Утверждение
Площади подобных треугольников относятся как квадраты их соответствующих сторон, то есть отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Дано:
Доказать:
Площадь треугольника ABC может быть найдена, например, по двум сторонам и углу между ними:
Аналогично,
Так как углы подобных треугольников равны, а стороны — пропорциональны, то ∠A=∠A1,
то есть
Теперь можем найти, как относятся площади подобных треугольников:
Так как
то
то есть
Что и требовалось доказать.
Поскольку отношение любых линейных размеров (высот, медиан, биссектрис, периметров) подобных треугольников равно коэффициенту подобия, площади подобных треугольников относятся как квадраты их соответствующих линейных размеров.
Подобные треугольники
3 октября 2022
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.
Подобные треугольники — ключевая тема геометрии 8 класса. Они будут преследовать нас до самого конца школы. И сегодня мы разберём всё, что нужно знать о них.
План такой:
- Основное определение
- Лемма о подобных треугольниках
- Свойства подобных треугольников
- Разбор задач
1. Основное определение
Определение. Треугольники называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.
Рассмотрим треугольники $ABC$ и $MNK$:
У них есть равные углы: $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. И пропорциональные стороны:
[frac{AB}{MN}=frac{BC}{NK}= frac{AC}{MK}= frac{color{red}{3}}{color{red}{2}}]
Следовательно, треугольники $ABC$ и $MNK$ подобны. Записывается это так:
[Delta ABCsim Delta MNK]
Число $k={color{red}{3}}/{color{red}{2}};$ называется коэффициентом подобия. К нему мы ещё вернёмся.
Пропорциональные стороны подобных треугольников (например, $AB$ и $MN$, либо $BC$ и $NK$) в некоторых учебниках называют сходственными. На практике этот термин применяется редко. Мы будем говорить просто «соответственные стороны».
Дальше идёт очень важное замечание.
1.1. Обозначение подобных треугольников
В геометрии один и тот же треугольник можно называть по-разному. Например, $Delta ABC$, $Delta BCA$ или $Delta CAB$ — это всё один и тот же треугольник. То же самое касается и углов.
Но в подобных треугольниках есть негласное правило:
При обозначении подобных треугольников порядок букв выбирают так, чтобы равные углы перечислялись в одной и той же последовательности.
Вернёмся к нашим треугольникам $ABC$ и $MNK$:
Поскольку $anglecolor{red}{A}=anglecolor{red}{M}$ и $anglecolor{blue}{B}=anglecolor{blue}{N}$, можно записать $Deltacolor{red}{A}color{blue}{B}Csim Deltacolor{red}{M}color{blue}{N}K$. Или $Delta Ccolor{red}{A}color{blue}{B}sim Delta Kcolor{red}{M}color{blue}{N}$. Но никак не $Deltacolor{red}{A}color{blue}{B}Csim Delta Kcolor{red}{M}color{blue}{N}$.
Да, это негласное правило. И если вы нарушите последовательность букв, это не ошибка. Никто не снизит вам за это баллы. А если снизит — добро пожаловать на апелляцию.
Правильная запись позволяет быстро и безошибочно выписывать пропорциональные стороны треугольников. Рассмотрим два подобных треугольника:
[Delta ABCsim Delta MNK]
Берём две первые буквы из каждого треугольника: ${AB}/{MN};$. Затем две последние буквы: ${BC}/{NK};$. Наконец, вычёркиваем «центральную» букву: ${AC}/{MK};$.
Приравниваем полученные три дроби:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]
Вот и всё! Даже рисунок не нужен! Этот приём настолько прост и эффективен, что его в обязательном порядке изучают на моих занятиях, курсах и вебинарах.
В будущем мы увидим, что подобные треугольники чаще всего ищут как раз для составления таких пропорций.
2. Лемма о подобных треугольниках
Подобные треугольники появляются всякий раз, когда прямая, параллельная стороне треугольника, пересекает его стороны.
