Как найти площадь треугольника когда известен косинус

I. Площадь треугольника через синус

ТреугольникЕсли в задаче даны длины двух сторон треугольника и угол между ними, то можно применить формулу площади треугольника через синус.

Иконка карандаша 24x24Пример расчета площади треугольника через синус. Даны стороны a = 3, b = 4, и угол γ= 30°. По таблице синусов синус угла в 30° равен 0.5
S={1/2}*3*4*0.5=3
Площадь треугольника будет равна 3 кв. см.

Калькулятор нахождения площади треугольника через синус

Сторона a= Сторона b= Угол γ °
Ответ: Площадь треугольника = 3.000

Также могут быть и другие условия. Если дана длина одной стороны и углы, то для начала нужно вычислить недостающий угол. Т.к. сумма всех углов треугольника равняется 180°, то:

  • alpha={180^circ}-(beta+gamma)
  • beta={180^circ}-(alpha+gamma)
  • gamma={180^circ}-(alpha+beta)

Площадь будет равна половине квадрата стороны, умноженной на дробь. В ее числителе находится произведение синусов прилегающих углов, а в знаменателе синус противолежащего угла. Теперь рассчитываем площадь по следующим формулам:

  • S= {1/2} * {a^2} * {{ sin{beta} * sin{gamma} } / { sin{alpha} }}
  • S= {1/2} * {b^2} * {{ sin{alpha} * sin{gamma} } / { sin{beta} }}
  • S= {1/2} * {c^2} * {{ sin{alpha} * sin{beta} } / { sin{gamma} }}

Иконка карандаша 24x24Например, дан треугольник со стороной a=3 и углами γ=60°, β=60°. Вычисляем третий угол: alpha={180^circ}-({60^circ}+{60^circ})
Подставляем данные в формулу S= {1/2} * {3^2} * {{ sin{60^circ} * sin{60^circ} } / { sin{60^circ} }}={1/2} * 9 * {{ 0.86 * 0.86 } / { 0.86 }}=3.87
Получаем, что площадь треугольника равняется 3,87 кв. см.

II. Площадь треугольника через косинус

Чтобы найти площадь треугольника, нужно знать длины всех сторон. По теореме косинусов можно найти не известные стороны, а уже потом использовать формулу Герона.
По теореме косинусов квадрат неизвестной стороны треугольника равняется сумме квадратов остальных сторон минус удвоенное произведение этих сторон на косинус угла, находящегося между ними.
{c^2}={a^2}+{b^2}-2*a*b*cos{gamma}
Из теоремы выводим формулы для поиска длины неизвестной стороны:

  • a=sqrt{ {c^2}+{b^2}-2*c*b*cos{alpha} }
  • b=sqrt{ {a^2}+{c^2}-2*a*c*cos{beta} }
  • c=sqrt{ {a^2}+{b^2}-2*a*b*cos{gamma} }

Зная как найти недостающую сторону, имея две стороны и угол между ними можно легко посчитать площадь. Формула площади треугольника через косинус помогает легко и быстро найти решение различных задач.

Иконка карандаша 24x24Пример расчета формулы площади треугольника через косинус
Дан треугольник с известными сторонами a = 3, b = 4, и углом γ= 45°. Для начала найдем недостающую сторону с. По таблице косинусов косинус 45°=0,7. Для этого подставим данные в уравнение, выведенное из теоремы косинусов. c=sqrt{ {3^2}+{4^2}-2*3*4*cos{45^circ} }=sqrt{ 9+16-2*3*4*0.7 }=sqrt{ 25-16.97 }=2.83
Теперь используя формулу, найдем площадь треугольника по трем сторонам:
S=sqrt{ p*(p-a)*(p-b)*(p-c) }
p={(3+4+2.83)/2}=9.83/2=4.92
S=sqrt{ 4.92*(4.92-3)*(4.92-4)*(4.92-2.83) }=sqrt{4.92*3.71}=4.24

Калькулятор нахождения площади треугольника через косинус

Сторона a= Сторона b= Угол γ °
Ответ: Площадь треугольника = 4.243

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона

Формула Герона для нахождения площади треугольника:

Через основание и высоту

Формула нахождения площади треугольника с помощью половины его основания и высоту:

Через две стороны и угол

Формула нахождения площади треугольника через две стороны и угол между ними:

Через сторону и два прилежащих угла

Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:

Площадь прямоугольного треугольника

Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

Площадь равнобедренного треугольника через стороны

Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

Площадь равнобедренного треугольника через основание и угол

Формула нахождения площади равнобедренного треугольника через основание и угол:

Площадь равностороннего треугольника через стороны

Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.

