Подобные треугольники
3 октября 2022
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.
Подобные треугольники — ключевая тема геометрии 8 класса. Они будут преследовать нас до самого конца школы. И сегодня мы разберём всё, что нужно знать о них.
План такой:
- Основное определение
- Лемма о подобных треугольниках
- Свойства подобных треугольников
- Разбор задач
1. Основное определение
Определение. Треугольники называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.
Рассмотрим треугольники $ABC$ и $MNK$:
У них есть равные углы: $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. И пропорциональные стороны:
[frac{AB}{MN}=frac{BC}{NK}= frac{AC}{MK}= frac{color{red}{3}}{color{red}{2}}]
Следовательно, треугольники $ABC$ и $MNK$ подобны. Записывается это так:
[Delta ABCsim Delta MNK]
Число $k={color{red}{3}}/{color{red}{2}};$ называется коэффициентом подобия. К нему мы ещё вернёмся.
Пропорциональные стороны подобных треугольников (например, $AB$ и $MN$, либо $BC$ и $NK$) в некоторых учебниках называют сходственными. На практике этот термин применяется редко. Мы будем говорить просто «соответственные стороны».
Дальше идёт очень важное замечание.
1.1. Обозначение подобных треугольников
В геометрии один и тот же треугольник можно называть по-разному. Например, $Delta ABC$, $Delta BCA$ или $Delta CAB$ — это всё один и тот же треугольник. То же самое касается и углов.
Но в подобных треугольниках есть негласное правило:
При обозначении подобных треугольников порядок букв выбирают так, чтобы равные углы перечислялись в одной и той же последовательности.
Вернёмся к нашим треугольникам $ABC$ и $MNK$:
Поскольку $anglecolor{red}{A}=anglecolor{red}{M}$ и $anglecolor{blue}{B}=anglecolor{blue}{N}$, можно записать $Deltacolor{red}{A}color{blue}{B}Csim Deltacolor{red}{M}color{blue}{N}K$. Или $Delta Ccolor{red}{A}color{blue}{B}sim Delta Kcolor{red}{M}color{blue}{N}$. Но никак не $Deltacolor{red}{A}color{blue}{B}Csim Delta Kcolor{red}{M}color{blue}{N}$.
Да, это негласное правило. И если вы нарушите последовательность букв, это не ошибка. Никто не снизит вам за это баллы. А если снизит — добро пожаловать на апелляцию.
Правильная запись позволяет быстро и безошибочно выписывать пропорциональные стороны треугольников. Рассмотрим два подобных треугольника:
[Delta ABCsim Delta MNK]
Берём две первые буквы из каждого треугольника: ${AB}/{MN};$. Затем две последние буквы: ${BC}/{NK};$. Наконец, вычёркиваем «центральную» букву: ${AC}/{MK};$.
Приравниваем полученные три дроби:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]
Вот и всё! Даже рисунок не нужен! Этот приём настолько прост и эффективен, что его в обязательном порядке изучают на моих занятиях, курсах и вебинарах.
В будущем мы увидим, что подобные треугольники чаще всего ищут как раз для составления таких пропорций.
2. Лемма о подобных треугольниках
Подобные треугольники появляются всякий раз, когда прямая, параллельная стороне треугольника, пересекает его стороны.
Теорема 1. Прямая, пересекающая две стороны треугольника и параллельная третьей стороне, отсекает треугольник, подобный исходному.
Доказательство. Рассмотрим треугольник $ABC$. Пусть прямая $MNparallel AB$ отсекает треугольник $MNC$:
Докажем, что $Delta ABCsim Delta MNC$. Рассмотрим треугольники $ABC$ и $MNC$. У них есть общий угол $ACB$.
Углы $ABC$ и $MNC$ — соответственными при $MNparallel AB$ и секущей $BC$. Следовательно, они равны: $angle ABC=angle MNC$.
Аналогично равны углы $BAC$ и $NMC$. Следовательно, треугольники $ABC$ и $MNC$ имеют три соответственно равных угла.