Теорема 1. Прямая, пересекающая две стороны треугольника и параллельная третьей стороне, отсекает треугольник, подобный исходному.
Доказательство. Рассмотрим треугольник $ABC$. Пусть прямая $MNparallel AB$ отсекает треугольник $MNC$:
Докажем, что $Delta ABCsim Delta MNC$. Рассмотрим треугольники $ABC$ и $MNC$. У них есть общий угол $ACB$.
Углы $ABC$ и $MNC$ — соответственными при $MNparallel AB$ и секущей $BC$. Следовательно, они равны: $angle ABC=angle MNC$.
Аналогично равны углы $BAC$ и $NMC$. Следовательно, треугольники $ABC$ и $MNC$ имеют три соответственно равных угла.
Докажем теперь, что соответственные стороны пропорциональны. Т.е. докажем пропорцию
[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]
Рассмотрим угол $ACB$. Параллельные прямые $AB$ и $MN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:
[frac{AC}{MC}=frac{BC}{NC}]
Это равенство — второе в искомом:
[frac{AB}{MN}= color{red}{frac{BC}{NC}=frac{AC}{MC}}]
Осталось доказать первое равенство. Дополнительное построение: прямая $KNparallel AC$:
Поскольку $AMparallel KN$ (по построению) и $AKparallel MN$ (по условию), четырёхугольник $AKNM$ — параллелограмм. Поэтому $AK=MN$.
Рассмотрим угол $ABC$. Параллельные прямые $AC$ и $KN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:
[frac{AB}{AK}=frac{BC}{NC}]
Учитывая, что $AK=MN$, получаем
[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]
Итак, соответственные углы треугольников $ABC$ и $MNC$ равны, а их стороны пропорциональны. Следовательно, по определению подобных треугольников
[Delta ABCsim Delta MNC]
Что и требовалось доказать.
Эта лемма — не признак подобия. Это самостоятельная теорема, которая ускоряет решение многих задач.
Признаки подобия разобраны в отдельном уроке — см. «Признаки подобия треугольников».
Частный случай этой леммы — средняя линия. Она отсекает треугольник со сторонами в два раза меньше, чем у исходного:
Оформляется это так. Поскольку $AM=MC$ и $BN=NC$, то $MN$ — средняя линия треугольника $ABC$. Следовательно, прямые $AB$ и $MN$ параллельны, откуда
[Delta ABCsim Delta MNC]
3. Свойства подобных треугольников
Два важнейших свойства: связь периметров и связь площадей.
3.1. Периметры подобных треугольников
Теорема 2. Отношение периметров подобных треугольников равно коэффициенту подобия.
Доказательство. Рассмотрим подобные треугольники $ABC$ и $MNK$:
Запишем равенство из определения подобия. Поскольку $Delta ABCsimDelta MNK$, стороны этих треугольников пропорциональны:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]
Здесь число $color{red}{k}$ — коэффициент подобия. Полученное тройное равенство можно переписать так:
[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}; frac{AC}{MK}=color{red}{k}]
Или, что то же самое:
[begin{align}AB&=color{red}{k}cdot MN \ BC &=color{red}{k}cdot NK \ AC &=color{red}{k}cdot MK \ end{align}]
Периметр треугольника $MNK$:
[{{P}_{Delta MNK}}=MN+NK+MK]
Периметр треугольника $ABC$:
[begin{align}{{P}_{Delta ABC}} &=AB+BC+CD= \ &=color{red}{k}cdot MN+color{red}{k}cdot NK+color{red}{k}cdot MK= \ &=color{red}{k}cdot left( MN+NK+MK right)= \ &=color{red}{k}cdot {{P}_{Delta MNK}} end{align}]
Итого получаем равенство
[{{P}_{Delta ABC}}=color{red}{k}cdot {{P}_{Delta MNK}}]
Обычно именно в таком виде это равенство и применяют. Но можно записать его и как отношение:
[frac{{{P}_{Delta ABC}}}{{{P}_{Delta MNK}}}=color{red}{k}]
В любом случае, мы получили отношение, которое и требовалось доказать.
