Как найти площадь треугольника вписанного в трапецию

Попробуйте найти площадь треугольника в трапеции | Задача

Сегодня продолжим тему трапеций и площадей. На этот раз надо найти площадь треугольника в этой трапеции

Достаточно много известно в трапеции, а значит должно быть много интересных способов решения. Но это не точно. Кстати, задача не самая простая, на экзамене это было бы почётное 25-е задание ОГЭ или 16-е задание профильного уровня ЕГЭ.

На что можно обратить внимание:

  1. Треугольник ∆AKD — известны все стороны, можно найти площадь, синусы и косинусы углов;
  2. Подобие треугольников образованных основаниями трапеции;
  3. Отношение площадей треугольников образованных одной диагональю трапеции;
  4. Биссектриса угла при основании — и то, что она отсекает от трапеции.

Условие

В трапеции ABCD основание AD равно √7. Диагонали АС и DB пересекаются в точке К. Известно, что AK = 1, KD = 2, ∠ВАС = ∠DAC. Найдите площадь треугольника ABC.

Подписывайтесь на канал Около ОГЭ, если еще нет. Делитесь решениями в комментариях. Удачи!

Решайте также:

🍀 Площадь прямоугольной трапеции и пропорциональные отрезки

🍀 Найти площадь трапеции, описанной около окружности

🍀 Устно: найти отношение площадей

Please wait.

We are checking your browser. mathvox.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6d387feb6b1c3a71 • Your IP : 85.95.179.65 • Performance & security by Cloudflare

Равновеликие треугольники

Равновеликие треугольники — это треугольники, которые имеют одинаковую площадь.

Равновеликие треугольники могут быть равными (так как равные треугольники имеют равные площади), но также могут иметь разные стороны и разные углы.

Например, треугольники ABC и MKF — равновеликие, так как их площади равны.

Можно заметить, что если сторону треугольника увеличить в k раз, а высоту, проведенную к этой стороне, уменьшить в k раз, то получим треугольник, равновеликий данному.

Равновеликие треугольники в треугольнике

Медиана делит треугольник на два равновеликих треугольника.

Равновеликие треугольники в трапеции

При пересечении диагоналей в произвольной трапеции ABCD образуется три пары равновеликих треугольников:

1) ∆ABD и ∆ACD,

1) Проведём в треугольниках ABD и ACD высоты BH и CF.

BK=CF (как высоты трапеции), следовательно,

3)

Так как площади треугольников ABD и ACD равны (по доказанному), то и

Таким образом, треугольники , образованные боковыми сторонами и диагоналями трапеции, имеют равные площади.

Формулы площадей фигур

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

Формула площади треугольника по стороне и высоте

Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

где a — одна из сторон треугольника, h — высота, проведенная к стороне треугольника.

Формула площади треугольника по трем сторонам

Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c .

S = p p – a p – b p – c ,

где p — полупериметр треугольника: p = a + b + c 2
a, b, c — стороны треугольника.

Формула площади треугольника по двум сторонам и углу между ними

Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

S = 1 2 a · b · sin γ ,

где a, b — стороны треугольника,
γ — угол между сторонами a и b .

Формула площади треугольника по трем сторонам и радиусу описанной окружности

a, b, c — стороны треугольника,
R – радиус описанной окружности.

Формула площади треугольника по трем сторонам и радиусу вписанной окружности

Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

где S — площадь треугольника,
r – радиус вписанной окружности,
p — полупериметр треугольника: p = a + b + c 2

Формулы площади квадрата

Формула площади квадрата по длине стороны

Площадь квадрата равна квадрату длины его стороны.

где S — площадь квадрата,
a — длина стороны квадрата.

Формула площади квадрата по длине диагонали

Площадь квадрата равна половине квадрата длины его диагонали.

где S — площадь квадрата,
d — длина диагонали квадрата.

Формула площади прямоугольника

Площадь прямоугольника равна произведению длин двух его смежных сторон.