Докажем теперь, что соответственные стороны пропорциональны. Т.е. докажем пропорцию
[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]
Рассмотрим угол $ACB$. Параллельные прямые $AB$ и $MN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:
[frac{AC}{MC}=frac{BC}{NC}]
Это равенство — второе в искомом:
[frac{AB}{MN}= color{red}{frac{BC}{NC}=frac{AC}{MC}}]
Осталось доказать первое равенство. Дополнительное построение: прямая $KNparallel AC$:
Поскольку $AMparallel KN$ (по построению) и $AKparallel MN$ (по условию), четырёхугольник $AKNM$ — параллелограмм. Поэтому $AK=MN$.
Рассмотрим угол $ABC$. Параллельные прямые $AC$ и $KN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:
[frac{AB}{AK}=frac{BC}{NC}]
Учитывая, что $AK=MN$, получаем
[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]
Итак, соответственные углы треугольников $ABC$ и $MNC$ равны, а их стороны пропорциональны. Следовательно, по определению подобных треугольников
[Delta ABCsim Delta MNC]
Что и требовалось доказать.
Эта лемма — не признак подобия. Это самостоятельная теорема, которая ускоряет решение многих задач.
Признаки подобия разобраны в отдельном уроке — см. «Признаки подобия треугольников».
Частный случай этой леммы — средняя линия. Она отсекает треугольник со сторонами в два раза меньше, чем у исходного:
Оформляется это так. Поскольку $AM=MC$ и $BN=NC$, то $MN$ — средняя линия треугольника $ABC$. Следовательно, прямые $AB$ и $MN$ параллельны, откуда
[Delta ABCsim Delta MNC]
3. Свойства подобных треугольников
Два важнейших свойства: связь периметров и связь площадей.
3.1. Периметры подобных треугольников
Теорема 2. Отношение периметров подобных треугольников равно коэффициенту подобия.
Доказательство. Рассмотрим подобные треугольники $ABC$ и $MNK$:
Запишем равенство из определения подобия. Поскольку $Delta ABCsimDelta MNK$, стороны этих треугольников пропорциональны:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]
Здесь число $color{red}{k}$ — коэффициент подобия. Полученное тройное равенство можно переписать так:
[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}; frac{AC}{MK}=color{red}{k}]
Или, что то же самое:
[begin{align}AB&=color{red}{k}cdot MN \ BC &=color{red}{k}cdot NK \ AC &=color{red}{k}cdot MK \ end{align}]
Периметр треугольника $MNK$:
[{{P}_{Delta MNK}}=MN+NK+MK]
Периметр треугольника $ABC$:
[begin{align}{{P}_{Delta ABC}} &=AB+BC+CD= \ &=color{red}{k}cdot MN+color{red}{k}cdot NK+color{red}{k}cdot MK= \ &=color{red}{k}cdot left( MN+NK+MK right)= \ &=color{red}{k}cdot {{P}_{Delta MNK}} end{align}]
Итого получаем равенство
[{{P}_{Delta ABC}}=color{red}{k}cdot {{P}_{Delta MNK}}]
Обычно именно в таком виде это равенство и применяют. Но можно записать его и как отношение:
[frac{{{P}_{Delta ABC}}}{{{P}_{Delta MNK}}}=color{red}{k}]
В любом случае, мы получили отношение, которое и требовалось доказать.