3.2. Площади подобных треугольников
Теорема 3. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Доказательство. Первые шаги очень похожи на доказательство предыдущей теоремы. Вновь рассмотрим подобные треугольники $ABC$ и $MNK$:
Поскольку $Delta ABCsimDelta MNK$, углы $ABC$ и $MNK$ равны. Следовательно, равны синусы этих углов:
[begin{align}angle ABC &=angle MNK=color{blue}{alpha} \ sin angle ABC &=sin angle MNK=sin color{blue}{alpha} end{align}]
Кроме того, стороны подобных треугольников пропорциональны:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]
В частности, из этого равенства следует, что
[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}]
Или, что то же самое:
[begin{align}AB &= color{red}{k}cdot MN \ BC &= color{red}{k}cdot NK \ end{align}]
Площадь треугольника $MNK$:
[{{S}_{Delta MNK}}=frac{1}{2}cdot MNcdot NKcdot sin color{blue}{alpha} ]
Площадь треугольника $ABC$:
[begin{align}{{S}_{Delta ABC}} &=frac{1}{2}cdot ABcdot BCcdot sincolor{blue}{alpha} = \ &=frac{1}{2}cdotcolor{red}{k}cdot MNcdotcolor{red}{k}cdot NKcdot sincolor{blue}{alpha} = \ &={color{red}{k}^{2}}cdot frac{1}{2}cdot MNcdot NKcdot sin alpha = \ &={color{red}{k}^{2}}cdot {{S}_{Delta MNK}} end{align}]
Получаем равенство
[{{S}_{Delta ABC}}={color{red}{k}^{2}}cdot {{S}_{Delta MNK}}]
Перепишем в виде отношения:
[frac{{{S}_{Delta ABC}}}{{{S}_{Delta MNK}}}={color{red}{k}^{2}}]
Что и требовалось доказать.
Для доказательства теоремы мы использовали формулу площади треугольника:
[{{S}_{Delta }}=frac{1}{2}absin alpha ]
Тригонометрию проходят после подобия, поэтому мы опираемся на ещё не изученный материал.
Впрочем, ничто не мешает взять уже известную формулу:
[{{S}_{Delta }}=frac{1}{2}ah]
Здесь $a$ — сторона треугольника, $h$ — высота, проведённая к этой стороне. Дело в том, что высоты в подобных треугольниках тоже пропорциональны. И не только высоты. Назовём это Свойством 3.3.:)
3.3. Элементы подобных треугольников
Теорема 4. Отношение высот, биссектрис и медиан, проведённых к соответствующим сторонам подобных треугольников, равно коэффициенту подобия.
Проиллюстрируем это на высотах. Пусть треугольники $ABC$ и $MNK$ подобны:
В этом случае высоты $CDbot AB$ и $KLbot MN$ относятся как
[frac{CD}{KL}=frac{AB}{MN}= color{red}{k}]
Для доказательства этой теоремы нужно знать признаки подобия. Поэтому оставим его до следующего урока. А сейчас переходим к задачам.
4. Задачи на подобие
Здесь разобрано пять задач на подобие треугольников. Все они довольно простые. За сложными задачами добро пожаловать в задачник.:)
Задача 1. Готовые треугольники
Известно, что треугольники $ABC$ и $MNK$ подобны, причём $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. Кроме того, стороны $AB=6$, $BC=7$, $AC=10$ и $MN=9$. Найдите стороны $NK$ и $MK$.