Формула нахождения площади равностороннего треугольника через сторону:

Площадь равностороннего треугольника через высоту

Формула нахождения площади равностороннего треугольника через высоту:

Площадь равностороннего треугольника через радиус вписанной окружности

Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

Площадь равностороннего треугольника через радиус описанной окружности

Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

Площадь треугольника через радиус описанной окружности и три стороны

Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

Площадь треугольника через радиус вписанной окружности и три стороны

Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

Теория и практика по треугольникам (Часть Ⅱ)

Площадь треугольников.

Тригонометрия в прямоугольных треугольниках.

Что такое синус/косинус.

Таблицы Брадиса. Как пользоваться.

Теорема синусов и косинусов.

Геометрия — это искусство хорошо рассуждать на плохо выполненных чертежах.

С основными свойствами разобрались, теперь рассмотрим формулы и их приминение.

Площадь произвольного треугольника

Нет, это не кривая пентаграмма, нужны на этом рисунке только обозначения. Рассмотрим формулы школьной программы.

Высоту умножаем на ту сторону, на которую приходит высота:
В эту формулу подставляем угол между сторонами a и b:

Удобно использовать эту формулу, когда известны все стороны треугольника, p — полупериметр (половина суммы длин всех сторон):

Данная формула отлично помогает найти радиус вписанной окружности для любого треугольника, если известна площадь:

А эта формула помогает найти радиус описанной окружности для любого треугольника:

А зачем такое количество формул? К каждой задаче будут предоставлять разное дано, удобно знать и применять все формулы, чтобы максимально быстро решать задачи.

Полезные формулы для прямоугольного и равностороннего треугольника:

В данном случае получается, что один катет «b» — высота треугольника, а катет «а» — основание.

Эту формулу можно вывести большим количеством способов, самый простой через формулу №2

Задача №1. Дано на рисунке:

Оттолкнемся от вопроса: нужно найти площадь. Помимо 5 формул для произвольного треугольника, нам подойдет формула нахождения площади через полупроизведение катетов.

Вариантов здесь много (можно через т. Пифагора), но самый быстрый — найти ∠А = 180°− 90° − 60° = 30°, тогда площадь найдем по (2) формуле: S = ½absinα

Ответ: 60

Задача №2. Дано на рисунке:

Снова оттолкнемся от вопроса: нужно найти площадь. Дан обычный треугольник, значит, наш выбор ограничен первыми 5−ью формулами. В первой нужна высота, во второй угол, а в третьей полупериметр, но мы же знаем все стороны! Для начала найдем периметр и полупериметр:

Теперь можно подставить все числа в формулу площади:

Главное — правильно определиться с формулой.

Задача №3. Дано на рисунке:

В ΔABH: ∠A = 180°− 90° − 45° = 45°, значит, ∠A = ∠B => BH = AH = 12.

Тогда площадь можно найти по формуле (1) S=½bh. Высота AH = 12, основание AC = 16+12 = 28. => S = ½×12×28 = 168

Задача №4. Дано на рисунке:

Оттолкнемся от отношения, которое нам дано. Мы знаем, что сумма данных углов равна 90°, если ∠ACM = х и ∠ВCM = 2х, тогда 2х+х = 90°

∠ACM = х = 30° => ∠ВCM = 60°. А что у нас равно 4-ем? Да, медиана! А медиана, проведенная из прямого угла, равна половине гипотенузы (2−ое свойство). Тогда отметим равные углы:

В ΔBCM получается ∠ВCM = ∠СВM = 60°, тогда ∠СМВ = 60° и ΔBCM — правильный:

Площадь найдем по (2) формуле: S = ½absinα:

Задача №5. Дано на рисунке:

В дано есть только стороны, а найти нужно угол. Как это сделать? Вот стороны 14,2 и 7,1 во сколько раз отличаются? Да, в 2 раза, а значит угол ∠BAL = 30° (против угла в 30° лежит катет, который в два раза меньше гипотенузы).

Значит, ∠A = 60° => ∠ACB = 180° − 90° − 60° = 30°, а ∠ACB — смежный с ∠ACV => ∠ACV = 180° − 30° = 150°.

Что касается LC: внимательно рассмотрим ΔALC, можно даже лупой воспользоваться. Что видишь? ∠LAC = ∠ACL = 30° => ΔALC — равнобедренный, LC = AL = 14,2.