3.2. Площади подобных треугольников
Теорема 3. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Доказательство. Первые шаги очень похожи на доказательство предыдущей теоремы. Вновь рассмотрим подобные треугольники $ABC$ и $MNK$:
Поскольку $Delta ABCsimDelta MNK$, углы $ABC$ и $MNK$ равны. Следовательно, равны синусы этих углов:
[begin{align}angle ABC &=angle MNK=color{blue}{alpha} \ sin angle ABC &=sin angle MNK=sin color{blue}{alpha} end{align}]
Кроме того, стороны подобных треугольников пропорциональны:
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]
В частности, из этого равенства следует, что
[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}]
Или, что то же самое:
[begin{align}AB &= color{red}{k}cdot MN \ BC &= color{red}{k}cdot NK \ end{align}]
Площадь треугольника $MNK$:
[{{S}_{Delta MNK}}=frac{1}{2}cdot MNcdot NKcdot sin color{blue}{alpha} ]
Площадь треугольника $ABC$:
[begin{align}{{S}_{Delta ABC}} &=frac{1}{2}cdot ABcdot BCcdot sincolor{blue}{alpha} = \ &=frac{1}{2}cdotcolor{red}{k}cdot MNcdotcolor{red}{k}cdot NKcdot sincolor{blue}{alpha} = \ &={color{red}{k}^{2}}cdot frac{1}{2}cdot MNcdot NKcdot sin alpha = \ &={color{red}{k}^{2}}cdot {{S}_{Delta MNK}} end{align}]
Получаем равенство
[{{S}_{Delta ABC}}={color{red}{k}^{2}}cdot {{S}_{Delta MNK}}]
Перепишем в виде отношения:
[frac{{{S}_{Delta ABC}}}{{{S}_{Delta MNK}}}={color{red}{k}^{2}}]
Что и требовалось доказать.
Для доказательства теоремы мы использовали формулу площади треугольника:
[{{S}_{Delta }}=frac{1}{2}absin alpha ]
Тригонометрию проходят после подобия, поэтому мы опираемся на ещё не изученный материал.
Впрочем, ничто не мешает взять уже известную формулу:
[{{S}_{Delta }}=frac{1}{2}ah]
Здесь $a$ — сторона треугольника, $h$ — высота, проведённая к этой стороне. Дело в том, что высоты в подобных треугольниках тоже пропорциональны. И не только высоты. Назовём это Свойством 3.3.:)
3.3. Элементы подобных треугольников
Теорема 4. Отношение высот, биссектрис и медиан, проведённых к соответствующим сторонам подобных треугольников, равно коэффициенту подобия.
Проиллюстрируем это на высотах. Пусть треугольники $ABC$ и $MNK$ подобны:
В этом случае высоты $CDbot AB$ и $KLbot MN$ относятся как
[frac{CD}{KL}=frac{AB}{MN}= color{red}{k}]
Для доказательства этой теоремы нужно знать признаки подобия. Поэтому оставим его до следующего урока. А сейчас переходим к задачам.
4. Задачи на подобие
Здесь разобрано пять задач на подобие треугольников. Все они довольно простые. За сложными задачами добро пожаловать в задачник.:)
Задача 1. Готовые треугольники
Известно, что треугольники $ABC$ и $MNK$ подобны, причём $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. Кроме того, стороны $AB=6$, $BC=7$, $AC=10$ и $MN=9$. Найдите стороны $NK$ и $MK$.
Решение. Построим треугольники $ABC$ и $MNK$, отметим известные стороны:
Из условия $Delta ABCsim Delta MNK$ следует, что верно равенство
[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]
Подставим в это равенство всё, что нам известно:
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}=frac{color{red}{10}}{MK}]
Опустим последнюю дробь и получим пропорцию
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}]
Найдём сторону $NK$:
[NK=frac{color{red}{9}cdot color{red}{7}}{color{red}{6}}=10,5]
Аналогично, убирая среднюю дробь, получим пропорцию
[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{10}}{MK}]
Найдём сторону $MK$:
[NK=frac{color{red}{9}cdot color{red}{10}}{color{red}{6}}=15]
Ответ: $NK=10,5$, $MK=15$.
Задача 2. Прямая, параллельная стороне
Прямая, параллельная стороне $AC$ треугольника $ABC$, пересекает сторону $AB$ в точке $D$, а сторону $BC$ — в точке $E$. Найдите:
а) Отрезок $BD$, если $AB=16$, $AC=20$, $DE=15$.
б) Отрезок $AD$, если $AB=28$, $BC=63$, $BE=27$.