Решение. Построим треугольники $ABC$ и $MNK$, отметим известные стороны:
Из условия $Delta ABCsim Delta MNK$ следует, что верно равенство
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]
Подставим в это равенство всё, что нам известно:
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}=frac{color{red}{10}}{MK}]
Опустим последнюю дробь и получим пропорцию
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}]
Найдём сторону $NK$:
[NK=frac{color{red}{9}cdot color{red}{7}}{color{red}{6}}=10,5]
Аналогично, убирая среднюю дробь, получим пропорцию
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{10}}{MK}]
Найдём сторону $MK$:
[NK=frac{color{red}{9}cdot color{red}{10}}{color{red}{6}}=15]
Ответ: $NK=10,5$, $MK=15$.
Задача 2. Прямая, параллельная стороне
Прямая, параллельная стороне $AC$ треугольника $ABC$, пересекает сторону $AB$ в точке $D$, а сторону $BC$ — в точке $E$. Найдите:
а) Отрезок $BD$, если $AB=16$, $AC=20$, $DE=15$.
б) Отрезок $AD$, если $AB=28$, $BC=63$, $BE=27$.
Решение. Для начала построим рисунок. Он будет общий для обоих пунктов.
Из условия следует, что прямая $DE$ пересекает стороны треугольника $ABC$:
Поскольку $DEparallel AC$, по лемме о подобных треугольниках прямая $DE$ отсекает от треугольника $ABC$ новый треугольник, подобный исходному:
[Delta ABCsim Delta DBE]
Из подобия треугольников $ABC$ и $DBE$ следует равенство
[frac{AB}{DB}=frac{BC}{BE}=frac{AC}{DE}]
Решаем пункт а). Подставляем в это равенство всё, что нам известно:
[frac{color{red}{16}}{DB}=frac{BC}{BE}=frac{color{red}{20}}{color{red}{15}}]
Вычёркиваем среднюю дробь и получаем пропорцию
[frac{color{red}{16}}{DB}=frac{color{red}{20}}{color{red}{15}}]
Отсюда легко найти $DB$ (или, что то же самое, $BD$):
[DB=frac{color{red}{16}cdotcolor{red}{15}}{color{red}{20}}=12]
Аналогично решаем пункт б). Подставляем в исходное равенство известные величины:
[frac{color{red}{28}}{DB}=frac{color{red}{63}}{color{red}{27}}=frac{AC}{DE}]
Первые две дроби образуют пропорцию, из которой вновь легко найти $DB$:
[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=12]
Осталось найти $AD$:
[begin{align}AD &=AB-BD= \ &=color{red}{28}-color{red}{12}=16 end{align}]
Ответ: а) $BD=12$; б) $AD=16$.
Важное замечание по работе с пропорциями. Ни в коем случае не нужно перемножать числа в числителе.
Напротив: нужно разложить их на множители и сократить!
Взгляните:
[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=frac{4cdotcolor{blue}{7}cdot 3cdotcolor{green}{9}}{color{blue}{7}cdotcolor{green}{9}}=12]
Так вы сэкономите время, избежите умножения столбиком и защитите себя от множества ошибок. Никогда не умножайте большие числа, если дальше их нужно будет сокращать.
Задача 3. Доказательство подобия
Точки $M$ и $K$ — середины сторон $CD$ и $AD$ квадрата $ABCD$ соответственно. Докажите, что треугольники $MDK$ и $BCD$ подобны.
Решение. Сделаем первоначальный рисунок по условию задачи:
Здесь нет прямых, параллельных сторонам треугольника, поэтому лемма о подобных треугольниках не поможет. Докажем подобие по определению.
Сначала разберёмся с углами. Поскольку $ABCD$ — квадрат, и $KD=MD$ — половина стороны квадрата, треугольники $MDK$ и $BCD$ — прямоугольные и равнобедренные.
