Как найти площадь треугольника когда известна высота

Существует несколько способов вычислить площадь треугольника в зависимости от исходных данных. Разберём несколько основных формул, чтобы рассчитать эту величину.

Как найти площадь треугольника по высоте и основанию

Высота — линия, проведённая из вершины треугольника на противоположную сторону под прямым углом.

Чтобы вычислить площадь, нужно знать высоту и длину стороны, к которой она проведена. Умножаем высоту на длину стороны и делим результат пополам. Формула будет выглядеть так:

S = h*a/2 ,

где S — площадь, h — высота, a — сторона треугольника.

Как найти площадь треугольника по трём сторонам

Этот способ ещё известен как формула Герона. Чтобы им воспользоваться, нужно знать длины каждой из сторон треугольника и посчитать полупериметр.

Обозначим полупериметр буквой p. Он равен половине суммы длин всех сторон:

p = (a + b + c)/2,

где a, b, c — стороны треугольника.

Теперь считаем произведение разниц полупериметра и каждой стороны, умножаем полученное число на полупериметр и находим квадратный корень из результата. Представим это в виде формулы:

S = √ (p*(p-a)*(p-b)*(p-c)).

Как найти площадь прямоугольного треугольника

Для этой формулы нужно знать длины катетов. Катеты — это стороны, расположенные друг к другу под прямым углом.

Необходимо перемножить длины катетов и поделить результат на два:

S=a*b/2,

где а и b — стороны треугольника.

Как найти площадь равностороннего треугольника

Так как в равностороннем треугольнике все стороны одинаковой длины, для вычислений нам нужно знать только одну. Квадрат стороны умножаем на квадратный корень из трёх и делим на четыре.

S=(a2*√3)/4.

Как найти площадь треугольника по двум сторонам и углу между ними

Если известны длины двух сторон и угол, который они образуют, можно воспользоваться общей формулой:

S=(1/2)*a*b*sinα,

где a, b — стороны треугольника, α — угол.

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона


Треугольник с тремя сторонами


Формула Герона для нахождения площади треугольника:

– полупериметр треугольника; a,b,c – стороны треугольника.


Через основание и высоту


Треугольник с основанием и высотой


Формула нахождения площади треугольника с помощью половины его основания и высоту:

a – основание треугольника; h – высота треугольника.


Через две стороны и угол


Треугольник с двумя сторонами и углом


Формула нахождения площади треугольника через две стороны и угол между ними:

a,b – стороны треугольника; α – угол между сторонами.


Через сторону и два прилежащих угла


Треугольник со стороной и двумя углами


Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
<

a– сторона треугольника; α и β – прилежащие углы.


Площадь прямоугольного треугольника


Площадь прямоугольного треугольника


Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

a, b – катеты треугольника.


Площадь равнобедренного треугольника через стороны


Площадь равнобедренного треугольника


Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

a, b – стороны треугольника.


Площадь равнобедренного треугольника через основание и угол


Площадь равнобедренного треугольника


Формула нахождения площади равнобедренного треугольника через основание и угол:

a – основание равнобедренного треугольника; α – угол между сторонами.


Площадь равностороннего треугольника через стороны


Площадь равностороннего треугольника


Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.

Формула нахождения площади равностороннего треугольника через сторону:

a – сторона равностороннего треугольника.


Площадь равностороннего треугольника через высоту


Площадь равностороннего треугольника


Формула нахождения площади равностороннего треугольника через высоту:

h – высота равностороннего треугольника.


Площадь равностороннего треугольника через радиус вписанной окружности


Площадь равностороннего треугольника


Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

r – радиус вписанной окружности равностороннего треугольника.


Площадь равностороннего треугольника через радиус описанной окружности


Площадь равностороннего треугольника


Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

r – радиус описанной окружности равностороннего треугольника.


Площадь треугольника через радиус описанной окружности и три стороны


Площадь треугольника


Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

a, b, c – стороны треугольника; r – радиус описанной окружности треугольника.