Решение. Для начала построим рисунок. Он будет общий для обоих пунктов.
Из условия следует, что прямая $DE$ пересекает стороны треугольника $ABC$:
Поскольку $DEparallel AC$, по лемме о подобных треугольниках прямая $DE$ отсекает от треугольника $ABC$ новый треугольник, подобный исходному:
[Delta ABCsim Delta DBE]
Из подобия треугольников $ABC$ и $DBE$ следует равенство
[frac{AB}{DB}=frac{BC}{BE}=frac{AC}{DE}]
Решаем пункт а). Подставляем в это равенство всё, что нам известно:
[frac{color{red}{16}}{DB}=frac{BC}{BE}=frac{color{red}{20}}{color{red}{15}}]
Вычёркиваем среднюю дробь и получаем пропорцию
[frac{color{red}{16}}{DB}=frac{color{red}{20}}{color{red}{15}}]
Отсюда легко найти $DB$ (или, что то же самое, $BD$):
[DB=frac{color{red}{16}cdotcolor{red}{15}}{color{red}{20}}=12]
Аналогично решаем пункт б). Подставляем в исходное равенство известные величины:
[frac{color{red}{28}}{DB}=frac{color{red}{63}}{color{red}{27}}=frac{AC}{DE}]
Первые две дроби образуют пропорцию, из которой вновь легко найти $DB$:
[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=12]
Осталось найти $AD$:
[begin{align}AD &=AB-BD= \ &=color{red}{28}-color{red}{12}=16 end{align}]
Ответ: а) $BD=12$; б) $AD=16$.
Важное замечание по работе с пропорциями. Ни в коем случае не нужно перемножать числа в числителе.
Напротив: нужно разложить их на множители и сократить!
Взгляните:
[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=frac{4cdotcolor{blue}{7}cdot 3cdotcolor{green}{9}}{color{blue}{7}cdotcolor{green}{9}}=12]
Так вы сэкономите время, избежите умножения столбиком и защитите себя от множества ошибок. Никогда не умножайте большие числа, если дальше их нужно будет сокращать.
Задача 3. Доказательство подобия
Точки $M$ и $K$ — середины сторон $CD$ и $AD$ квадрата $ABCD$ соответственно. Докажите, что треугольники $MDK$ и $BCD$ подобны.
Решение. Сделаем первоначальный рисунок по условию задачи:
Здесь нет прямых, параллельных сторонам треугольника, поэтому лемма о подобных треугольниках не поможет. Докажем подобие по определению.
Сначала разберёмся с углами. Поскольку $ABCD$ — квадрат, и $KD=MD$ — половина стороны квадрата, треугольники $MDK$ и $BCD$ — прямоугольные и равнобедренные.
Все острые углы треугольников $MDK$ и $BCD$ равны 45°. Можем записать это так:
[begin{align}angle BCD &=angle MDK={90}^circ \ angle CBD &=angle DMK={45}^circ \ angle CDB &=angle DKM={45}^circ \ end{align}]
Дополнительное построение: диагональ квадрата $color{red}{AC}$:
Рассмотрим треугольник $ACD$. Отрезок $KM$ — средняя линия, поэтому $KM={color{red}{AC}}/{2};$. С другой стороны, $AC=BD$ как диагонали квадрата. Поэтому верно равенство
[frac{KM}{BD}=frac{KM}{color{red}{AC}}=frac{1}{2}]
Но тогда выполняется следующее равенство:
[frac{MD}{BC}=frac{DK}{CD}=frac{MK}{BD}=frac{1}{2}]
А это вместе с равенством углов как раз и означает, что треугольники $MDK$ и $BCD$ подобны:
[Delta MDKsim Delta BCD]
Доказательство завершено.
Мы доказали подобие треугольников по определению. Если пользоваться признаками подобия, всё будет намного быстрее. Но пока мы не вправе пользоваться этими признаками.
Задача 4. Вписанный ромб
В треугольник $ABC$ вписан ромб $BDEK$ так, как показано на рисунке. Найдите сторону ромба, если $AB=10$, $BC=15$.