Все острые углы треугольников $MDK$ и $BCD$ равны 45°. Можем записать это так:
[begin{align}angle BCD &=angle MDK={90}^circ \ angle CBD &=angle DMK={45}^circ \ angle CDB &=angle DKM={45}^circ \ end{align}]
Дополнительное построение: диагональ квадрата $color{red}{AC}$:
Рассмотрим треугольник $ACD$. Отрезок $KM$ — средняя линия, поэтому $KM={color{red}{AC}}/{2};$. С другой стороны, $AC=BD$ как диагонали квадрата. Поэтому верно равенство
[frac{KM}{BD}=frac{KM}{color{red}{AC}}=frac{1}{2}]
Но тогда выполняется следующее равенство:
[frac{MD}{BC}=frac{DK}{CD}=frac{MK}{BD}=frac{1}{2}]
А это вместе с равенством углов как раз и означает, что треугольники $MDK$ и $BCD$ подобны:
[Delta MDKsim Delta BCD]
Доказательство завершено.
Мы доказали подобие треугольников по определению. Если пользоваться признаками подобия, всё будет намного быстрее. Но пока мы не вправе пользоваться этими признаками.
Задача 4. Вписанный ромб
В треугольник $ABC$ вписан ромб $BDEK$ так, как показано на рисунке. Найдите сторону ромба, если $AB=10$, $BC=15$.
Решение. Пусть искомая сторона ромба равна $color{red}{x}$. Из условия задачи получим такой рисунок:
Зная, что $AB=10$ и $BC=15$, выразим $AK$ и $CD$:
[begin{align}AK &=10-color{red}{x} \ CD &=15-color{red}{x} \ end{align}]
Далее рассмотрим треугольник $ABC$. Поскольку $BDEK$ — ромб, то $KEparallel BC$. По лемме о подобных треугольниках имеем:
[Delta ABCsim Delta AKE]
В подобных треугольниках подобные стороны пропорциональны, поэтому
[frac{AB}{AK}=frac{BC}{KE}=frac{AC}{AE}]
Подставим в это равенство всё, что нам известно или выражено через $color{red}{x}$:
[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}=frac{AC}{AE}]
Последняя дробь оказалась бесполезной. Вычеркнем её и получим пропорцию:
[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}]
Применяем основное свойство пропорции и уравнение:
[begin{align}10cdotcolor{red}{x} &=15cdot left( 10- color{red}{x} right) \ 2cdotcolor{red}{x} &=3cdot left( 10- color{red}{x} right) \ &cdots\ color{red}{x} &=6 end{align}]
Это и есть искомая сторона ромба. Она равна $color{red}{x}=6$.
Ответ: $BD=6$.
Задача 5. Свойства биссектрисы
В треугольнике $ABC$ стороны $AB=8$, $BC=12$, угол $ABC={120}^circ $. Отрезок $BD$ — биссектриса. Найдите длину $BD$.
Решение. Из условия задачи можно сделать вот такой рисунок:
Поскольку $BD$ — биссектриса угла в треугольнике, точка $D$ делит сторону $AC$ на отрезки, пропорциональные сторонам $AB$ и $BC$. Это можно записать так:
[frac{AD}{CD}=frac{AB}{CB}=frac{color{red}{8}}{color{red}{12}}=frac{color{red}{2}}{color{red}{3}}]
Обозначим пропорциональные отрезки переменными. Пусть $AD=color{blue}{2x}$, $CD=color{blue}{3x}$.
Дополнительное построение: прямая $DMparallel AB$:
Рассмотрим угол $ACB$. Поскольку $DMparallel AB$, по теореме о пропорциональных отрезках получаем, что
[frac{BM}{CM}=frac{AD}{CD}=frac{color{red}{2}}{color{red}{3}}]
Вновь обозначим пропорциональные отрезки переменными. Пусть $BM=color{blue}{2y}$, $CM=color{blue}{3y}$. Но тогда
[BC=BM+MC=color{blue}{5y}=color{red}{12}]
Получаем, что $color{blue}{y}=color{red}{2,4}$. Отсюда легко найти длину $BM$:
[BM=color{blue}{2y}=2cdotcolor{red}{2,4}= color{red}{4,8}]
Далее заметим, что если угол $ABC$ равен 120°, то
[angle ABD=angle CBD={60}^circ ]
С другой стороны, прямые $AB$ и $MD$ параллельны по построению. Прямая $BD$ — секущая для этих параллельных прямых.