Ответ: 14,2 и 150°

Тригонометрия в прямоугольных треугольниках

В прямоугольном треугольнике три стороны: 2 катета и гипотенуза.

Катеты меньшие стороны треугольника. Гипотенуза большая сторона, которая лежит напротив угла в 90°.

Относительно угла α:

Катет, который составляет угол, называют прилежащим. Катет, который находится напротив угла, называют противолежащим. Логично? Замечательно!

Тригонометрические функции (синус, косинус. ) задают связь между углом и длинами сторон.

Но хорошо бы знать какие-то значения тригонометрических функций при определенных углах. Все значения вместе образуют таблицу Брадиса. С ее помощью можно вычислить почти любое значение тригонометрической функции при заданом угле. Но как с ней работать?

Найдем sin(10°) . Для этого выберем столбец sin и в нем найдем 10°. Ближайшее значение — это то, что нам нужно — 0,1736.

А что за столбец 0′; 6′; 12′ и т.д. Это минуты! Не те, которых мы ждем в конце урока, а градусные минуты.

Из общего: и те, и другие минуты измеряются в промежутке от 0 до 60.

Градусные минуты делят один градус на 60 минут (1°=60′), нужны они для большей точности задания угла.

p.s. Есть еще и градусные секунды, и в одной градусной минуте 60 градусных секунд, знакомо? 1° = 60′ = 3600”.

Семь десятых градуса нужно перевести в минуты. Можно через пропорцию:

Теперь в таблице нужно найти 77°42′ для косинуса. Для синуса минуты прописаны, а для косинуса нет. Но мы же люди не гордые, сами напишем, но в обратном порядке. На пересечении 77° и 42′ получаем наше значение:

Но чтобы не загромождать таблицу 0, его в начале пишут только в первых строчках, поэтому ответ cos(77,7°) = 0,213.

В задачах же таким обилием углов похвастаться нельзя, достаточно знать значения для 30°; 45°; 60°; 90°.

Искусство решать геометрические задачи чем-то напоминает трюки иллюзионистов — иногда,

даже зная решение задачи, трудно понять, как можно было до него додуматься.

Задача №6. Дано на рисунке:

В этой задаче известен противолежащий катет относительно угла в 45°, а найти нужно гипотенузу. Смотрим, где у нас есть противполежащий катет и гипотенуза? Это синус!

Смотрим в таблице, чему равен синус 45°, и подставляем в отношение:

Задача №7. Дано на рисунке:

Мы разобрались с тригонометрическими функциями в прямоугольных треугольниках, значит, и в этой задаче нужно перейти к прямоугольному треугольнику.

В ΔLTK — равнобедренный : ∠L = ∠LKT = (180° − 120°)/2 = 30°

Отлично, в прямоугольном ΔLVK: ∠L = 30° и известна гипотенуза, а нам нужно найти противолежащий катет, чем воспользуемся? Опять синусом!

Теорема синусов и теорема косинусов

Сразу возникает вопрос, а теорема тангенсов тоже есть? Конечно, есть, но она очень редко используется.

Для любого треугольника можно записать такое соотношение, это будет теорема синусов:

Запомни, что сторона относится к синусу противолежащего угла.

Следствие из теорма синусов гласит, что любое соотношение равно двум радиусам описанной окружности:

Для любого треугольника можно записать такое соотношение, это будет теорема косинусов:

А что будет, если α = 90°, а cos(90) = 0? Получится:

Теорема Пифагора, вот так просто можно запомнить теорему косинусов. Начать как теорему Пифагора, а затем вычесть удвоенное произведение на косинус угла между ними.

Можно записать и для других сторон в этом же треугольнике:

Задача №8. Дано на рисунке:

Запишем теорему синусов для двух отношений:

Выразим отсюда KT:

∠K = 180° − 60° − 45° = 75°. Чтобы найти синус угла 75°, советую посмотреть эту статью, нужно воспользовать формулой суммы синусов:

Тогда представим 75° в виде двух табличных значений:

Аналогично выразим LT:

Ответ: 16,3 и 22,3

Задача №9. Дано на рисунке:

Найти нужно x и y. Запишем теорему косинусов для этого треугольника:

Икс выразим через игрек:

Отлично, поздравляю тебя с Elementary по геометрии!

Что нужно знать:

  1. Вертикальные, смежные, соответственные, накрест лежащие углы.
  2. Равенство и подобие треугольников.
  3. Что такое медиана, биссектриса, высота.
  4. Свойства треугольников.
  5. Площадь треугольников.
  6. Синус/косинус в треугольнике.
  7. Теорему синусов и косинусов.