Решение. Пусть искомая сторона ромба равна $color{red}{x}$. Из условия задачи получим такой рисунок:
Зная, что $AB=10$ и $BC=15$, выразим $AK$ и $CD$:
[begin{align}AK &=10-color{red}{x} \ CD &=15-color{red}{x} \ end{align}]
Далее рассмотрим треугольник $ABC$. Поскольку $BDEK$ — ромб, то $KEparallel BC$. По лемме о подобных треугольниках имеем:
[Delta ABCsim Delta AKE]
В подобных треугольниках подобные стороны пропорциональны, поэтому
[frac{AB}{AK}=frac{BC}{KE}=frac{AC}{AE}]
Подставим в это равенство всё, что нам известно или выражено через $color{red}{x}$:
[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}=frac{AC}{AE}]
Последняя дробь оказалась бесполезной. Вычеркнем её и получим пропорцию:
[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}]
Применяем основное свойство пропорции и уравнение:
[begin{align}10cdotcolor{red}{x} &=15cdot left( 10- color{red}{x} right) \ 2cdotcolor{red}{x} &=3cdot left( 10- color{red}{x} right) \ &cdots\ color{red}{x} &=6 end{align}]
Это и есть искомая сторона ромба. Она равна $color{red}{x}=6$.
Ответ: $BD=6$.
Задача 5. Свойства биссектрисы
В треугольнике $ABC$ стороны $AB=8$, $BC=12$, угол $ABC={120}^circ $. Отрезок $BD$ — биссектриса. Найдите длину $BD$.
Решение. Из условия задачи можно сделать вот такой рисунок:
Поскольку $BD$ — биссектриса угла в треугольнике, точка $D$ делит сторону $AC$ на отрезки, пропорциональные сторонам $AB$ и $BC$. Это можно записать так:
[frac{AD}{CD}=frac{AB}{CB}=frac{color{red}{8}}{color{red}{12}}=frac{color{red}{2}}{color{red}{3}}]
Обозначим пропорциональные отрезки переменными. Пусть $AD=color{blue}{2x}$, $CD=color{blue}{3x}$.
Дополнительное построение: прямая $DMparallel AB$:
Рассмотрим угол $ACB$. Поскольку $DMparallel AB$, по теореме о пропорциональных отрезках получаем, что
[frac{BM}{CM}=frac{AD}{CD}=frac{color{red}{2}}{color{red}{3}}]
Вновь обозначим пропорциональные отрезки переменными. Пусть $BM=color{blue}{2y}$, $CM=color{blue}{3y}$. Но тогда
[BC=BM+MC=color{blue}{5y}=color{red}{12}]
Получаем, что $color{blue}{y}=color{red}{2,4}$. Отсюда легко найти длину $BM$:
[BM=color{blue}{2y}=2cdotcolor{red}{2,4}= color{red}{4,8}]
Далее заметим, что если угол $ABC$ равен 120°, то
[angle ABD=angle CBD={60}^circ ]
С другой стороны, прямые $AB$ и $MD$ параллельны по построению. Прямая $BD$ — секущая для этих параллельных прямых.
Следовательно, углы $ABD$ и $BDM$ — внутренние накрест лежащие, поэтому
[angle BDM=angle ABD={60}^circ ]
Рассмотрим треугольник $BDM$. В нём есть два угла по 60°. Следовательно, это равносторонний треугольник:
[BD=BM=color{red}{4,8}]
Мы нашли длину отрезка $BD$. Задача решена.
Ответ: $BD=4,8$.
Итак, с определением разобрались. В следующем уроке разберём признаки подобия.:)
Смотрите также:
- Как применяется теорема косинусов и подобие треугольников для решения широкого класса задач в планиметрии.