Следовательно, углы $ABD$ и $BDM$ — внутренние накрест лежащие, поэтому
[angle BDM=angle ABD={60}^circ ]
Рассмотрим треугольник $BDM$. В нём есть два угла по 60°. Следовательно, это равносторонний треугольник:
[BD=BM=color{red}{4,8}]
Мы нашли длину отрезка $BD$. Задача решена.
Ответ: $BD=4,8$.
Итак, с определением разобрались. В следующем уроке разберём признаки подобия.:)
Смотрите также:
- Как применяется теорема косинусов и подобие треугольников для решения широкого класса задач в планиметрии.
- Теорема менелая
- Комбинаторика в задаче B6: легкий тест
- Введение системы координат
- Четырехугольная пирамида: как найти координаты вершин
- Нестандартная задача B5 на площадь круга
Площади подобных треугольников
Средняя оценка: 4.8
Всего получено оценок: 107.
Средняя оценка: 4.8
Всего получено оценок: 107.
Подобные треугольники – это следующий шаг в изучении треугольников после равенства. Нужно в полной мере понимать возможности подобия треугольников, чтобы правильно использовать все свойства в решении задач. Разберемся в отличиях равенства, подобия и равновеличия, а также поговорим о свойствах сторон и определении площадей подобных треугольников.
Подобные треугольники
Подобными треугольниками называют треугольники, соответственные стороны которых пропорциональны, а углы равны. Равные треугольники также являются подобными с коэффициентом подобия равным 1.
Рис. 1. Подобные треугольники
Коэффициент пропорциональности (подобия) – это отношение длин сторон одного треугольника к соответствующим длинам сторон другого треугольника. Важно при подсчете коэффициента строго соблюдать какая сторона к какой относится.
Например, если вы начали расчет делением сторон большего треугольника на стороны меньшего, то стоит придерживаться такого подхода и далее.
Признаки подобия
Признаки подобия в чем-то похожи на признаки равенства треугольников. Всего их тр:
- По двум углам. Если два угла одного треугольника равны соответствующим углам другого треугольника, то такие треугольники подобны.
- По трем сторонам. Если три стороны одного треугольника пропорциональны соответствующим сторонам другого треугольника, то такие треугольники подобны.
- По двум сторонам и углу между ними. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то такие треугольники подобны.
Рис. 2. Признаки подобия треугольников
Свойства подобных треугольников
- Стороны подобных треугольников пропорциональны и относятся друг к другу в отношении, равном коэффициенту подобия.
- Углы подобных треугольников равны.
- Площади подобных треугольников относятся друг к другу в отношении, равном квадрату коэффициента подобия.
Остановимся подробнее на последнем свойстве. Почему все стороны соотносятся ,как коэффициент в первой степени, а площади в квадрате? Потому что площадь это половина произведения основания на высоту.
Пропорциональны друг другу не только стороны, но и характерные отрезки: медианы, высоты, биссектрисы.
Получается, что обе части произведения площади пропорциональны, но в произведении участвуют как высота, так и основание. Значит коэффициент пропорциональности должен быть возведен в квадрат.
Нужно четко различать понятие подобных и равновеликих треугольников. Подобные треугольники имеют коэффициент подобия, в соответствие с которым соотносятся стороны треугольника. А равновеликие треугольники могут, как угодно разнится по значениям сторон, важно лишь, чтобы площади треугольников были равны.
Что мы узнали?
Мы узнали, что такое подобные треугольники, поговорили об их свойствах. Поговорили об отношении площадей подобных треугольников и вывели это отношение на практике для лучшего запоминания формулы.
Подобные треугольники
Определение
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.
Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.
Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.
Признаки подобия треугольников
I признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
II признак подобия треугольников
Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Свойства подобных треугольников
- Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
- Отношение периметров подобных треугольников равно коэффициенту подобия.
- Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
Примеры наиболее часто встречающихся подобных треугольников
1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.
2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –
3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.
Здесь вы найдете подборку задач по теме «Подобные треугольники» .
Отношение площадей подобных треугольников
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке мы введем понятие подобных треугольников и рассмотрим теорему об отношении их площадей. Затем будет рассмотрен ряд примеров на применение этой теоремы.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Измерение»
[spoiler title=”источники:”]
http://interneturok.ru/lesson/geometry/8-klass/podobnye-treugolniki/otnoshenie-ploschadey-podobnyh-treugolnikov
[/spoiler]
Тема: Подобные треугольники
Урок: Отношение площадей подобных треугольников
1. Понятие подобия треугольников
Начнем с того, что введем определение подобных треугольников.
Определение. Два треугольника называются подобными, еслиих углы попарно равны, а стороны, лежащие напротив соответственных углов, пропорциональны (см. Рис. 1).
. Отношение длин сторон треугольников называют коэффициентом подобия ().
Рис. 1
Замечание. Пропорциональные стороны подобных треугольников называют еще сходственными сторонами.
Важно понимать, что в подобных треугольниках пропорциональны не только стороны, но и другие соответственные линейные элементы: высоты, медианы, биссектрисы, проведенные к соответственным сторонам, периметры и т.п. Т.е. все эти величины относятся, как коэффициент подобия. Вопрос заключается в том, верно ли аналогичное утверждение и для площадей треугольников. Для того чтобы ответить на этот вопрос, сформулируем теорему.
Теорема 1. Отношение площадей подобных треугольников равно квадрату коэффициента их подобия.
Доказательство. Изобразим подобные треугольники на Рис. 2.
Рис. 2
2. Теорема об отношении площадей подобных треугольников
Из подобия треугольников по определению следует, что .Воспользуемся следующей теоремой, которую мы сформулировали в предыдущей теме «Площадь»: если у двух треугольников равны углы (), то их площади относятся, как произведение сторон, заключающих данные углы. Запишем этот факт в виде формулы:
, что и требовалось доказать.
Доказано.
Замечание. Возможно доказательство этой теоремы не единственным указанным способом, а и с использованием различных формул для вычисления площади треугольника, но мы их указывать не будем.
3. Задачи на применение теоремы об отношении площадей подобных треугольников
Рассмотрим ряд примеров, в которых применяется рассмотренная теорема.
Пример 1. Если два треугольника подобны с коэффициентом подобия , то чему равно отношение площадей этих треугольников.
Решение. Задача устная и не требует выполнения чертежа. Воспользуемся изученной теоремой: .
Ответ. 2.
Пример 2. Треугольники подобны. Площадь равна , площадь равна . Сторона равна 18 см, найти сходственную ей сторону .
Решение. Воспользуемся для удобства готовым Рис. 2. Поскольку отношение площадей треугольников: , то по теореме .
Тогда из подобия треугольников: .
Ответ. 9 см.
Пример 3. Дан треугольник , площадь которого равна и в нем проведена средняя линия параллельно . Необходимо найти площадь треугольника, который отсекает средняя линия от треугольника .
Решение. Изобразим Рис. 3.
Рис. 3
Из рисунка видно, что в условии требуется найти площадь треугольника . Треугольники и подобны, т.к. равны их углы ( общий, , как соответственные углы при параллельных прямых и секущей) и сходственные стороны пропорциональны с коэффициентом пропорциональности ( и – середины соответствующих сторон, а по теореме о средней линии).
Тогда по теореме об отношении площадей подобных треугольников .
Ответ. .
На сегодняшнем уроке была рассмотрена теорема об отношении площадей подобных треугольников и приведен ряд примеров на ее применение.
Список литературы
- Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
- Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Antonmart.narod.ru (Источник).
- Oldskola1.narod.ru (Источник).
