 см. Найди периметр и площадь детали, чтобы посчитать, сколько проволоки для неё понадобится
Периметр прямоугольника равен
40 см
26 см
22 см
34 см
Площадь прямоугольника равна
50 см^2
46 см^2
60 см^2
62 см^2
Мальчик-молния выплавил деталь, часы должны работать! Но они почему-то не идут… Кажется, одной шестерёнки не хватает — она куда-то упала
В коробке, шкатулке, ящике и банке находятся пыльца, волчий корень, золото и шестерёнка. Шестерёнка и пыльца не в коробке, ёмкость с волчьим корнем стоит между ящиком и ёмкостью с золотом, в банке не волчий корень и не шестерёнка. Шкатулка стоит около банки и ёмкостью с пыльцой. В какой ёмкости что находится?
Соедини ёмкости с содержимым на картинках ниже
Шестерёнка
Золото
Волчий корень
Пыльца
Ура, мы вставили последнюю шестеренку, и часы пошли! Сегодня уроки закончатся вовремя. Спасибо тебе за помощь!
Дальше узнаешь свои результаты →
Формулы площади для любого треугольника
1. Площадь треугольника через основание и высоту
, где
— основание,
— высота.
2. Площадь треугольника через две стороны и угол между ними.
, где
,
— стороны,
— угол между ними.
3. Площадь треугольника через описанную окружность и стороны
, где
,
,
— стороны,
— радиус описанной окружности.
4. Площадь треугольника через вписанную окружность и стороны.
, где
,
,
— стороны,
— радиус вписанной окружности.
, где
— полупериметр.
5. Площадь треугольника по стороне и двум прилежащим углам
, где
— сторона,
и
— прилежащие углы.
6. Формула Герона для вычисления площади треугольника
Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.
, где
,
,
— стороны,
— полупериметр, который можно найти по формуле:
Для прямоугольного треугольника
Для прямоугольного треугольника чаще всего используют одну формулу — половину произведения катетов. Потому что их всегда можно найти с помощью правил тригонометрии или теоремы Пифагора.
, где
,
— стороны.
Площадь треугольника по гипотенузе и острому углу
, где
— гипотенуза,
— любой из прилегающих острых углов.
Гипотенузой принято называть сторону, которая лежит напротив прямого угла.
Площадь прямоугольного треугольника по катету и прилежащему углу
, где
— катет,
— прилежащий угол.
Катетом принято называть одну из двух сторон, образующих прямой угол.
Площадь треугольника через гипотенузу и радиус вписанной окружности
, где
— гипотенуза,
— радиус вписанной окружности.
Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу
, где
,
— части гипотенузы.
Площадь прямоугольного треугольника по формуле Герона
, где
,
— катеты,
— полупериметр, который можно найти по формуле:
Для равнобедренного треугольника
Ниже мы покажем разные формулы для площади равнобедренного и равностороннего треугольника, их редко используют, но их легко вывести самому. Попробуйте сделать это самостоятельно.
Вычисление площади через основание и высоту
, где
— основание,
— высота, проведенная к основанию.
Поиск площади через боковые стороны и угол между ними.
, где
— боковая сторона,
— угол между боковыми сторонами.
Площадь равностороннего треугольника через радиус описанной окружности
, где
— радиус описанной окружности.
Площадь равностороннего треугольника через радиус вписанной окружности
, где
— радиус вписанной окружности.
Площадь равностороннего треугольника через сторону
, где
— сторона.
Площадь равностороннего треугольника через высоту
, где
— высота.
Таблица формул нахождения площади треугольника
В задачах встречаются разные фигуры, и кажется, что нужны разные формулы. Но на самом деле, зная всего несколько формул для треугольника и пользуясь теоремами и свойствами геометрии, можно найти площадь любой фигуры.
Скачать таблицу
Но что делать, если нужно решить контрольную по математике или геометрии быстро, а вы плохо знаете конкретную тему? Закажите контрольную по математике онлайн у специалистов, которые помогут быстро выполнить задание и пояснят решение.