- Теорема менелая
- Комбинаторика в задаче B6: легкий тест
- Введение системы координат
- Четырехугольная пирамида: как найти координаты вершин
- Нестандартная задача B5 на площадь круга
Утверждение
Площади подобных треугольников относятся как квадраты их соответствующих сторон, то есть отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Дано:
Доказать:
Площадь треугольника ABC может быть найдена, например, по двум сторонам и углу между ними:
Аналогично,
Так как углы подобных треугольников равны, а стороны — пропорциональны, то ∠A=∠A1,
то есть
Теперь можем найти, как относятся площади подобных треугольников:
Так как
то
то есть
Что и требовалось доказать.
Поскольку отношение любых линейных размеров (высот, медиан, биссектрис, периметров) подобных треугольников равно коэффициенту подобия, площади подобных треугольников относятся как квадраты их соответствующих линейных размеров.
Подобные треугольники
Определение
Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.
Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.
Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.
Признаки подобия треугольников
I признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
II признак подобия треугольников
Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Свойства подобных треугольников
- Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
- Отношение периметров подобных треугольников равно коэффициенту подобия.
- Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
Примеры наиболее часто встречающихся подобных треугольников
1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.
2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –
3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.
Здесь вы найдете подборку задач по теме «Подобные треугольники» .
Отношение площадей подобных треугольников
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке мы введем понятие подобных треугольников и рассмотрим теорему об отношении их площадей. Затем будет рассмотрен ряд примеров на применение этой теоремы.
Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Измерение»
Определение подобных треугольников
Вы будете перенаправлены на Автор24
Пропорциональные отрезки
Для введения понятия подобия вначале нам необходимо вспомнить понятие пропорциональных отрезков. Вспомним также определение отношения двух отрезков.
Отношением двух отрезков называется отношение их длин.
Отрезки $AB$ и $CD$ называются пропорциональными отрезкам $A_1B_1$ и $C_1D_1$, то есть
Понятие пропорциональности отрезков имеет место и для большего числа отрезков. Пусть, к примеру, $AB=2$, $CD=4$, $A_1B_1=1$, $C_1D_1=2$, $A_2B_2=4$, $C_2D_2=8$, тогда
То есть отрезки $AB$, $A_1B_1$, $ A_2B_2$ пропорциональны отрезкам $CD$, $C_1D_1$, $C_2D_2$.
Подобные треугольники
Вспомним для начала, что вообще представляет себе понятие подобия.
Фигуры называются подобными, если они имеет одинаковую форму, но разные размеры.
Разберемся теперь с понятием подобных треугольников. Рассмотрим рисунок 1.
Рисунок 1. Два треугольника
Пусть у этих треугольников $angle A=angle A_1, angle B=angle B_1, angle C=angle C_1$. Введем следующее определение:
Стороны двух треугольников называются сходственными, если они лежат напротив равных углов этих треугольников.
Готовые работы на аналогичную тему
На рисунке 1, стороны $AB$ и $A_1B_1$, $BC$ и $B_1C_1$, $AC$ и $A_1C_1$ сходственные. Введем теперь определение подобных треугольников.
Два треугольника называются подобными, если углы все углы одного треугольника соответственно равны углам другого и треугольника, и все сходственные стороны этих треугольников пропорциональны, то есть
[angle A=angle A_1, angle B=angle B_1, angle C=angle C_1,] [frac=frac<_1>=frac]
На рисунке 1 изображены подобные треугольники.
Обозначение: $ABCsim A_1B_1C_1$
Для понятия подобия существует также понятие коэффициента подобия.
Число $k$, равное отношению сходственных сторон подобных фигур называется коэффициентом подобия этих фигур.
Площади подобных треугольников
Рассмотрим теперь теорему об отношении площадей подобных треугольников.
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, то есть
Доказательство.
Рассмотрим два подобных треугольника и обозначим их площади, соответственно $S$ и $S_1$ (рис. 2).
Для доказательства этой теоремы вспомним следующую теорему:
Если угол одного треугольника равен углу второго треугольника, то их площади относятся как произведения сторон, прилегающих к этому углу.