Домашнее задание
- Вычислите коэффициент подобия треугольников, площади которых равны: а) , б) , в) .
- В треугольнике через точку , лежащую на стороне , проведены прямые, параллельные сторонам и . Площадь образованного при этом параллелограмма составляет площади треугольника . Найдите отношение .
- В треугольнике через основание высоты проведена прямая параллельно стороне до пересечения со стороной в точке. Найдите отношение , если площадь треугольника составляет площади треугольника .
- На боковых сторонах и трапеции взяты точки и так, что отрезок параллелен основаниям и делит площадь трапеции пополам. Найдите длину , если и .
Площади подобных треугольников
4.8
Средняя оценка: 4.8
Всего получено оценок: 154.
4.8
Средняя оценка: 4.8
Всего получено оценок: 154.
Подобные треугольники – это следующий шаг в изучении треугольников после равенства. Нужно в полной мере понимать возможности подобия треугольников, чтобы правильно использовать все свойства в решении задач. Разберемся в отличиях равенства, подобия и равновеличия, а также поговорим о свойствах сторон и определении площадей подобных треугольников.
Опыт работы учителем математики – более 33 лет.
Подобные треугольники
Подобными треугольниками называют треугольники, соответственные стороны которых пропорциональны, а углы равны. Равные треугольники также являются подобными с коэффициентом подобия равным 1.
Коэффициент пропорциональности (подобия) – это отношение длин сторон одного треугольника к соответствующим длинам сторон другого треугольника. Важно при подсчете коэффициента строго соблюдать какая сторона к какой относится.
Например, если вы начали расчет делением сторон большего треугольника на стороны меньшего, то стоит придерживаться такого подхода и далее.
Признаки подобия
Признаки подобия в чем-то похожи на признаки равенства треугольников. Всего их тр:
- По двум углам. Если два угла одного треугольника равны соответствующим углам другого треугольника, то такие треугольники подобны.
- По трем сторонам. Если три стороны одного треугольника пропорциональны соответствующим сторонам другого треугольника, то такие треугольники подобны.
- По двум сторонам и углу между ними. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то такие треугольники подобны.
Свойства подобных треугольников
- Стороны подобных треугольников пропорциональны и относятся друг к другу в отношении, равном коэффициенту подобия.
- Углы подобных треугольников равны.
- Площади подобных треугольников относятся друг к другу в отношении, равном квадрату коэффициента подобия.
Остановимся подробнее на последнем свойстве. Почему все стороны соотносятся ,как коэффициент в первой степени, а площади в квадрате? Потому что площадь это половина произведения основания на высоту.
Пропорциональны друг другу не только стороны, но и характерные отрезки: медианы, высоты, биссектрисы.
Получается, что обе части произведения площади пропорциональны, но в произведении участвуют как высота, так и основание. Значит коэффициент пропорциональности должен быть возведен в квадрат.
$$S_1={1over{2}}*h_1*a_1$$
$$S_2={1over{2}}*h_2*a_2$$
$${S_1over{S_2}}={{h_1*a_1}over{h_2*a_2}}$$
$${S_1over{S_2}}={h_1over{h_2}} *{a_1over{a_2}}$$
$${S_1over{S_2}}=k *k$$
$${S_1over{S_2}}=k ^2$$
Нужно четко различать понятие подобных и равновеликих треугольников. Подобные треугольники имеют коэффициент подобия, в соответствие с которым соотносятся стороны треугольника. А равновеликие треугольники могут, как угодно разнится по значениям сторон, важно лишь, чтобы площади треугольников были равны.
Что мы узнали?
Мы узнали, что такое подобные треугольники, поговорили об их свойствах. Поговорили об отношении площадей подобных треугольников и вывели это отношение на практике для лучшего запоминания формулы.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
Пока никого нет. Будьте первым!
Оценка статьи
4.8
Средняя оценка: 4.8
Всего получено оценок: 154.
А какая ваша оценка?