Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус.
Площадь кольца, выраженная через внешний и внутренний радиусы
Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Фигура, заключенная между этими окружностями и будет кольцо, у которого R является внешним радиусом, r -внутренним радиусом.
Тогда площадь этой фигуры будет равна разницы между площадью круга с большим радиусом и площадью круга с меньшим радиусом.
Площадь круга с радиусом r выражается формулой:
Площадь круга с радиусом R выражается формулой:
Тогда площадь кольца будет равна:
Таким образом, площадь кольца равна произведению числа на разницу квадратов внешнего и внутреннего радиусов:
Пример расчета площади кольца, если известны его радиусы.
Найдите площадь кольца, если его внешний радиус равен 3, а внутренний – 2
Площадь кольца вычисляется по формуле:
Подставив значения из условия задачи, имеем:
Площадь кольца, выраженная через внешний и внутренний диаметры
Иногда при решении задач удобней использовать формулу площади кольца, выраженную через внутренний и внешний диаметры.
Пусть D – внешний диаметр кольца, d -внутренний диаметр кольца, тогда:
Выразим радиус через диаметр. Имеем:
Площадь кольца вычисляется по формуле:
Подставив выраженные через диаметр радиусы, получим:
Таким образом, площадь кольца равна четверти произведения числа на разницу квадратов внешнего и внутреннего диаметров:
Пример расчета площади кольца, если известны его диаметры.
Найдите площадь кольца, если его внешний диаметр равен 10, а внутренний – 6
Площадь кольца вычисляется по формуле:
Подставив значения из условия задачи, имеем:
Площади кольца, выраженная через средний радиус и ширину кольца
Пусть k– ширина кольца, являющийся разницей между большим и меньшим радиусом, то есть k=R-r-средний радиус кольца, равный
Площадь кольца вычисляется по формуле:
Применив формулу разности квадратов, имеем:
Но R-r=k, а
Подставим правые части равенства в формулу площади кольца.
Получим:
Площадь кольца равна удвоенному произведению числа среднего радиуса на ширину кольца.
Пример расчета площади кольца, если известны его средний радиус и ширина.
Найдите площадь кольца, если его средний радиус равен 5, а ширина – 2
Площадь кольца вычисляется по формуле:
Подставив значения из условия задачи, имеем:
Площади кольца через длину самого большого отрезка, проведенного внутри кольца
Пусть AB –самый большой отрезок, лежащий внутри кольца. Точка С – половина этого отрезка. Этот отрезок будет являться касательной к кругу меньшего радиуса. Касательная перпендикулярна радиусу меньшей окружности, проведенного в точку каcания C. Тогда
Следовательно, треугольник ACO –прямоугольный, где
По теореме Пифагора имеем:
Площадь кольца равна:
Подставив, получим:
Следовательно, площадь кольца равна произведению числа на квадрат половины самого большого отрезка кольца.
Площадь кольца
- Главная
- /
- Математика
- /
- Геометрия
- /
- Площадь кольца
Чтобы найти площадь кольца, ограниченного двумя концентрическими окружностями, воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Площадь кольца по радиусам или диаметрам
Чему равна площадь кольца ограниченного двумя окружностями, если:
у внешней окружности
=
у внутренней окружности
=
Ответ: S =
0
Округление числа π: Округление ответа:
Просто введите радиусы или диаметры окружностей, и получите ответ.
Площадь кольца по толщине и любому другому параметру
Чему равна площадь кольца ограниченного двумя окружностями, если:
толщина кольца t =
=
Ответ: S =
0
Округление числа π: Округление ответа:
Просто введите толщину кольца и любой другой известный вам параметр, и получите ответ.
Теория
Площадь кольца через радиусы
Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?
Формула
S = π ⋅ (R² – r²)
Пример
К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:
S = 3.14 ⋅ (3² – 2²) = 3.14 ⋅ (9 – 4) = 3.14 ⋅ 5 = 15.7 см²
Ответ: S = 15.7 см²
Площадь кольца через диаметры
Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?
Формула
S = π/4 ⋅ (D² – d²)
Пример
К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:
S = 3.14 / 4 ⋅ (4² – 2²) = 0.785 ⋅ (16 – 4) = 9.42 см²
Ответ: S = 9.42 см²
Площадь кольца через толщину
Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:
- внешний диаметр D
- внутренний диаметр d
- радиус внешней окружности R
- радиус внутренней окружности r
Формулы
S = π/4 ⋅ (D² – (D – 2t)²)
S = π/4 ⋅ ((d + 2t)² – d²)
S = π ⋅ (R² – (R – t)²)
S = π ⋅ ((r + t)² – r²)
Пример
Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:
S = 3.14/4 ⋅ (5² – (5 – 2 ⋅ 2)²) = 0.785 ⋅ (25 – 1) = 18.84 см²
См. также
Площадь кольца
Онлайн калькулятор
Площадь кольца по радиусам или диаметрам
Чему равна площадь кольца ограниченного двумя окружностями, если:
у внешней окружности
у внутренней окружности
Площадь кольца по толщине и любому другому параметру
Чему равна площадь кольца ограниченного двумя окружностями, если:
толщина кольца t =
Теория
Площадь кольца через радиусы
Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?
Формула
Пример
К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:
S = 3.14 ⋅ (3² – 2²) = 3.14 ⋅ (9 – 4) = 3.14 ⋅ 5 = 15.7 см²
Ответ: S = 15.7 см²
Площадь кольца через диаметры
Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?
Формула
Пример
К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:
S = 3.14 / 4 ⋅ (4² – 2²) = 0.785 ⋅ (16 – 4) = 9.42 см²
Ответ: S = 9.42 см²
Площадь кольца через толщину
Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:
- внешний диаметр D
- внутренний диаметр d
- радиус внешней окружности R
- радиус внутренней окружности r
Формулы
Пример
Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:
S = 3.14/4 ⋅ (5² – (5 – 2 ⋅ 2)²) = 0.785 ⋅ (25 – 1) = 18.84 см²
Найти площадь кольца образованного двумя окружностями
Площадь кольца
Онлайн калькулятор
Площадь кольца по радиусам или диаметрам
Чему равна площадь кольца ограниченного двумя окружностями, если:
у внешней окружности
у внутренней окружности
Площадь кольца по толщине и любому другому параметру
Чему равна площадь кольца ограниченного двумя окружностями, если:
толщина кольца t =
Теория
Площадь кольца через радиусы
Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?
Формула
Пример
К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:
S = 3.14 ⋅ (3² — 2²) = 3.14 ⋅ (9 — 4) = 3.14 ⋅ 5 = 15.7 см²
Ответ: S = 15.7 см²
Площадь кольца через диаметры
Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?
Формула
Пример
К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:
S = 3.14 / 4 ⋅ (4² — 2²) = 0.785 ⋅ (16 — 4) = 9.42 см²
Ответ: S = 9.42 см²
Площадь кольца через толщину
Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:
- внешний диаметр D
- внутренний диаметр d
- радиус внешней окружности R
- радиус внутренней окружности r
Формулы
Пример
Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:
S = 3.14/4 ⋅ (5² — (5 — 2 ⋅ 2)²) = 0.785 ⋅ (25 — 1) = 18.84 см²
Задача: определить площадь кольца, если известны радиусы
Условие задачи:
Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.
Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см
Пояснение к рисунку:
O — общий центр окружностей
Найти площадь кольца: S
Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.
Формула площади внешнего круга.
Формула площади внутреннего круга.
После подстановки и преобразования, получаем следующее выражение для площади кольца.
Ответ:
Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14
Найдите площадь кольца, ограниченного двумя окружностями с общим центром и радиусами R1 и R2, R12
Ваш ответ
решение вопроса
Похожие вопросы
- Все категории
- экономические 43,277
- гуманитарные 33,618
- юридические 17,900
- школьный раздел 606,900
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Задача: определить площадь кольца, если известны радиусы
Условие задачи:
Две окружности, имеющие общий центр, образуют кольцо. Радиус внешней окружности равен 10 см, а внутренней 8 см. Найти площадь этого кольца.
Дано:
Радиус внешней окружности, R = 10 см
Радиус внутренней окружности, r = 8 см
Пояснение к рисунку:
O – общий центр окружностей
Найти площадь кольца: S
Площадь кольца можно выразить как разницу между площадями внешнего круга и внутреннего.
Формула площади внешнего круга.
Формула площади внутреннего круга.
После подстановки и преобразования, получаем следующее выражение для площади кольца.
Ответ:
Результат получился приблизительным, потому что число π нельзя выразить точно, оно имеет бесконечное количество знаков после запятой. В данном случаи, мы взяли π ≈ 3.14
[spoiler title=”источники:”]
http://b4.cooksy.ru/articles/nayti-ploschad-koltsa-obrazovannogo-dvumya-okruzhnostyami
http://www-formula.ru/zadacha/solve-area-annulus-know-radius
[/spoiler]
Кольцо это — плоская геометрическая фигура, ограниченная двумя концентрическими окружностями. Площадь кольца, определяется как разность площадей кругов внутреннего и внешнего радиуса. Площадь кольца также может быть вычислена путём умножения числа пи на квадрат половины длины самого большого отрезка, лежащего внутри кольца. Это можно доказать через теорему Пифагора.
.
Найти площадь кольца через внешний и внутренний радиусы
Внутренний радиус кольца r
Найти площадь кольца через внешний и внутренний диаметры
Площади кольца, через средний радиус и ширину кольца
Формула площади кольца через внешний и внутренний радиусы: S= π(R² — r²)
Формула площади кольца через внешний и внутренний диаметры: S= π/4(D² — d²)
Формула площади кольца через средний радиус и ширину: S= 2πrk
При помощи нашего калькулятора вы легко сможете узнать площадь кольца.
Для того что бы вычислить площадь кольца необходимо знать его внутренний и внешний радиус или внутренний и внешний диаметр. Если нам известны указанные величины, для нас не составит труда вычислить площадь кольца.
Площадь кольца рассчитывается по следующим формулам:
- Если нам известен радиус:
Формула для расчета площади кольца через радиус:
S=π(R2-r2) - Если нам известен диаметр:
Формула для расчета площади кольца через диаметр:
S=π/4(D2-d2)
Где S – площадь кольца, R – внешний радиус кольца, r – внутренний радиус кольца, D – внешний диаметр кольца, d – внутренний диаметр кольца, π – число Пи которое всегда примерно равно 3,14.