Как найти площадь треугольника

О чем эта статья:

8 класс, 9 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.

Если значения заданы в разных единицах измерения длины, мы не сможем узнать, какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Научиться быстро щелкать задачки на нахождение площади треугольника помогут курсы по математике от Skysmart!

Общая формула

1. Площадь треугольника через основание и высоту

, где — основание, — высота.

2. Площадь треугольника через две стороны и угол между ними

, где , — стороны, — угол между ними.

3. Площадь треугольника через описанную окружность и стороны

, где , , — стороны, — радиус описанной окружности.

4. Площадь треугольника через вписанную окружность и стороны

, где , , — стороны, — радиус вписанной окружности.

Если учитывать, что — это способ поиска полупериметра, то формулу можно записать следующим образом:

5. Площадь треугольника по стороне и двум прилежащим углам

, где — сторона, и — прилежащие углы.

6. Формула Герона для вычисления площади треугольника

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

, где , , — стороны, — полупериметр, который можно найти по формуле:

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам

Площадь треугольника по гипотенузе и острому углу

, где — гипотенуза, — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу

, где — катет, — прилежащий угол.

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и радиус вписанной окружности

, где — гипотенуза, — радиус вписанной окружности.

Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу

, где , — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

, где , — катеты, — полупериметр, который можно найти по формуле:

Для равнобедренного треугольника

Вычисление площади через основание и высоту

, где — основание, — высота, проведенная к основанию.

Поиск площади через боковые стороны и угол между ними

, где — боковая сторона, — угол между боковыми сторонами.

Площадь равностороннего треугольника через радиус описанной окружности

, где — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

, где — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через высоту

Таблица формул нахождения площади треугольника

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу, использовать как закладку в тетрадке или учебнике и обращаться к ней по необходимости.

[spoiler title=”источники:”]

http://ik-study.ru/ege_math/tieoriia_i_praktika_po_trieughol_nikam_chast_ii_

http://skysmart.ru/articles/mathematic/ploshad-treugolnika

[/spoiler]

Стандартные обозначения

Стандартные обозначения углов и сторон треугольника

Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.

Формулировка[править | править код]

Для плоского треугольника со сторонами a,b,c и углом alpha , противолежащим стороне a,
справедливо соотношение:

{displaystyle a^{2}=b^{2}+c^{2}-2cdot bcdot ccdot cos alpha .}

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними[1]

Доказательства[править | править код]

Классическое доказательство

Theorem of cosin.svg

Рассмотрим треугольник ABC. Из вершины C на сторону AB опущена высота CD. Из треугольника ADC следует:

AD=bcos alpha ,

откуда

DB=c-bcos alpha .

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

h^{2}=b^{2}-(bcos alpha )^{2}qquad qquad qquad (1)
h^{2}=a^{2}-(c-bcos alpha )^{2}qquad qquad (2)

Приравниваем правые части уравнений (1) и (2) и:

b^{2}-(bcos alpha )^{2}=a^{2}-(c-bcos alpha )^{2}

или

a^{2}=b^{2}+c^{2}-2bccos alpha .

Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.

Выражения для сторон b и c:

b^{2}=a^{2}+c^{2}-2accos beta
c^{2}=a^{2}+b^{2}-2abcos gamma .

Доказательство через координаты

Одним из доказательств является доказательство её в координатной плоскости.

Внесём в координатную плоскость произвольный треугольник ABC так, чтобы точка А совпала с началом координат, а прямая АВ лежала на прямой ОХ. Введём обозначения AB=c, AC=b, CB=a, a угол CAB=α(пока будем считать что α≠90°).
Тогда точка A имеет координаты (0;0), точка B(c;0). Через функцию sin и cos, а также сторону АС=b выведем координаты точки С. С(b×cosα;b×sinα).
Координаты точки С остаются неизменными при тупом и остром угле α.
Зная координаты С и B, а также зная, что CB=a, найдя длину отрезка, мы можем составить равенство:
a^{2}=(bcos {a}-c)^{2}+b^{2}sin ^{2}{a}
a^{2}=b^{2}cos ^{2}{a}-2bccos {a}+c^{2}+b^{2}sin ^{2}{a}
a^{2}=b^{2}(cos ^{2}{a}+sin ^{2}{a})+c^{2}-2bccos {a}
Так как
cos ^{2}{a}+sin ^{2}{a}=1 (основное тригонометрическое тождество), то
a^{2}=b^{2}+c^{2}-2bccos {a}
Теорема доказана.
Для прямого угла α, теорема также работает cos90°=0 и a²=b²+с² – известная всем теорема Пифагора. Но так как в основе координатного метода лежит теорема Пифагора, то доказательство её через теорему косинусов не совсем правильно.