Так как треугольники $ABC$ и $A_1B_1C_1$ подобны, то, по определению,$angle A=angle A_1$. Тогда, по теореме 2, получим, что
Задачи, связанные с понятием подобия треугольника
Даны подобные треугольники $ABC$ и $A_1B_1C_1.$ Стороны первого треугольника $AB=2, BC=5, AC=6$. Коэффициент подобия данных треугольников $k=2$. Найти стороны второго треугольника.
Решение.
Данная задача имеет два возможных решения.
Тогда $A_1B_1=kAB, _1=kBC, A_1C_1=kAC$.
Следовательно, $A_1B_1=4, _1=10, A_1C_1=12$
Следовательно, $A_1B_1=1, _1=2,5, A_1C_1=3$.
Даны подобные треугольники $ABC$ и $A_1B_1C_1.$ Сторона первого треугольника $AB=2$, соответствующая сторона второго треугольника $A_1B_1=6$. Высота первого треугольника $CH=4$. Найти площадь второго треугольника.
Решение.
Так как треугольники $ABC$ и $A_1B_1C_1$ подобны, то $k=frac=frac<1><3>$.
Найдем площадь первого треугольника.
[S=frac<1><2>ABcdot CH=frac<1><2>cdot 2cdot 4=4]
По теореме 1, имеем:
Ответ: $36$.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 25 03 2021
[spoiler title=”источники:”]
http://interneturok.ru/lesson/geometry/8-klass/podobnye-treugolniki/otnoshenie-ploschadey-podobnyh-treugolnikov
http://spravochnick.ru/matematika/podobnye_treugolniki/opredelenie_podobnyh_treugolnikov/
[/spoiler]
Наталья Игоревна Восковская
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Пропорциональные отрезки
Для введения понятия подобия вначале нам необходимо вспомнить понятие пропорциональных отрезков. Вспомним также определение отношения двух отрезков.
Определение 1
Отношением двух отрезков называется отношение их длин.
Определение 2
Отрезки $AB$ и $CD$ называются пропорциональными отрезкам $A_1B_1$ и $C_1D_1$, то есть
[frac{AB}{CD}=frac{A_1B_1}{C_1D_1}]
Понятие пропорциональности отрезков имеет место и для большего числа отрезков. Пусть, к примеру, $AB=2$, $CD=4$, $A_1B_1=1$, $C_1D_1=2$, $A_2B_2=4$, $C_2D_2=8$, тогда
То есть отрезки $AB$, $A_1B_1$, $ A_2B_2$ пропорциональны отрезкам $CD$, $C_1D_1$, $C_2D_2$.
Подобные треугольники
Вспомним для начала, что вообще представляет себе понятие подобия.
Определение 3
Фигуры называются подобными, если они имеет одинаковую форму, но разные размеры.
Разберемся теперь с понятием подобных треугольников. Рассмотрим рисунок 1.
Рисунок 1. Два треугольника
Пусть у этих треугольников $angle A=angle A_1, angle B=angle B_1, angle C=angle C_1$. Введем следующее определение:
Определение 4
Стороны двух треугольников называются сходственными, если они лежат напротив равных углов этих треугольников.
«Определение подобных треугольников» 👇
На рисунке 1, стороны $AB$ и $A_1B_1$, $BC$ и $B_1C_1$, $AC$ и $A_1C_1$ сходственные. Введем теперь определение подобных треугольников.
Определение 5
Два треугольника называются подобными, если углы все углы одного треугольника соответственно равны углам другого и треугольника, и все сходственные стороны этих треугольников пропорциональны, то есть
[angle A=angle A_1, angle B=angle B_1, angle C=angle C_1,] [frac{AB}{A_1B_1}=frac{BC}{{B_1C}_1}=frac{AC}{A_1C_1}]
На рисунке 1 изображены подобные треугольники.
Обозначение: $ABCsim A_1B_1C_1$
Для понятия подобия существует также понятие коэффициента подобия.
Определение 6
Число $k$, равное отношению сходственных сторон подобных фигур называется коэффициентом подобия этих фигур.