где S — площадь прямоугольника,
a, b — длины сторон прямоугольника.

Формулы площади параллелограмма

Параллелограмм — это четырёхугольник, у которого противолежащие стороны параллельны.

Формула площади параллелограмма по длине стороны и высоте

Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

где S — площадь параллелограмма,
a, h — длины сторон параллелограмма.

Формула площади параллелограмма по двум сторонам и углу между ними

Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

где S — площадь параллелограмма,
a, b — длины сторон параллелограмма,
α – угол между сторонами параллелограмма.

Формула площади параллелограмма по двум диагоналям и углу между ними

Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

S = d1 · d2 · sin β 2 = d1 · d2 · sin γ 2 ,

где S — площадь параллелограмма,
d1, d2 — длины диагоналей параллелограмма,
β , γ – угол между диагоналями параллелограмма.

Формулы площади ромба

Формула площади ромба по длине стороны и высоте

Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

где S — площадь ромба,
a — длина стороны ромба,
h — длина высоты ромба.

Формула площади ромба по длине стороны и углу

Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

где S — площадь ромба,
a — длина стороны ромба,
α — угол между сторонами ромба.

Формула площади ромба по длинам его диагоналей

Площадь ромба равна половине произведению длин его диагоналей.

где S — площадь ромба,
d1, d2 — длины диагоналей ромба.

Формулы площади трапеции

Трапеция — это четырёхугольник, у которого две ( a, b ) стороны параллельны (основания), а две другие ( c, d ) стороны не параллельны (боковые стороны).

Формула Герона для трапеции

где S — площадь трапеции,
a, b — длины основ трапеции,
c, d — длины боковых сторон трапеции,
p = a + b + c + d 2 — полупериметр трапеции.

Формула площади трапеции по длине основ и высоте

Площадь трапеции равна произведению полусуммы её оснований на высоту.

где S — площадь трапеции,
a, b — длины основ трапеции,
h — высота трапеции.

Формулы площади дельтоида

Дельтоид — это выпуклый четырёхугольник, состоящий из двух различных равнобедренных треугольников с общим основанием, вершины которых лежат по разные стороны от этого основания.

Формула площади дельтоида по двум неравным сторонам и углу между ними

Площадь дельтоида равна произведению длин неравных сторон на синус угла между ними.

где S — площадь дельтоида,
a, b — длины неравных сторон дельтоида,
β — угол между неравными сторонами дельтоида.

Формула площади дельтоида по равным сторонам и углу между ними

Площадь дельтоида равна полусумме произведения каждой из пар равных сторон на синус угла между ними.

S = a 2 sin γ + b 2 sin α 2 ,

где S — площадь дельтоида,
a, b — длины сторон дельтоида,
α — угол между равными сторонами b ,
γ — угол между равными сторонами a .

Формула площади дельтоида по двум неравным сторонам и радиусу вписанной окружности

Площадь дельтоида равна произведению суммы неравных сторон на радиус вписанной окружности.

где S — площадь дельтоида,
a, b — длины неравных сторон дельтоида,
r — радиус вписанной окружности.

Формула площади дельтоида по двум диагоналям

Площадь дельтоида равна половине произведения длин двух диагоналей.

где S — площадь дельтоида,
d1, d2 — диагонали дельтоида.

Формулы площади произвольного выпуклого четырехугольника

Формула площади произвольного выпуклого четырехугольника по длине диагоналей и углу между ними

Площадь произвольного выпуклого выпуклого четырехугольника равна половине произведения его диагоналей умноженной на синус угла между ними.

S = d1 · d2 · sin γ 2 ,

где S — площадь четырехугольника,
d1, d2 — диагонали четырехугольника,
γ — любой из четырёх углов между диагоналями.

Формула площади произвольного выпуклого четырехугольника по длине сторон и значению противоположных углов

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника,
p = a + b + c + d 2 — полупериметр четырехугольника,
θ = α + β 2 — полусумма двух противоположных углов четырехугольника.