Доказательство через векторы

Ниже подразумеваются операции над векторами, а не длинами отрезков
{displaystyle AC=AB+BC=>BC=AC-AB=>BC^{2}=AC^{2}+AB^{2}-2cdot ACcdot AB}

Так как скалярное произведение векторов равно произведению их модулей (длин) на косинус угла между ними, последнее выражение можно переписать:
{displaystyle a^{2}=b^{2}+c^{2}-2cdot bcdot ccdot cos alpha }
где a, b, c — длины соответствующих векторов

Следствия[править | править код]

  • Теорема косинусов может быть использована для нахождения косинуса угла треугольника
    cos {alpha }={frac {b^{2}+c^{2}-a^{2}}{2bc}}
В частности,
  • Теорема косинусов может быть записана также в следующем виде[2]:
a^{2}=(b+c)^{2}-4cdot bcdot ccdot cos ^{2}(alpha /2),
a^{2}=(b-c)^{2}+4cdot bcdot ccdot sin ^{2}(alpha /2).

Доказательство

Последние две формулы мгновенно следуют из основной формулы теоремы косинусов (см. в рамке выше), если в правой её части воспользоваться формулами разложения квадрата суммы (для второй формулы – квадрата разности) двух членов на квадратный трехчлен, являющийся полным квадратом. Для получения окончательного результата (двух формул выше) в правой части надо еще воспользоваться известными тригонометрическими формулами:

1+cos alpha =2cdot cos ^{2}(alpha /2),
1-cos alpha =2cdot sin ^{2}(alpha /2).

Кстати, вторая формула формально не содержит косинусов, но её все равно именуют теоремой косинусов.

Для других углов[править | править код]

Теорема косинусов для двух других углов имеет вид:

{displaystyle c^{2} =a^{2}+b^{2}-2abcos gamma }
{displaystyle b^{2} =a^{2}+c^{2}-2accos beta }

Из этих и из основной формулы могут быть выражены углы:

{displaystyle alpha =arccos left({frac {b^{2}+c^{2}-a^{2}}{2bc}}right)}
{displaystyle beta =arccos left({frac {a^{2}+c^{2}-b^{2}}{2ac}}right)}
{displaystyle gamma =arccos left({frac {a^{2}+b^{2}-c^{2}}{2ab}}right)}

История[править | править код]

Утверждения, обобщающие теорему Пифагора и эквивалентные теореме косинусов, были сформулированы отдельно для случаев острого и тупого угла в 12 и 13 предложениях II книги «Начал» Евклида.

Утверждения, эквивалентные теореме косинусов для сферического треугольника, применялись в сочинениях ал-Баттани.[3]:105
Теорему косинусов для сферического треугольника в привычном нам виде сформулировал Региомонтан, назвав её «теоремой Альбатегния» по имени ал-Баттани.

В Европе теорему косинусов популяризовал Франсуа Виет в XVI столетии.
В начале XIX столетия её стали записывать в принятых по сей день алгебраических обозначениях.

Вариации и обобщения[править | править код]

  • Теоремы косинусов (сферическая геометрия) или Теорема косинусов для трёхгранного угла.
  • Теоремы косинусов (геометрия Лобачевского)
  • Тождество параллелограмма. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон (см. также Теорема Птолемея):
    AC^{2}+BD^{2}=AB^{2}+BC^{2}+CD^{2}+DA^{2}.

Для евклидовых нормированных пространств[править | править код]

Пусть в евклидовом пространстве E задана норма, ассоциированная со скалярным произведением, то есть leftVert {vec {a}}rightVert ={sqrt {({vec {a}},{vec {a}})}}. Тогда теорема косинусов формулируется следующим образом:

Теорема.
leftVert {vec {a}}-{vec {b}}rightVert ^{2}=leftVert {vec {a}}rightVert ^{2}+leftVert {vec {b}}rightVert ^{2}-2({vec {a}},{vec {b}})

Для четырёхугольников[править | править код]

Возводя в квадрат тождество {overline {AD}}={overline {AB}}+{overline {BC}}+{overline {CD}} можно получить утверждение, иногда называемое теоремой косинусов для четырёхугольников:

d^{2}=a^{2}+b^{2}+c^{2}-2abcos angle B-2accos omega -2bccos angle C, где omega  — угол между прямыми AB и CD.