Площади подобных треугольников
Рассмотрим теперь теорему об отношении площадей подобных треугольников.
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, то есть
[frac{S_{ABC}}{S_{A_1B_1C_1}}=k^2]
Доказательство.
Рассмотрим два подобных треугольника и обозначим их площади, соответственно $S$ и $S_1$ (рис. 2).
Рисунок 2.
Для доказательства этой теоремы вспомним следующую теорему:
Теорема 2
Если угол одного треугольника равен углу второго треугольника, то их площади относятся как произведения сторон, прилегающих к этому углу.
Так как треугольники $ABC$ и $A_1B_1C_1$ подобны, то, по определению,$angle A=angle A_1$. Тогда, по теореме 2, получим, что
Так как $frac{AB}{A_1B_1}=frac{AC}{A_1C_1}=k$, получим
Теорема доказана.
Задачи, связанные с понятием подобия треугольника
Пример 1
Даны подобные треугольники $ABC$ и $A_1B_1C_1.$ Стороны первого треугольника $AB=2, BC=5, AC=6$. Коэффициент подобия данных треугольников $k=2$. Найти стороны второго треугольника.
Решение.
Данная задача имеет два возможных решения.
-
Пусть $k=frac{A_1B_1}{AB}=frac{{B_1C}_1}{BC}=frac{A_1C_1}{AC}$.
Тогда $A_1B_1=kAB, {B_1C}_1=kBC, A_1C_1=kAC$.
Следовательно, $A_1B_1=4, {B_1C}_1=10, A_1C_1=12$
-
Пусть $k=frac{AB}{A_1B_1}=frac{BC}{{B_1C}_1}=frac{AC}{A_1C_1}$
Тогда $A_1B_1=frac{AB}{k}, {B_1C}_1=frac{BC}{k}, A_1C_1=frac{AC}{k}$.
Следовательно, $A_1B_1=1, {B_1C}_1=2,5, A_1C_1=3$.
Пример 2
Даны подобные треугольники $ABC$ и $A_1B_1C_1.$ Сторона первого треугольника $AB=2$, соответствующая сторона второго треугольника $A_1B_1=6$. Высота первого треугольника $CH=4$. Найти площадь второго треугольника.
Решение.
Так как треугольники $ABC$ и $A_1B_1C_1$ подобны, то $k=frac{AB}{A_1B_1}=frac{1}{3}$.
Найдем площадь первого треугольника.
[S=frac{1}{2}ABcdot CH=frac{1}{2}cdot 2cdot 4=4]
По теореме 1, имеем:
[frac{S_{ABC}}{S_{A_1B_1C_1}}=k^2] [frac{4}{S_{A_1B_1C_1}}=frac{1}{9}] [S_{A_1B_1C_1}=36]
Ответ: $36$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Подобные треугольники
- Отношение площадей подобных треугольников
Теорема
Доказательство
Дано: АВСА1В1С1, – коэффициент подобия, и – площади АВС и А1В1С1.
Доказать: .
Доказательство:
1. АВСА1В1С1, следовательно, А =А1, значит, (т.к. площади треугольников, имеющих по равному углу, относятся как произведения сторон, заключающих равные углы). При этом, из подобия треугольников АВС и А1В1С1 следует то, что , значит, и , тогда, .
Теорема доказана.
Советуем посмотреть:
Пропорциональные отрезки
Определение подобных треугольников
Первый признак подобия треугольников
Второй признак подобия треугольников
Третий признак подобия треугольников
Средняя линия треугольника
Пропорциональные отрезки в прямоугольном треугольнике
Практические приложения подобия треугольников
О подобии произвольных фигур
Синус, косинус и тангенс острого угла прямоугольного треугольника
Значение синуса, косинуса и тангенса для углов 30, 45 и 60
Подобные треугольники
Правило встречается в следующих упражнениях:
7 класс
Задание 543,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 544,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 545,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 546,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 622,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 627,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1077,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1143,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1209*,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1308,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник