Площадь треугольника (по одной стороне и двум углам): онлайн-калькулятор
Формула площади треугольника через два угла равна половине произведения двух сторон и синуса угла между ними. После преобразования равенства с помощью теоремы синусов получаем:
S=a2sinγ·sinβ2·sinα
Калькулятор после ввода данных автоматически выполняет все преобразования. Вы получаете поэтапное решение с пояснениями и ответ.
Программой пользуются студенты и школьники для быстрого и точного решения задач по математике. На сайте не нужна регистрация. Количество проверок неограниченно. Расчет доступен бесплатно.
Площадь треугольника по двум углам. Быстрое решение онлайн
Наш сервис помогает учащимся изучать новые темы на практике. Для этого приводятся расшифровка действий. С помощью калькулятора можно самостоятельно готовиться к занятиям, зачетам, экзаменам. Быстрый ответ и готовое решение помогут получить хорошую оценку во время контроля знаний.
Также сервисом пользуются преподаватели при составлении и проверке домашних заданий. Набор калькуляторов по разным темам помогает сформировать разноплановый учебный материал и сэкономить время на проверке работ учеников.
Программа позволяет вычислить площадь треугольника по 2 углам по следующему алгоритму:
- Находим прилежащий к данной стороне угол вычитанием из 180∘двух известных углов.
- Используем теорему синусов asinα=bsinβ=csinγ;
- В формулу площади треугольника S=12·a·b·sinγ на место неизвестной стороны подставляем ее выражение из теоремы синусов.
- Теперь для расчета формулы у нас есть все данные
Площадь треугольника можно вычислить и другими формулами. Калькулятор следует выбирать в зависимости от исходных данных. Вы найдете другие варианты на нашем сайте.
Как найти площадь треугольника
На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.
Треугольник – это многоугольник с тремя сторонами.
По формуле Герона
Формула Герона для нахождения площади треугольника:
– полупериметр треугольника; a,b,c – стороны треугольника.
Через основание и высоту
Формула нахождения площади треугольника с помощью половины его основания и высоту:
a – основание треугольника; h – высота треугольника.
Через две стороны и угол
Формула нахождения площади треугольника через две стороны и угол между ними:
a,b – стороны треугольника; α – угол между сторонами.
Через сторону и два прилежащих угла
Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
<
a– сторона треугольника; α и β – прилежащие углы.
Площадь прямоугольного треугольника
Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.
Формула нахождения площади прямоугольного треугольника через катеты:
a, b – катеты треугольника.
Площадь равнобедренного треугольника через стороны
Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.
Формула нахождения площади равнобедренного треугольника через две стороны:
a, b – стороны треугольника.
Площадь равнобедренного треугольника через основание и угол
Формула нахождения площади равнобедренного треугольника через основание и угол:
a – основание равнобедренного треугольника; α – угол между сторонами.
Площадь равностороннего треугольника через стороны
Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.
Формула нахождения площади равностороннего треугольника через сторону:
a – сторона равностороннего треугольника.
Площадь равностороннего треугольника через высоту
Формула нахождения площади равностороннего треугольника через высоту:
h – высота равностороннего треугольника.
Площадь равностороннего треугольника через радиус вписанной окружности
Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:
r – радиус вписанной окружности равностороннего треугольника.
Площадь равностороннего треугольника через радиус описанной окружности
Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:
r – радиус описанной окружности равностороннего треугольника.
Площадь треугольника через радиус описанной окружности и три стороны
Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:
a, b, c – стороны треугольника; r – радиус описанной окружности треугольника.
Площадь треугольника через радиус вписанной окружности и три стороны
Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:
p – полупериметр треугольника;a, b, c – стороны треугольника; r – радиус вписанной окружности треугольника.
Как найти площадь любого треугольника
Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.
Как найти площадь любого треугольника
Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.
Зная сторону и высоту
- Умножьте сторону треугольника на высоту, проведённую к этой стороне.
- Поделите результат на два.
- S — искомая площадь треугольника.
- a — сторона треугольника.
- h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.
Зная две стороны и угол между ними
- Посчитайте произведение двух известных сторон треугольника.
- Найдите синус угла между выбранными сторонами.
- Перемножьте полученные числа.
- Поделите результат на два.
- S — искомая площадь треугольника.
- a и b — стороны треугольника.