Или иначе:

d^{2}=a^{2}+b^{2}+c^{2}-2abcos angle B+2accos(angle A+angle D)-2bccos angle C
Формула справедлива и для тетраэдра, под w подразумевается угол между скрещивающимися ребрами.
С помощью неё можно найти косинус угла между скрещивающимися ребрами a и c зная все ребра тетраэдра:
{displaystyle cos w=(b^{2}+d^{2}-e^{2}-f^{2})/2ac}
Где b и d, e и f пары скрещивающихся ребер тетраэдра.

Косвенный аналог для четырёхугольника[править | править код]

Соотношение Бретшнайдера — соотношение в четырёхугольнике, косвенный аналог теоремы косинусов:

Между сторонами a, b, c, d и противоположными углами {displaystyle alpha ,gamma } и диагоналями e, f простого (несамопересекающегося) четырёхугольника выполняется соотношение:

{displaystyle e^{2}f^{2}=a^{2}c^{2}+b^{2}d^{2}-2abcdcos(alpha +gamma )}
  • Если четырёхугольник вырождается в треугольник, и одна вершина попадает на сторону, то получается теорема Стюарта.
  • Теорема косинусов для треугольника является частным случаем соотношения Бретшнайдера, если в качестве четвёртой вершины выбрать центр описанной окружности треугольника.

Симплексы[править | править код]

{displaystyle S_{i}S_{j}cos angle A={frac {(-1)^{(n-1+i+j)}}{2^{n-1}((n-1)!)^{2}}}{begin{vmatrix}0&1&1&1&dots &1\1&0&d_{12}^{2}&d_{13}^{2}&dots &d_{1(n+1)}^{2}\1&d_{21}^{2}&0&d_{23}^{2}&dots &d_{2(n+1)}^{2}\1&d_{31}^{2}&d_{32}^{2}&0&dots &d_{3(n+1)}^{2}\vdots &vdots &vdots &vdots &ddots &vdots \1&d_{(n+1)1}^{2}&d_{(n+1)2}^{2}&d_{(n+1)3}^{2}&dots &0\end{vmatrix}}}

при этом мы должны зачеркнуть строку и столбец, где находится d_{ij} или d_{ji}.

A — угол между гранями S_{i} и S_{j}, S_{i} -грань, находящаяся против вершины i,d_{ij}– расстояние между вершинами i и j.

См. также[править | править код]

  • Решение треугольников
  • Скалярное произведение
  • Соотношение Бретшнайдера
  • Теорема косинусов для трёхгранного угла
  • Теорема о проекциях
  • Теорема Пифагора
  • Сферическая теорема косинусов
  • Теорема котангенсов
  • Теорема синусов
  • Теорема тангенсов
  • Тригонометрические тождества
  • Тригонометрические функции

Примечания[править | править код]

  1. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 7—9: учеб. для общеобразоват. учреждений — 15-е изд. — М.: Просвещение, 2005. — С. 257. — 384 с.: ил. — ISBN 5-09-014398-6
  2. 1 2 Корн Г. А., Корн Т. М. Справочник по математике для научных работников и инженеров. — М.: «Наука», 1974. — С. 51. — 832 с.
  3. Florian Cajori. A History of Mathematics — 5th edition 1991

Литература[править | править код]

  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 84—85. — ISBN 5-94057-170-0.

Площадь треугольников.

Свойства треугольников. 

Тригонометрия в прямоугольных треугольниках.

Что такое синус/косинус.

Таблицы Брадиса. Как пользоваться.

Теорема синусов и косинусов.


Геометрия — это искусство хорошо рассуждать на плохо выполненных чертежах.

Г. Абель

С основными свойствами разобрались, теперь рассмотрим формулы и их приминение.

Площадь произвольного треугольника

Нет, это не кривая пентаграмма, нужны на этом рисунке только обозначения. Рассмотрим формулы школьной программы.

Высоту умножаем на ту сторону, на которую приходит высота:
В эту формулу подставляем угол между сторонами a и b:

Удобно использовать эту формулу, когда известны все стороны треугольника, p — полупериметр (половина суммы длин всех сторон):

Данная формула отлично помогает найти радиус вписанной окружности для любого треугольника, если известна площадь:

А эта формула помогает найти радиус описанной окружности для любого треугольника:

А зачем такое количество формул? К каждой задаче будут предоставлять разное дано, удобно знать и применять все формулы, чтобы максимально быстро решать задачи.

Полезные формулы для прямоугольного и равностороннего треугольника:

В данном случае получается, что один катет «b» — высота треугольника, а катет «а» — основание. 

Эту формулу можно вывести большим количеством способов, самый простой через формулу №2

Задача №1. Дано на рисунке:

Оттолкнемся от вопроса: нужно найти площадь. Помимо 5 формул для произвольного треугольника, нам подойдет формула нахождения площади через полупроизведение катетов. 

Вариантов здесь много (можно через т. Пифагора), но самый быстрый — найти ∠А = 180°− 90° − 60° = 30°, тогда площадь найдем по (2) формуле: S = ½absinα

Ответ: 60 

Задача №2. Дано на рисунке: 

Снова оттолкнемся от вопроса: нужно найти площадь. Дан обычный треугольник, значит, наш выбор ограничен первыми 5−ью формулами. В первой нужна высота, во второй угол, а в третьей полупериметр, но мы же знаем все стороны! Для начала найдем периметр и полупериметр:

Теперь можно подставить все числа в формулу площади:

Главное — правильно определиться с формулой. 

Ответ: 84

Задача №3. Дано на рисунке: 


В ΔABH: ∠A = 180°− 90° − 45° = 45°, значит, ∠A = ∠B => BH = AH = 12. 

Тогда площадь можно найти по формуле (1) S=½bh. Высота AH = 12, основание AC = 16+12 = 28. => S = ½×12×28 = 168

Ответ: 168.

Задача №4. Дано на рисунке: 

Оттолкнемся от отношения, которое нам дано. Мы знаем, что сумма данных углов равна 90°, если ∠ACM = х и ∠ВCM = 2х, тогда 2х+х = 90°

∠ACM = х = 30° => ∠ВCM = 60°. А что у нас равно 4-ем? Да, медиана! А медиана, проведенная из прямого угла, равна половине гипотенузы (2−ое свойство). Тогда отметим равные углы: 

В ΔBCM получается ∠ВCM = ∠СВM = 60°, тогда ∠СМВ = 60° и ΔBCM — правильный:

Площадь найдем по (2) формуле: S = ½absinα:

Ответ: 8√3

Задача №5. Дано на рисунке: 

В дано есть только стороны, а найти нужно угол. Как это сделать? Вот стороны 14,2 и 7,1 во сколько раз отличаются? Да, в 2 раза, а значит угол ∠BAL = 30° (против угла в 30° лежит катет, который в два раза меньше гипотенузы). 

Значит, ∠A = 60° => ∠ACB = 180° − 90° − 60° = 30°, а ∠ACB — смежный с ∠ACV => ∠ACV = 180° − 30° = 150°. 

 Что касается LC: внимательно рассмотрим ΔALC, можно даже лупой воспользоваться. Что видишь? ∠LAC = ∠ACL = 30° => ΔALC — равнобедренный, LC = AL = 14,2. 

Ответ: 14,2 и 150°

Тригонометрия в прямоугольных треугольниках

В прямоугольном треугольнике три стороны: 2 катета и гипотенуза.

Катеты меньшие стороны треугольника. Гипотенуза большая сторона, которая лежит напротив угла в 90°.

Относительно угла α:

Катет, который составляет угол, называют прилежащим. Катет, который находится напротив угла, называют противолежащим. Логично? Замечательно!

Тригонометрические функции (синус, косинус…) задают связь между углом и длинами сторон.

Но хорошо бы знать какие-то значения тригонометрических функций при определенных углах. Все значения вместе образуют таблицу Брадиса. С ее помощью можно вычислить почти любое значение тригонометрической функции при заданом угле. Но как с ней работать?

Найдем sin(10°). Для этого выберем столбец sin и в нем найдем 10°. Ближайшее значение — это то, что нам нужно — 0,1736.

А что за столбец 0′; 6′; 12′ и т.д. Это минуты! Не те, которых мы ждем в конце урока, а градусные минуты. 

Из общего: и те, и другие минуты измеряются в промежутке от 0 до 60. 

Градусные минуты делят один градус на 60 минут (1°=60′), нужны они для большей точности задания угла.

p.s. Есть еще и градусные секунды, и в одной градусной минуте 60 градусных секунд, знакомо? 1° = 60′ = 3600”.