Площадь треугольника через радиус вписанной окружности и три стороны


Площадь треугольника


Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

p – полупериметр треугольника;a, b, c – стороны треугольника; r – радиус вписанной окружности треугольника.

Определение треугольника

Треугольник — это геометрическая фигура, которая образуется в результате пересечения трех отрезков, концы которых не лежат на одной прямой. У любого треугольника есть три стороны, три вершины и три угла.

Онлайн-калькулятор площади треугольника

Треугольники бывают различных видов. Например, существует равносторонний треугольник (тот, у которого все стороны равны), равнобедренный (в нем равны две стороны) и прямоугольный (в котором один из углов прямой, т. е. равен 90 градусам).

Площадь треугольника можно найти различными способами в зависимости от того, какие элементы фигуры известны по условию задачи, будь то углы, длины, либо же вообще радиусы окружностей, связанных с треугольником. Рассмотрим каждый способ отдельно с примерами.

Формула площади треугольника по основанию и высоте

S=12⋅a⋅hS= frac{1}{2}cdot acdot h,

aa — основание треугольника;
hh — высота треугольника, проведенная к данному основанию a.

Пример

площадь треугольника

Найти площадь треугольника, если известна длина его основания, равная 10 (см.) и высота, проведенная к этому основанию, равная 5 (см.).

Решение

a=10a=10
h=5h=5

Подставляем в формулу для площади и получаем:
S=12⋅10⋅5=25S=frac{1}{2}cdot10cdot 5=25 (см. кв.)

Ответ: 25 (см. кв.)

Формула площади треугольника по длинам всех сторон

S=p⋅(p−a)⋅(p−b)⋅(p−c)S= sqrt{pcdot(p-a)cdot (p-b)cdot (p-c)},

a,b,ca, b, c — длины сторон треугольника;
pp — половина суммы всех сторон треугольника (то есть, половина периметра треугольника):

p=12(a+b+c)p=frac{1}{2}(a+b+c)

Эта формула называется формулой Герона.

Пример

площадь треугольника

Найти площадь треугольника, если известны длины трех его сторон, равные 3 (см.), 4 (см.), 5 (см.).

Решение

a=3a=3
b=4b=4
c=5c=5

Найдем половину периметра pp:

p=12(3+4+5)=12⋅12=6p=frac{1}{2}(3+4+5)=frac{1}{2}cdot 12=6

Тогда, по формуле Герона, площадь треугольника:

S=6⋅(6−3)⋅(6−4)⋅(6−5)=36=6S=sqrt{6cdot(6-3)cdot(6-4)cdot(6-5)}=sqrt{36}=6 (см. кв.)

Ответ: 6 (см. кв.)

Формула площади треугольника по одной стороне и двум углам

S=a22⋅sin⁡βsin⁡γsin⁡(β+γ)S=frac{a^2}{2}cdot frac{sin{beta}sin{gamma}}{sin(beta+gamma)},

aa — длина стороны треугольника;
β,γbeta, gamma — углы, прилежащие к стороне aa.

Пример

площадь треугольника

Дано сторону треугольника, равную 10 (см.) и два прилежащих к ней угла по 30 градусов. Найти площадь треугольника.

Решение

a=10a=10
β=30∘beta=30^{circ}
γ=30∘gamma=30^{circ}

По формуле:

S=1022⋅sin⁡30∘sin⁡30∘sin⁡(30∘+30∘)=50⋅123≈14.4S=frac{10^2}{2}cdot frac{sin{30^{circ}}sin{30^{circ}}}{sin(30^{circ}+30^{circ})}=50cdotfrac{1}{2sqrt{3}}approx14.4 (см. кв.)

Ответ: 14.4 (см. кв.)

Формула площади треугольника по трем сторонам и радиусу описанной окружности

S=a⋅b⋅c4RS=frac{acdot bcdot c}{4R},

a,b,ca, b, c — стороны треугольника;
RR — радиус описанной окружности вокруг треугольника.

Пример

площадь треугольника

Числа возьмем из второй нашей задачи и добавим к ним радиус RR окружности. Пусть он будет равен 10 (см.).

Решение

a=3a=3
b=4b=4
c=5c=5
R=10R=10

S=3⋅4⋅54⋅10=6040=1.5S=frac{3cdot 4cdot 5}{4cdot 10}=frac{60}{40}=1.5 (см. кв.)

Ответ: 1.5 (см.кв.)

Формула площади треугольника по трем сторонам и радиусу вписанной окружности

S=p⋅rS=pcdot r,

pp — половина периметра треугольника:

p=a+b+c2p=frac{a+b+c}{2},

a,b,ca, b, c — стороны треугольника;
rr — радиус вписанной в треугольник окружности.

Пример

площадь треугольника

Пусть радиус вписанной окружности равен 2 (см.). Длины сторон возьмем из предыдущей задачи.

Решение

a=3a=3
b=4b=4
c=5c=5
r=2r=2

p=3+4+52=6p=frac{3+4+5}{2}=6

S=6⋅2=12S=6cdot 2=12 (см. кв.)

Ответ: 12 (см. кв.)

Формула площади треугольника по двум сторонам и углу между ними

S=12⋅b⋅c⋅sin⁡(α)S=frac{1}{2}cdot bcdot ccdotsin(alpha),

b,cb, c — стороны треугольника;

αalpha — угол между сторонами bb и cc.

Пример

площадь треугольника

Стороны треугольника равны 5 (см.) и 6 (см.), угол между ними равен 30 градусов. Найти площадь треугольника.

Решение

b=5b=5
c=6c=6
α=30∘alpha=30^{circ}

S=12⋅5⋅6⋅sin⁡(30∘)=7.5S=frac{1}{2}cdot 5cdot 6cdotsin(30^{circ})=7.5 (см. кв.)

Ответ: 7.5 (см. кв.)

Контрольная по геометрии недорого на сервисе Студворк от профильных экспертов!

Тест на тему “Плошадь треугольника”

В этой статье собраны наиболее популярные формулы для нахождения площади треугольника.

Как найти площадь треугольника по высоте?

Если известно основание и высота, проведенная к основанию треугольника, можно вычислить площадь треугольника.

(S=frac{1}{2}a*h)

Калькулятор площади треугольника по высоте и основанию

Основание треугольника:

Высота треугольника:


Как найти площадь треугольника: формула Герона

Формула площади треугольника Герона помогает вычислить ее по трем сторонам фигуры:

Треугольник

(S=sqrt{p(p-a)(p-b)(p-c)})

где (a,b,c) – стороны треугольника, (p=frac{a+b+c}{2})  – его полупериметр.

Калькулятор площади треугольника по трем сторонам

Первая сторона треугольника:

Вторая сторона треугольника:

Третья сторона треугольника:


Формула нахождения площади треугольника по окружности

Как вычислить площадь треугольника, если известна окружность и три его стороны? 

Как узнать площадь треугольника по окружности

(S=frac{a*b*c}{4R})

Калькулятор площади треугольника по трем сторонам и радиусу описанной окружности

Первая сторона треугольника:

Вторая сторона треугольника:

 

Третья сторона треугольника:

 

Радиус описанной окружности R:


Как найти площадь прямоугольного треугольника

Чтобы найти площадь прямоугольного треугольника, необходимо знать длины двух катетов. После этого можно воспользоваться формулой:

S = (a * b) / 2

, где a и b – длины катетов. Просто перемножьте значения длин катетов и разделите результат на два, чтобы найти площадь прямоугольного треугольника.

Как узнать площадь треугольника по радиусу и полупериметру

Можно найти площадь треугольника, когда мы знаем полупериметр и радиус вписанной окружности:

 Площадь треугольника: формулы по вписанной окружности

(S=pr)

где r – радиус вписанной окружности, (p=frac{a+b+c}{2})– его полупериметр.

Калькулятор площади треугольника по трем сторонам и радиусу вписанной окружности

Первая сторона треугольника:

Вторая сторона треугольника:

Третья сторона треугольника:

Радиус вписанной окружности R:


Как найти площадь треугольника по стороне и тангенсу: формула

Формула нахождения площади по стороне и тангенсу углов треугольника:

S треугольника

(S=frac{c^2}{2(ctgA+ctgB)})

Основные формулы площади треугольника для учащихся 5-6 классов

Для ученика 5-6 класса обычно достаточно знать две формулы для вычисления площади треугольника:

  1. Формула площади произвольного треугольника по основанию и высоте:

    S = (a * h) / 2

    где S – площадь треугольника, a – длина основания треугольника, h – высота треугольника, опущенная на это основание.

  2. Формула Герона:

    S = sqrt(p * (p – a) * (p – b) * (p – c))

    где S – площадь треугольника, a, b, c – длины сторон треугольника, p – полупериметр треугольника, равный половине суммы длин сторон:

    p = (a + b + c) / 2

Здесь sqrt означает извлечение квадратного корня. Обе формулы могут быть использованы для вычисления площади треугольника в зависимости от имеющихся данных.

Как найти площадь равнобедренного и равностороннего  треугольника

Чтобы найти площадь равнобедренного треугольника, необходимо знать длину боковой стороны и высоту, проведенную к основанию. После этого можно воспользоваться формулой:

S = (a * h) / 2

, где a – длина основания, а h – высота, опущенная на основание.

Чтобы найти площадь равностороннего треугольника, необходимо знать длину любой стороны. После этого можно воспользоваться формулой:

S = (a^2 * sqrt(3)) / 4

, где a – длина любой стороны. Также можно использовать формулу через высоту:

S = (a * h) / 2

, где h – высота, опущенная из вершины на основание, а a – длина любой стороны.

Все формулы площади треугольника

Не знаете, как посчитать площадь треугольника? Собрали для вас все возможные формулы. как находить площадь треугольника:

  1. Формула площади треугольника по основанию и высоте:

    S = (a * h) / 2

    где S – площадь треугольника, a – длина основания треугольника, h – высота треугольника, опущенная на это основание.

  2. Формула Герона:

    S = sqrt(p * (p – a) * (p – b) * (p – c))

    где S – площадь треугольника, a, b, c – длины сторон треугольника, p – полупериметр треугольника, равный половине суммы длин сторон:

    p = (a + b + c) / 2

  3. Формула площади треугольника через две стороны и угол между ними:

    S = (a * b * sin(C)) / 2

    где S – площадь треугольника, a и b – длины двух сторон треугольника, C – угол между этими сторонами (в радианах), sin – функция синуса.

  4. Формула площади треугольника через радиус вписанной окружности:

    S = (a * b * c) / (4 * R)

    где S – площадь треугольника, a, b, c – длины сторон треугольника, R – радиус вписанной в треугольник окружности.

  5. Формула площади треугольника через радиус описанной окружности:

    S = (a * b * c) / (4 * R)

    где S – площадь треугольника, a, b, c – длины сторон треугольника, R – радиус описанной вокруг треугольника окружности.

Часто задаваемые вопросы

Какие есть формулы площади треугольника?

Формула площади треугольника по основанию и высоте: S = (a * h) / 2
Формула Герона: S = sqrt(p * (p – a) * (p – b) * (p – c)), где p = (a + b + c) / 2
Формула площади треугольника через две стороны и угол между ними: S = (a * b * sin(C)) / 2
Формула площади треугольника через радиус вписанной окружности: S = (a * b * c) / (4 * R)
Формула площади треугольника через радиус описанной окружности: S = (a * b * c) / (4 * R)

Как найти площадь треугольника формуле Герона?

Формула площади треугольника Герона помогает вычислить ее по трем сторонам фигуры.

Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Как найти площадь любого треугольника

Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.

Как найти площадь любого треугольника

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.
  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.
  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Читайте также 🧠👨🏻‍🎓✍🏻

  • 7 причин полюбить математику
  • ТЕСТ: Помните ли вы геометрию?
  • 10 хитрых головоломок со спичками для тренировки воображения
  • Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
  • ТЕСТ: Сможете ли вы решить простые математические примеры?

Добавить комментарий