Как найти площадь треугольника зная три стороны

Как найти площадь любого треугольника

Вспоминаем геометрию: формулы для произвольных, прямоугольных, равнобедренных и равносторонних фигур.

Как найти площадь любого треугольника

Как найти площадь любого треугольника

Посчитать площадь треугольника можно разными способами. Выбирайте формулу в зависимости от известных вам величин.

Зная сторону и высоту

  1. Умножьте сторону треугольника на высоту, проведённую к этой стороне.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — сторона треугольника.
  • h — высота треугольника. Это перпендикуляр, опущенный на сторону или её продолжение из противоположной вершины.

Зная две стороны и угол между ними

  1. Посчитайте произведение двух известных сторон треугольника.
  2. Найдите синус угла между выбранными сторонами.
  3. Перемножьте полученные числа.
  4. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a и b — стороны треугольника.
  • α — угол между сторонами a и b.

Зная три стороны (формула Герона)

  1. Посчитайте разности полупериметра треугольника и каждой из его сторон.
  2. Найдите произведение полученных чисел.
  3. Умножьте результат на полупериметр.
  4. Найдите корень из полученного числа.
  • S — искомая площадь треугольника.
  • a, b, c — стороны треугольника.
  • p — полупериметр (равен половине от суммы всех сторон треугольника).

Зная три стороны и радиус описанной окружности

  1. Найдите произведение всех сторон треугольника.
  2. Поделите результат на четыре радиуса окружности, описанной вокруг прямоугольника.
  • S — искомая площадь треугольника.
  • R — радиус описанной окружности.
  • a, b, c — стороны треугольника.

Зная радиус вписанной окружности и полупериметр

Умножьте радиус окружности, вписанной в треугольник, на полупериметр.

  • S — искомая площадь треугольника.
  • r — радиус вписанной окружности.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Как найти площадь прямоугольного треугольника

  1. Посчитайте произведение катетов треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a, b — катеты треугольника, то есть стороны, которые пересекаются под прямым углом.

Как найти площадь равнобедренного треугольника

  1. Умножьте основание на высоту треугольника.
  2. Поделите результат на два.
  • S — искомая площадь треугольника.
  • a — основание треугольника. Это та сторона, которая не равняется двум другим. Напомним, в равнобедренном треугольнике две из трёх сторон имеют одинаковую длину.
  • h — высота треугольника. Это перпендикуляр, опущенный на основание из противоположной вершины.

Как найти площадь равностороннего треугольника

  1. Умножьте квадрат стороны треугольника на корень из трёх.
  2. Поделите результат на четыре.
  • S — искомая площадь треугольника.
  • a — сторона треугольника. Напомним, в равностороннем треугольнике все стороны имеют одинаковую длину.

Читайте также 🧠👨🏻‍🎓✍🏻

  • 7 причин полюбить математику
  • ТЕСТ: Помните ли вы геометрию?
  • 10 хитрых головоломок со спичками для тренировки воображения
  • Интересные математические факты для тех, кто хочет больше узнать о мире вокруг
  • ТЕСТ: Сможете ли вы решить простые математические примеры?

ТреугольникНайти площадь треугольника можно различными способами. Конечно же, в зависимости от данных переменных и подбирается необходимая формула. В основном, для нахождения площади треугольника применяется формула Герона.

Если известны все три стороны треугольника ABC, то формула площади треугольника по трем сторонам легко применится на практике:

S=sqrt{p*(p-a)*(p-b)*(p-c)}

где:

  • p – полупериметр треугольника,
  • a, b, c – длины сторон треугольника.

Периметр – это сумма длин всех сторон треугольника. Соответственно полупериметр – это сумма длин всех сторон разделенная на 2.
p={(a+b+c)/2}

Иконка карандаша 24x24Рассмотрим пример расчета площади треугольника по трем сторонам:
Дан треугольник. Стороны a = 3 см., b = 4 см., c = 5 см. Для начала найдем полупериметр
p={(3+4+5)/2}=6 см.
Далее рассчитаем площадь
S=sqrt{6*(6-3)*(6-4)*(6-5)}=sqrt{6*3*2*1}=sqrt{36}=6
Площадь треугольника равна 6 кв. см

Также можно найти площадь треугольника и по другим формулам – через синус и косинус.

Калькулятор площади треугольника по трем сторонам

Сторона a= Сторона b= Сторона c=
Ответ: Площадь треугольника = 6.000

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона


Треугольник с тремя сторонами


Формула Герона для нахождения площади треугольника:

– полупериметр треугольника; a,b,c – стороны треугольника.


Через основание и высоту


Треугольник с основанием и высотой


Формула нахождения площади треугольника с помощью половины его основания и высоту:

a – основание треугольника; h – высота треугольника.


Через две стороны и угол


Треугольник с двумя сторонами и углом


Формула нахождения площади треугольника через две стороны и угол между ними:

a,b – стороны треугольника; α – угол между сторонами.


Через сторону и два прилежащих угла


Треугольник со стороной и двумя углами


Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:
<

a– сторона треугольника; α и β – прилежащие углы.


Площадь прямоугольного треугольника


Площадь прямоугольного треугольника


Прямоугольный треугольник – треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

a, b – катеты треугольника.


Площадь равнобедренного треугольника через стороны


Площадь равнобедренного треугольника


Равнобедренный треугольник – треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

a, b – стороны треугольника.