Формула площади вписанного четырехугольника (формула Брахмагупты)

Если вокруг четырехугольника можно описать окружность, то его площадь равна

S = p – a p – b p – c p – d ,

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника,
p = a + b + c + d 2 — полупериметр четырехугольника.

Формула площади четырехугольника с вписанной окружностью

Если в четырехугольник можно вписать окружность, то его площадь равна:

где S — площадь четырехугольника,
r — радиус вписанной окружности,
p = a + b + c + d 2 — полупериметр четырехугольника.

Формула площади четырехугольника с вписанной и описанной окружностями

Если в четырехугольник можно вписать окружность, а также около него можно описать окружность, то его площадь равна:

где S — площадь четырехугольника,
a, b, c, d — длины сторон четырехугольника.

Формулы площади круга

Формула площади круга через радиус

Площадь круга равна произведению квадрата радиуса на число пи.

S = π r 2 ,

где S — площадь круга,
r — радиус круга.

Формула площади круга через диаметр

Площадь круга равна четверти произведения квадрата диаметра на число пи.

где S — площадь круга,
d — диаметр круга.

Площадь сегмента круга

Площадь кругового сегмента через угол в градусах.

где S — площадь сегмента круга,
R — радиус круга,
α° — угол в градусах.

Площадь кругового сегмента через угол в радианах.

где S — площадь сегмента круга,
R — радиус круга,
α° — угол в радианах.

Формула площади эллипса

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

где S — площадь эллипса,
a — длина большей полуоси эллипса,
b — длина меньшей полуоси эллипса.

[spoiler title=”источники:”]

http://urokmatematiki.ru/reference-information/formuly-po-geometrii/formuly-ploshchadey-figur.php

[/spoiler]

Площадь трапеции через основания и высоту

{S = dfrac{1}{2} (a + b) cdot h}

Площадь трапеции можно найти множеством способов. Для вас мы собрали все возможные варианты нахождения площади. Для вашего удобства для каждой формулы создан калькулятор, который поможет рассчитать площадь трапеции по известным данным. От вас требуется только подставить значения и в режиме онлайн мгновенно получить ответ. Формулы и калькуляторы сгруппированы по типам трапеций – обычная, равнобедренная (равнобокая).

  1. Калькулятор площади трапеции
  2. Площадь трапеции
    1. через основания и высоту
    2. через среднюю линию и высоту
    3. через диагонали и среднюю линию
    4. через 4 стороны
    5. через диагонали и угол между ними
    6. через основания и углы при основании
    7. через площади треугольников
    8. через диагонали и высоту
    9. через радиус вписанной окружности и основания
    10. через перпендикулярные диагонали
  3. Площадь равнобедренной (равнобокой) трапеции
    1. через основания и высоту
    2. через 3 стороны (формула Брахмагупты)
    3. через верхнее основание, боковую сторону и угол при нижнем основании
    4. через нижнее основание, боковую сторону и угол при нижнем основании
    5. через основания и угол
    6. через диагонали и угол между ними
    7. через боковую сторону, угол при основании и среднюю линию
    8. через радиус вписанной окружности и угол при основании
  4. Площадь равнобедренной (равнобокой) трапеции, в которую можно вписать окружность
    1. через высоту (диаметр вписанной окружности) и угол при основании
    2. через основания и угол при основании
    3. через основания и радиус вписанной окружности
    4. через основания
    5. через основания и боковую сторону
    6. через основания и среднюю линию
  5. Примеры задач

Площадь трапеции

Трапеция — выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Площадь трапеции через основания и высоту