- α — угол между сторонами a и b.
Зная три стороны (формула Герона)
- Посчитайте разности полупериметра треугольника и каждой из его сторон.
- Найдите произведение полученных чисел.
- Умножьте результат на полупериметр.
- Найдите корень из полученного числа.
- S — искомая площадь треугольника.
- a, b, c — стороны треугольника.
- p — полупериметр (равен половине от суммы всех сторон треугольника).
Зная три стороны и радиус описанной окружности
- Найдите произведение всех сторон треугольника.
- Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
- S — искомая площадь треугольника.
- R — радиус описанной окружности.
- a, b, c — стороны треугольника.
Зная радиус вписанной окружности и полупериметр
Умножьте радиус окружности, вписанной в треугольник, на полупериметр.
- S — искомая площадь треугольника.
- r — радиус вписанной окружности.
- p — полупериметр треугольника (равен половине от суммы всех сторон).
Как найти площадь прямоугольного треугольника
- Посчитайте произведение катетов треугольника.
- Поделите результат на два.
- S — искомая площадь треугольника.
- a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.
Как найти площадь равнобедренного треугольника
- Умножьте основание на высоту треугольника.
- Поделите результат на два.
- S — искомая площадь треугольника.
- a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
- h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.
Как найти площадь равностороннего треугольника
- Умножьте квадрат стороны треугольника на корень из трёх.
- Поделите результат на четыре.
- S — искомая площадь треугольника.
- a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.
Читайте также 🧠👨🏻🎓✍🏻
- 7 причин полюбить математику
- ТЕСТ: Помните ли вы геометрию?
- 10 хитрых головоломок со спичками для тренировки воображения
- Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
- ТЕСТ: Сможете ли вы решить простые математические примеры?
Треугольник — это геометрическая фигура, которая образуется в результате пересечения трех отрезков, концы которых не лежат на одной прямой. У любого треугольника есть три стороны, три вершины и три угла.
Онлайн-калькулятор площади треугольника
Треугольники бывают различных видов. Например, существует равносторонний треугольник (тот, у которого все стороны равны), равнобедренный (в нем равны две стороны) и прямоугольный (в котором один из углов прямой, т. е. равен 90 градусам).
Площадь треугольника можно найти различными способами в зависимости от того, какие элементы фигуры известны по условию задачи, будь то углы, длины, либо же вообще радиусы окружностей, связанных с треугольником. Рассмотрим каждый способ отдельно с примерами.
Формула площади треугольника по основанию и высоте
S=12⋅a⋅hS= frac{1}{2}cdot acdot h,
aa — основание треугольника;
hh — высота треугольника, проведенная к данному основанию a.
Найти площадь треугольника, если известна длина его основания, равная 10 (см.) и высота, проведенная к этому основанию, равная 5 (см.).
Решение
a=10a=10
h=5h=5
Подставляем в формулу для площади и получаем:
S=12⋅10⋅5=25S=frac{1}{2}cdot10cdot 5=25 (см. кв.)
Ответ: 25 (см. кв.)
Формула площади треугольника по длинам всех сторон
S=p⋅(p−a)⋅(p−b)⋅(p−c)S= sqrt{pcdot(p-a)cdot (p-b)cdot (p-c)},
a,b,ca, b, c — длины сторон треугольника;
pp — половина суммы всех сторон треугольника (то есть, половина периметра треугольника):
p=12(a+b+c)p=frac{1}{2}(a+b+c)
Эта формула называется формулой Герона.
Найти площадь треугольника, если известны длины трех его сторон, равные 3 (см.), 4 (см.), 5 (см.).
Решение
a=3a=3
b=4b=4
c=5c=5
Найдем половину периметра pp:
p=12(3+4+5)=12⋅12=6p=frac{1}{2}(3+4+5)=frac{1}{2}cdot 12=6
Тогда, по формуле Герона, площадь треугольника:
S=6⋅(6−3)⋅(6−4)⋅(6−5)=36=6S=sqrt{6cdot(6-3)cdot(6-4)cdot(6-5)}=sqrt{36}=6 (см. кв.)
Ответ: 6 (см. кв.)
Формула площади треугольника по одной стороне и двум углам
S=a22⋅sinβsinγsin(β+γ)S=frac{a^2}{2}cdot frac{sin{beta}sin{gamma}}{sin(beta+gamma)},
aa — длина стороны треугольника;
β,γbeta, gamma — углы, прилежащие к стороне aa.
Дано сторону треугольника, равную 10 (см.) и два прилежащих к ней угла по 30 градусов. Найти площадь треугольника.
Решение
a=10a=10
β=30∘beta=30^{circ}
γ=30∘gamma=30^{circ}
По формуле:
S=1022⋅sin30∘sin30∘sin(30∘+30∘)=50⋅123≈14.4S=frac{10^2}{2}cdot frac{sin{30^{circ}}sin{30^{circ}}}{sin(30^{circ}+30^{circ})}=50cdotfrac{1}{2sqrt{3}}approx14.4 (см. кв.)
Ответ: 14.4 (см. кв.)
Формула площади треугольника по трем сторонам и радиусу описанной окружности
S=a⋅b⋅c4RS=frac{acdot bcdot c}{4R},
a,b,ca, b, c — стороны треугольника;
RR — радиус описанной окружности вокруг треугольника.
Числа возьмем из второй нашей задачи и добавим к ним радиус RR окружности. Пусть он будет равен 10 (см.).
Решение
a=3a=3
b=4b=4
c=5c=5
R=10R=10
S=3⋅4⋅54⋅10=6040=1.5S=frac{3cdot 4cdot 5}{4cdot 10}=frac{60}{40}=1.5 (см. кв.)
Ответ: 1.5 (см.кв.)
Формула площади треугольника по трем сторонам и радиусу вписанной окружности
S=p⋅rS=pcdot r,
pp — половина периметра треугольника:
p=a+b+c2p=frac{a+b+c}{2},
a,b,ca, b, c — стороны треугольника;
rr — радиус вписанной в треугольник окружности.
Пусть радиус вписанной окружности равен 2 (см.). Длины сторон возьмем из предыдущей задачи.
Решение
a=3a=3
b=4b=4
c=5c=5
r=2r=2
p=3+4+52=6p=frac{3+4+5}{2}=6
S=6⋅2=12S=6cdot 2=12 (см. кв.)
Ответ: 12 (см. кв.)
Формула площади треугольника по двум сторонам и углу между ними
S=12⋅b⋅c⋅sin(α)S=frac{1}{2}cdot bcdot ccdotsin(alpha),
b,cb, c — стороны треугольника;
αalpha — угол между сторонами bb и cc.
Стороны треугольника равны 5 (см.) и 6 (см.), угол между ними равен 30 градусов. Найти площадь треугольника.
Решение
b=5b=5
c=6c=6
α=30∘alpha=30^{circ}
S=12⋅5⋅6⋅sin(30∘)=7.5S=frac{1}{2}cdot 5cdot 6cdotsin(30^{circ})=7.5 (см. кв.)
Ответ: 7.5 (см. кв.)
Контрольная по геометрии недорого на сервисе Студворк от профильных экспертов!
Тест на тему “Плошадь треугольника”
Предлагаем простой и удобный калькулятор для расчета площади треугольника в режиме онлайн. Он может оказаться полезным не только для школьников, изучающих базовый курс геометрии, но и для строителей, дизайнеров, архитекторов и многих других специалистов, чья работа так или иначе связана с проектированием и изготовлением различных инженерных конструкций. Вы можете посчитать площадь произвольного треугольника, зная основные размеры, однозначно определяющие его конфигурацию.
Формула расчета площади треугольника по стороне и высоте, проведенной из противолежащей вершины
Зная длину одной из сторон треугольника (основания) и высоту, проведенную к этой стороне, его площадь можно посчитать, перемножив эти величины друг на друга и разделив результат на 2. То есть площадь треугольника — это полупроизведение основания на высоту. Это наиболее известная формула, она применима к любым треугольникам.
Площадь треугольника по трем сторонам, формула Герона
Одна из самых полезных на практике формул, незаслуженно обойденная вниманием во многих популярных источниках. Она позволяет рассчитать площадь треугольника, зная длины трех его сторон. В реальных условиях очень часто трудно провести измерения углов или каких-то линейных размеров конструкций, требующие дополнительных геометрических построений. Что же касается сторон, то они, как правило, или известны, или относительно легко поддаются измерению, поэтому площадь треугольника во многих случаях рассчитывают именно этим способом.
Для определения площади необходимо рассчитать полупериметр треугольника — сумму его сторон, деленную на 2. Далее из него поочередно вычитают длину каждой стороны, а результаты перемножают. Затем полученное значение умножают на полупериметр и из итогового числа извлекают квадратный корень. Это довольно сложный расчет, но с помощью нашего калькулятора вы проделаете его всего за несколько мгновений, введя длины сторон треугольника в предназначенные для этого поля.
Как рассчитать площадь треугольника, если известны две стороны и угол между ними
Эта формула также имеет широкое практическое применение. Например, с ее помощью можно посчитать площадь треугольного фронтона в доме с двускатной крышей. Угол наклона скатов и их длины обычно известны, их достаточно подставить в формулу и получить результат. Наш онлайн-калькулятор сделает это для вас моментально. Алгоритм расчета следующий: площадь треугольника вычисляется как половина произведения длин известных сторон на синус угла, который находится между ними.
Формула площади треугольника по его известной стороне и двум прилежащим углам
Наш калькулятор посчитает площадь треугольника и по этим параметрам. В расчете применяется довольно громоздкая формула, использовать которую при ручном подсчете довольно затруднительно. Поэтому, если вы знаете только эти характеристики треугольника, открывайте нужную вкладку и вводите значения в соответствующие поля калькулятора. Это поможет вам сэкономить время и избежать ошибок, исправлять которые будет сложно и дорого.
Как найти площадь треугольника по его периметру и радиусу вписанной окружности
Если вы знаете длины всех сторон треугольника, лучше использовать приведенную выше формулу Герона. Но если известен только полный периметр (сумма сторон, а не длины каждой из них по отдельности), площадь можно рассчитать как произведение радиуса вписанной окружности на половину периметра. Дизайнеры и проектировщики довольно часто помещают в треугольные фигуры круглые детали, при этом радиусы окружностей обычно бывают известны.
Формула площади произвольного треугольника по трем сторонам и радиусу описанной окружности
Радиус описанной окружности — избыточный параметр. Если длины всех трех сторон треугольника известны, его площадь определяется по формуле Герона. Тем не менее есть возможность несколько упростить расчет: нужно перемножить длины сторон друг на друга и разделить результат на учетверенный радиус описанной окружности. Наш онлайн-калькулятор при необходимости вычисляет площадь фигуры и по этой формуле.
Расчет площади прямоугольного треугольника
Прямоугольный треугольник — это частный случай произвольной треугольной фигуры, один из его углов равен 90°. Для вычисления его площади можно применять любую из приведенных выше формул, при этом многие из них заметно упрощаются. Например, синус прямого угла равен единице, поэтому площадь такого треугольника будет равна полупроизведению прилежащих сторон, которые называются катетами. Радиус описанной окружности для любого прямоугольного треугольника равен половине длины третьей стороны — гипотенузы, так что соответствующая формула также сводится к полупроизведению катетов. Если известен другой параметр — радиус вписанной окружности r, то площадь равна r · (r + c)
, где c
— длина гипотенузы.
Площадь равнобедренного треугольника
В математике треугольник, две стороны которого равны, называется равнобедренным. Третья сторона при этом называется основанием, кроме того, известно, что углы при этом основании равны. Если боковые стороны обозначить буквой b, а находящийся между ними угол — α, то площадь будет равна ½ · b² · sin (α)
. Это частный случай формулы расчета площади произвольного треугольника по двум известным сторонам и углу между ними. Наш калькулятор использует именно ее.
Формулы для равностороннего треугольника
Если у треугольника все стороны равны, вычисление его площади еще больше упрощается. Достаточно знать длину стороны a или измерить радиус вписанной окружности r. Калькулятор использует одну из следующих формул:
S = √3 / 4 · a²;
S = 3√3 · r².
В основе расчета площади треугольника во всех случаях лежит довольно простая математика. Но при этом часто требуется вычислять тригонометрические функции, радикалы и произведения больших чисел. Поэтому самое простое решение — снять все необходимые размеры и воспользоваться нашим калькулятором. Это быстро, точно и бесплатно. Никаких ограничений на количество расчетов и требований по авторизации у нас нет. Если у вас появятся вопросы, вы можете задать их в комментариях.