Найдем cos(77,7°) 

Семь десятых градуса нужно перевести в минуты. Можно через пропорцию:

Теперь в таблице нужно найти 77°42′ для косинуса. Для синуса минуты прописаны, а для косинуса нет. Но мы же люди не гордые, сами напишем, но в обратном порядке. На пересечении 77° и 42′ получаем наше значение:

Но чтобы не загромождать таблицу 0, его в начале пишут только в первых строчках, поэтому ответ cos(77,7°) = 0,213.

В задачах же таким обилием углов похвастаться нельзя, достаточно знать значения для 30°; 45°; 60°; 90°.

Искусство решать геометрические задачи чем-то напоминает трюки иллюзионистов  иногда, 

даже зная решение задачи, трудно понять, как можно было до него додуматься.

И.Д. Новиков

Задача №6. Дано на рисунке: 

В этой задаче известен противолежащий катет относительно угла в 45°, а найти нужно гипотенузу. Смотрим, где у нас есть противполежащий катет и гипотенуза? Это синус! 

Смотрим в таблице, чему равен синус 45°, и подставляем в отношение:

Ответ: 16√2

Задача №7. Дано на рисунке: 

Мы разобрались с тригонометрическими функциями в прямоугольных треугольниках, значит, и в этой задаче нужно перейти к прямоугольному треугольнику.

В ΔLTK — равнобедренный : ∠L = ∠LKT = (180° − 120°)/2 = 30°

Отлично, в прямоугольном ΔLVK: ∠L = 30° и известна гипотенуза, а нам нужно найти противолежащий катет, чем воспользуемся? Опять синусом!

Ответ: 15

Теорема синусов и теорема косинусов

Сразу возникает вопрос, а теорема тангенсов тоже есть? Конечно, есть, но она очень редко используется.

Для любого треугольника можно записать такое соотношение, это будет теорема синусов:

Запомни, что сторона относится к синусу противолежащего угла.

Следствие из теорма синусов гласит, что любое соотношение равно двум радиусам описанной окружности:

Для любого треугольника можно записать такое соотношение, это будет теорема косинусов:

А что будет, если α = 90°, а cos(90) = 0? Получится:

Теорема Пифагора, вот так просто можно запомнить теорему косинусов. Начать как теорему Пифагора, а затем вычесть удвоенное произведение на косинус угла между ними.

Можно записать и для других сторон в этом же треугольнике:

Задача №8. Дано на рисунке:

Запишем теорему синусов для двух отношений:

Выразим отсюда KT:

∠K = 180° − 60° − 45° = 75°. Чтобы найти синус угла 75°, советую посмотреть эту статью, нужно воспользовать формулой суммы синусов:

Тогда представим 75° в виде двух табличных значений:

Аналогично выразим LT:

Ответ: 16,3 и 22,3

Задача №9. Дано на рисунке:

Найти нужно x и y. Запишем теорему косинусов для этого треугольника:

Икс выразим через игрек:

Ответ: 48; 18

Отлично, поздравляю тебя с Elementary по геометрии! 

Что нужно знать: 

  1. Вертикальные, смежные, соответственные, накрест лежащие углы. 
  2. Равенство и подобие треугольников. 
  3. Что такое медиана, биссектриса, высота. 
  4. Свойства треугольников. 
  5. Площадь треугольников.
  6. Синус/косинус в треугольнике.
  7. Теорему синусов и косинусов.

Задачи для закрепления по треугольникам

Нашел опечатку, или что-то непонятно — напиши.

Группа с полезной информацией и легким математическим юмором.

Лучший ответ

Люся Люсяо

Просветленный

(34549)


12 лет назад

Теорема косинусов:
a^2 = b^2+c^2-2*b*c*cos(alpha)
b, c – твои стороны, alpha – угол между ними.
Если alpha в градусах, то сначала переводим в радианы
alpha := alpha*pi/180;
a := sqrt(b*b+c*c-2*b*c*cos(alpha));

P.S. Учите математику, иногда помогает 🙂

Михаил СеменихинУченик (148)

2 года назад

спасибо

Остальные ответы

V8

Гуру

(3717)


12 лет назад

ну именно этой формулы я не помню я бы по теореме косинусов нашел третью, а дальше через формулу герона нашел бы площадь

Семен Аркадьевич

Высший разум

(340149)


12 лет назад

Можно значительно проще. Зная косинус, найдите синус (основное тригонометрическое тождество)
А теперь можно применить известную формулу площади.

Михаил СеменихинУченик (148)

2 года назад

да ваше легче

Добавить комментарий