Площадь трапеции через основания и высоту

{S = dfrac{1}{2} (a + b) cdot h}

a и b – основания трапеции

h – высота, проведенная к основанию

Площадь трапеции через среднюю линию и высоту

Площадь трапеции через среднюю линию и высоту

{S = m cdot h}

m – средняя линия трапеции

h – высота трапеции

Площадь трапеции через диагонали и среднюю линию

Площадь трапеции через диагонали и среднюю линию

{S = sqrt{p(p-d_1)(p-d_2)(p-2m)}}
{p = dfrac{d_1+d_2+2m}{2}}

d1 и d2 – диагонали трапеции

m – средняя линия трапеции

Площадь трапеции через 4 стороны

Площадь трапеции через 4 стороны

{S = dfrac{a+b}{2} sqrt{c^2 – {Big( dfrac{(a-b)^2 + c^2 – d^2}{2(a-b)} Big)}^2}}

a, b, c и d – стороны трапеции

Площадь трапеции через диагонали и угол между ними

Площадь трапеции через диагонали и угол между ними

{S = dfrac{d_1 cdot d_2}{2}cdot sin(alpha); S = dfrac{d_1 cdot d_2}{2}cdot sin(beta)}

d1 и d2 – диагонали трапеции

α или β – угол между диагоналями трапеции

Площадь трапеции через основания и углы при основании

Площадь трапеции через основания и углы при основании

{S = dfrac{b^2 – a^2}{2} cdot dfrac{sin(alpha) cdot sin(beta)}{sin(alpha + beta)}}

a и b – основания трапеции

α или β – прилежащие к основанию трапеции углы

Площадь трапеции через площади треугольников

Площадь трапеции через площади треугольников

{S = (sqrt{S_1} + sqrt{S_2})^2}

S1 и S2 – площади образованных пересечением диагоналей трапеции треугольников

Площадь трапеции через диагонали и высоту

Площадь трапеции через диагонали и высоту

{S = dfrac{sqrt{{d_2}^2-h^2}+sqrt{{d_1}^2-h^2}}{2} cdot h}

d1 и d2 – диагонали трапеции

h – высота трапеции

Площадь трапеции через радиус вписанной окружности и основания

Площадь трапеции через радиус вписанной окружности и основания

{S = (a+b)cdot r}

a и b – основания трапеции

r – радиус вписанной в трапецию окружности

Площадь трапеции через перпендикулярные диагонали

Площадь трапеции через перпендикулярные диагонали

{S = dfrac{1}{2} cdot d_1 cdot d_2}

d1 и d2 – перпендикулярные диагонали трапеции

Площадь равнобедренной (равнобокой) трапеции

Равнобедренная трапеция — это трапеция, у которой боковые стороны равны.

Площадь равнобедренной трапеции через основания и высоту

Площадь равнобедренной трапеции через основания и высоту

{S = dfrac{a+b}{2} cdot h}

a и b – основания равнобедренной трапеции

h – высота, проведенная к основанию равнобедренной трапеции

Площадь равнобедренной трапеции через 3 стороны (формула Брахмагупты)

Площадь равнобедренной трапеции через 3 стороны (формула Брахмагупты)

{S = sqrt{(p-a)(p-b)(p-c)^2}}
{p = dfrac{a+b+2c}{2}}

a и b – основания равнобедренной трапеции

c – боковая сторона равнобедренной трапеции

Площадь равнобедренной трапеции через верхнее основание, боковую сторону и угол при нижнем основании

Площадь равнобедренной трапеции через верхнее основание, боковую сторону и угол при нижнем основании

{S = c cdot sin(alpha) cdot (a+c cdot cos(alpha))}

a – верхнее основание равнобедренной трапеции

c – боковая сторона равнобедренной трапеции

α – прилежащие к нижнему основанию трапеции углы

Площадь равнобедренной трапеции через нижнее основание, боковую сторону и угол при нижнем основании

Площадь равнобедренной трапеции через нижнее основание, боковую сторону и угол при нижнем основании

{S = c cdot sin(alpha) cdot (b-c cdot cos(alpha))}

b – нижнее основание равнобедренной трапеции

c – боковая сторона равнобедренной трапеции

α – прилежащий к нижнему основанию трапеции угол

Площадь равнобедренной трапеции через основания и угол

Площадь равнобедренной трапеции через основания и угол

{S = dfrac{1}{2}(b^2-a^2) cdot tg(alpha)}

a и b – основания равнобедренной трапеции

α – прилежащий к основанию трапеции угол

Площадь равнобедренной трапеции через диагонали и угол между ними

Площадь равнобедренной трапеции через диагонали и угол между ними

{S = dfrac{1}{2}d^2 cdot sin(alpha)}

a – диагональ равнобедренной трапеции

α – угол между диагоналями равнобедренной трапеции

Площадь равнобедренной трапеции через боковую сторону, угол при основании и среднюю линию

Площадь равнобедренной трапеции через боковую сторону, угол при основании и среднюю линию

{S = m cdot c cdot sin(alpha)}

m – средняя линия равнобедренной трапеции

c – боковая сторона равнобедренной трапеции

α – угол при основании равнобедренной трапеции

Площадь равнобедренной трапеции через радиус вписанной окружности и угол при основании

Площадь равнобедренной трапеции через радиус вписанной окружности и угол при основании

{S = dfrac{4r^2}{sin(alpha)}}

r – радиус вписанной окружности

α – угол при основании равнобедренной трапеции

Площадь равнобедренной (равнобокой) трапеции, в которую можно вписать окружность

В трапецию можно вписать окружность тогда и только тогда, когда суммы ее противоположных сторон равны.

Площадь равнобедренной трапеции, в которую можно вписать окружность, через высоту (диаметр вписанной окружности) и угол при основании

Площадь равнобедренной трапеции, в которую можно вписать окружность, через высоту (диаметр вписанной окружности) и угол при основании

{S = dfrac{h^2}{sin(alpha)}}

h – высота равнобедренной трапеции

α – угол при основании равнобедренной трапеции

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания и угол при основании

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания и угол при основании

{S = dfrac{a cdot b}{sin(alpha)}}

a и b – основания равнобедренной трапеции

α – угол при основании равнобедренной трапеции

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания и радиус вписанной окружности

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания и радиус вписанной окружности

{S = r(a+b); r=dfrac{sqrt{a cdot b}}{2}}

a и b – основания равнобедренной трапеции

r – радиус вписанной окружности

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания

{S = sqrt{a cdot b} cdot dfrac{a+b}{2}}

a и b – основания равнобедренной трапеции

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания и боковую сторону

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания и боковую сторону

{S = c cdot sqrt{a cdot b}}

a и b – основания равнобедренной трапеции

c – боковая сторона равнобедренной трапеции

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания и среднюю линию

Площадь равнобедренной трапеции, в которую можно вписать окружность, через основания и среднюю линию

{S = m cdot sqrt{a cdot b}}

a и b – основания равнобедренной трапеции

m – средняя линия равнобедренной трапеции

Примеры задач на нахождение площади трапеции

Задача 1

Найдите площадь трапеции, если основания равны 6см и 9 см, а высота трапеции равна 5 см.

Решение

Для решения задачи воспользуемся первой формулой.

S = dfrac{1}{2} (a + b) cdot h = dfrac{1}{2} (6 + 9) cdot 5 = dfrac{1}{2} cdot 15 cdot 5 = dfrac{1}{2} cdot 75 = 37dfrac{1}{2} : см^2

Ответ: 37.5 см²

Полученный ответ легко проверить с помощью калькулятора .

Задача 2

Найдите площадь трапеции средняя линия которой равна 18 см, а высота 9 см.

Решение

С решением этой задачи нам поможет вторая формула.

S = m cdot h = 18 cdot 9 = 162 : см^2

Ответ: 162 см²

Воспользуемся калькулятором для проверки результата.

Задача 3

Найдите площадь трапеции диагонали которой равны 10 и 8, а средняя линия равна 3.

Решение

Для решения этой задачи нам поможет третья формула.