Площадь равнобедренного треугольника через основание и угол


Площадь равнобедренного треугольника


Формула нахождения площади равнобедренного треугольника через основание и угол:

a – основание равнобедренного треугольника; α – угол между сторонами.


Площадь равностороннего треугольника через стороны


Площадь равностороннего треугольника


Равносторонний треугольник – треугольник, в котором все стороны равны, а каждый угол равен 60°.

Формула нахождения площади равностороннего треугольника через сторону:

a – сторона равностороннего треугольника.


Площадь равностороннего треугольника через высоту


Площадь равностороннего треугольника


Формула нахождения площади равностороннего треугольника через высоту:

h – высота равностороннего треугольника.


Площадь равностороннего треугольника через радиус вписанной окружности


Площадь равностороннего треугольника


Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

r – радиус вписанной окружности равностороннего треугольника.


Площадь равностороннего треугольника через радиус описанной окружности


Площадь равностороннего треугольника


Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

r – радиус описанной окружности равностороннего треугольника.


Площадь треугольника через радиус описанной окружности и три стороны


Площадь треугольника


Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

a, b, c – стороны треугольника; r – радиус описанной окружности треугольника.


Площадь треугольника через радиус вписанной окружности и три стороны


Площадь треугольника


Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

p – полупериметр треугольника;a, b, c – стороны треугольника; r – радиус вписанной окружности треугольника.

Нахождение площади треугольника по трём сторонам: онлайн-калькулятор

Рассчитать площадь треугольника формулой по трем сторонам онлайн-калькулятором пригодится школьникам, студентам, преподавателям, специалистам различных специальностей. Вычисления производятся бесплатно. Пользователь сервиса получает не только готовый ответ, но и подробное решение. Используя данный способ, можно осуществлять самостоятельную подготовку к занятиям без привлечения репетиторов.

Чтобы найти площадь треугольника по трем сторонам онлайн:

  • введите данные длины сторон треугольника в соответствующие поля;
  • выберите единицы измерения для каждой стороны и для предполагаемой площади треугольника;
  • для получения ответа нажмите кнопку «Рассчитать».

В автоматических вычислениях заложена формула Герона, в которой фигурируют величины трех сторон треугольника и его полупериметра.

Вычисление площади треугольника по трем сторонам онлайн-калькулятором

Для решения задачи используется формула Герона:

S=p*(p-a)*(p-b)*(p-c)

где

  • a, b, c – длины сторон треугольника,
  • p – полупериметр треугольника, который вычисляется по формуле p=(a+b+c)/2

Обратите внимание на то, что вводимая длина сторон может иметь отличные друг от друга единицы измерения. Нет необходимости их переводить самостоятельно. То же касается и полученного ответа. Все переводы осуществляются автоматически и приведены в решении.

Если понадобилась помощь в написании работы по математике или другим дисциплинам, обратитесь к консультанту на сайте. Вам помогут быстро оформить заявку со скидкой.

Как вычислить площадь треугольника, зная только длины его сторон?

МатематикаГеометрияПлощадь

Анонимный вопрос

24 января 2019  · 142,2 K

Для того, чтобы вычислить площадь любого треугольника зная только значения длин его сторон – существует формула Герона:

S=√p(p-a)(p-b)(p-c)

где p=½(a+b+c) — полупериметр треугольника; a, b, c — его стороны.

Рассчитать или проверить собственные вычисления Вы можете данным онлайн-калькулятором: https://рассчитать.рф/площадь-треугольника-по-формуле-герона/

13,0 K

Комментировать ответ…Комментировать…

Занимаюсь математикой 5 лет 📓
Студент Эконом фака МГУ
  · 19 июн 2021

По формуле Герона

Площадь треугольника по трём сторонам можно вычислить как корень из произведения четырёх множителей, одним из которых является полупериметр исходного треугольника, а три остальных – это разность полупериметра и каждой стороны треугольника соотвественно.

2,1 K

Комментировать ответ…Комментировать…

Наставник по математике.
Помогаю воронежским школьникам разобраться в математике и…
  · 16 мая 2021

В этом случае помогает формула Герона.

Но бывают задачи, где стороны треугольника содержат различные корни , в таких случаях иногда проще по теореме косинусов найти косинус одного из углов, по нему посчитать синус и затем воспользоваться формулой площади треугольника : половина произведения сторон, умноженная на синус угла между ними

1,8 K

Комментировать ответ…Комментировать…

Лучший ответ на 99.9% вопросов: “Поисковик в помощь”.  · 24 янв 2019

Существует, так называемая, формула Герона, позволяющая вычислить площадь треугольника, зная длины его сторон.

S= (p * (p – a)*(p – b)*(p – c)) ,где

S – площадь;

p – полупериметр треугольника (a+b+c)/2;

a,b,c – длины сторон треугольника.

80,6 K

Комментировать ответ…Комментировать…

Основные понятия
Треугольник — это геометрическая фигура, которая получилось из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.
а
Площадь — это численная характеристика, которая дает нам информацию о размере плоскости, ограниченной замкнутой геометрической фигурой.
Если параметры переданы в…
Читать далее

4,3 K

Правильный ответ на вопрос был дан в п.1 – формула Герона. Все остальное тоже верно, но мне кажется избыточным.

Комментировать ответ…Комментировать…

Добавить комментарий