На первом этапе вычислим p:

p = dfrac{d_1+d_2+2m}{2} = dfrac{10+8+2 cdot 3}{2} = dfrac{10+8+6}{2} = dfrac{24}{2} = 12

А теперь можно вычислить площадь трапеции:

S = sqrt{p(p-d_1)(p-d_2)(p-2m)} = sqrt{12(12-10)(12-8)(12-2 cdot 3)} = sqrt{12 cdot 2 cdot 4 cdot 6} = sqrt{576} = 24 : см^2

Ответ: 24 см²

Осталось проверить полученный ответ.

Задача 4

Найдите площадь трапеции диагонали которой равны 17 и 15, а средняя линия равна 4.

Решение

Задача похожа на ту, что мы только что решили. Поэтому повторим шаги.

На первом этапе вычислим p:

p = dfrac{d_1+d_2+2m}{2} = dfrac{17+15+ 2 cdot 4}{2} = dfrac{17+15+8}{2} = dfrac{40}{2} = 20

А теперь можно вычислить площадь трапеции:

S = sqrt{p(p-d_1)(p-d_2)(p-2m)} = sqrt{20(20-17)(20-15)(20-2 cdot 4)} = sqrt{20 cdot 3 cdot 5 cdot 12} = sqrt{3600} = 60 : см^2

Ответ: 60 см²

Проверка .

Задача 5

Найдите площадь трапеции диагонали которой равны 8 и 6 а средняя линия равна 5.

Решение

Еще одна типовая задача. Повторим действия как в задачах выше.

На первом этапе вычислим p:

p = dfrac{d_1+d_2+2m}{2} = dfrac{8+6+ 2 cdot 5}{2} = dfrac{8+6+10}{2} = dfrac{24}{2} = 12

А теперь можно вычислить площадь трапеции:

S = sqrt{p(p-d_1)(p-d_2)(p-2m)} = sqrt{12(12-8)(12-6)(12-2 cdot 5)} = sqrt{12 cdot 4 cdot 6 cdot 2} = sqrt{576} = 24 : см^2

Ответ: 24 см²

Проверка .

Задача 6

Найдите площадь равнобедренной трапеции если её основания равны 5 см и 17 см, а боковая сторона равна 10 см.

Решение

Для решения этой задачи используем формулу Брахмагупты.

Сначала вычислим p:

p = dfrac{a+b+2c}{2} = dfrac{5+17+2 cdot 10}{2} = dfrac{22+20}{2} = dfrac{42}{2} = 21

А теперь можно вычислить площадь трапеции:

S = sqrt{(p-a)(p-b)(p-c)^2} = sqrt{(21-5)(21-17)(21-10)^2} = sqrt{16 cdot 4 cdot 11^2} = sqrt{16 cdot 4 cdot 121} = sqrt{7744}= 88 : см^2

Ответ: 88 см²

Проверка .

Задача 7

Острый угол равнобедренной трапеции равен 45°, а основания равны 8 и 6 см. Найдите площадь трапеции.

Решение

Для решения этой задачи воспользуемся формулой.

S = dfrac{1}{2}(b^2-a^2) cdot tg(alpha) = dfrac{1}{2}(8^2-6^2) cdot tg(45°)

Тангенс 45° = 1, продолжим вычисления:

S = dfrac{1}{2}(8^2-6^2) cdot tg(45°) = dfrac{1}{2}(64-36) cdot 1 = dfrac{1}{2} cdot 28 = 14 : см^2

Ответ: 14 см²

Убедиться в правильности решения нам поможет калькулятор .

1. Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

b – верхнее основание

a – нижнее основание

c – равные боковые стороны

α – угол при нижнем основании

Формула площади равнобедренной трапеции через стороны, (S):

Формула площади равнобедренной трапеции через стороны

Формула площади равнобедренной трапеции через стороны и угол, (S):

Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

2. Формула площади равнобокой трапеции через радиус вписанной окружности

Формула площади равнобокой трапеции через радиус вписанной окружности

R – радиус вписанной окружности

D – диаметр вписанной окружности

O – центр вписанной окружности

H – высота трапеции

α, β – углы трапеции

Формула площади равнобокой трапеции через радиус вписанной окружности, (S):

Формула площади равнобокой трапеции через радиус вписанной окружности

СПРАВЕДЛИВО, для вписанной окружности в равнобокую трапецию:

площадь для вписанной окружности в равнобокую трапецию

3. Формула площади равнобедренной трапеции через диагонали и угол между ними

Формула площади равнобедренной трапеции через диагонали и угол между ними

d – диагональ трапеции

α, β – углы между диагоналями

Формула площади равнобедренной трапеции через диагонали и угол между ними, (S):

4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

Формула площади равнобедренной трапеции через среднюю линию

m – средняя линия трапеции

c – боковая сторона

α, β – углы при основании

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):

Формула площади равнобедренной трапеции через среднюю линию

5. Формула площади равнобедренной трапеции через основания и высоту

Формула площади равнобедренной трапеции через основания и высоту

b – верхнее основание

a – нижнее основание

h – высота трапеции

Формула площади равнобедренной трапеции через основания и высоту, (S):

Формула площади равнобедренной трапеции через основания и высоту

Выбирайте формулу в зависимости от известных величин.

1. Как найти площадь трапеции через основания и высоту

Посчитайте сумму оснований трапеции.

Умножьте результат на высоту и поделите на два.

Иллюстрация: Лайфхакер
  • S – искомая площадь трапеции.
  • a и b – основания трапеции (её параллельные стороны).
  • h – высота трапеции.

2. Как вычислить площадь трапеции через высоту и среднюю линию

Просто умножьте высоту трапеции на среднюю линию.

Иллюстрация: Лайфхакер
  • S – искомая площадь трапеции.
  • m – средняя линия трапеции (отрезок, соединяющий середины боковых сторон).
  • h – высота трапеции.

3. Как найти площадь трапеции через диагонали и угол между ними

Умножьте одну диагональ на другую, а затем — на синус любого угла между ними.

Поделите результат на два.

Иллюстрация: Лайфхакер
  • S – искомая площадь трапеции.
  • x и y – диагонали трапеции.
  • α – любой угол между диагоналями.

4. Как найти площадь трапеции через четыре стороны

Отнимите от большего основания меньшее.

Найдите квадрат полученного числа.

Прибавьте к результату квадрат одной боковой стороны и отнимите квадрат второй.

Поделите полученное число на удвоенную разность оснований.

Найдите квадрат результата и отнимите его от квадрата боковой стороны.

Найдите корень из полученного числа.

Умножьте результат на половину от суммы оснований.

Иллюстрация: Лайфхакер
  • S – искомая площадь трапеции.
  • a, b – основания трапеции.
  • c, d – боковые стороны.

5. Как вычислить площадь равнобедренной трапеции через четыре стороны

Отнимите от большего основания трапеции меньшее и поделите результат на два.

Найдите квадрат полученного числа и отнимите его от квадрата боковой стороны.

Найдите корень из результата.

Умножьте полученное число на сумму оснований и поделите на два.

Иллюстрация: Лайфхакер
  • S — искомая площадь трапеции.
  • a, b — основания трапеции.
  • c, d — боковые стороны (напомним, в равнобедренной трапеции они равны).

6. Как найти площадь равнобедренной трапеции через радиус вписанной окружности и угол

Найдите квадрат радиуса и умножьте его на четыре.

Поделите результат на синус известного угла.

Иллюстрация: Лайфхакер
  • r — радиус вписанной окружности.
  • α — любой угол трапеции.

Читайте также 📐✏️🎓

  • 8 способов найти длину окружности
  • 8 способов найти периметр треугольника
  • 7 способов найти площадь прямоугольника
  • Как перевести обычную дробь в десятичную
  • Как освоить устный счёт школьникам и взрослым

Добавить комментарий