Как найти площадь заштрихованной на рисунке фигуры

Будучи школьником, когда ещё не было этих ваших интернетов, а я готовился к поступлению, мне позарез нужны были хорошие задачники и учебники, где всё коротко и по делу. И мало кто мог посоветовать что-то стоящее. Если у вас та же проблема, то рекомендую Галицкого по алгебре, Гордина по геометрии.

А ещё есть замечательный автор — Эдуард Николаевич Балаян. Он создал ни одну хорошую книгу для школьников. В том числе и для подготовки к олимпиадам. Полезно порешать и тем, кто претендует на 100 баллов по ЕГЭ. Причем начинать заниматься можно уже с 7 класса.

Сегодня хочу показать одну из последних задач для 9 класса из его книги “Геометрия. Задачи на готовых чертежах для подготовки к ГИА и ЕГЭ” (для 7-9 классов). Нам нужно найти площадь заштрихованной фигуры. Все данные на рисунке.

Иллюстрация к задаче из книги "Геометрия. Задачи на готовых чертежах для подготовки к ГИА и ЕГЭ",  2013. Э.Н. Балаян
Иллюстрация к задаче из книги “Геометрия. Задачи на готовых чертежах для подготовки к ГИА и ЕГЭ”, 2013. Э.Н. Балаян

Всё, что у нас есть — равносторонний треугольник со стороной 15. Найти надо площадь заштрихованного трёхлистника.

Почти никто из девятиклассников эту задачу не решил за отведенное время. В школьных учебниках такие редко встречаются. А задача интересная и в приницпе несложная, надо только немного подумать, что-то достроить и все решится почти само. Сложных формул здесь нет.

Для тех, кто уже всё решил, вот ответ для сверки: S=75•(π-1,5√3)=112,5√3. Тех, кто не понимает, как получился этот ответ, приглашаю читать дальше.

Решение

Раз у нас равносторонний треугольник, понятно, что дуги окружностей одинаковые и наш трехлистник полностью симметричен относительно любой из высот треугольника. А ещё вспоминаем о том, что высоты в треугольнике пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины. Эта точка, к слову, является точкой пересечения всех трех дуг и по совместительству центром описанной возле треугольника окружности. Добавьте к этому формулу площади круга S=π•R² и получите всё, что нужно знать для решения этой задачи.

Пусть сторона правильного треугольника а=15. Тогда радиус окружности, описанной вокруг треугольника равен R=a/√3, а её площадь равна Sокр=π•a²/3. А площадь самого треугольника (эта формула дается в школе как самостоятельная, но её несложно вывести) равна S▲=(a²•√3)/4.

Найти площадь заштрихованной фигуры. Задача для 9 класса, которая не по зубам большинству школьников

Теперь самое время заметить, что круг состоит из треугольника и трех жёлтых фрагментов за его пределами. Sокр=S▲+Sж, откуда Sж=Sокр-S▲.

Найти площадь заштрихованной фигуры. Задача для 9 класса, которая не по зубам большинству школьников

Но если мы раскрасим три эти фрагмента в разные цвета и “загнем” внутрь треугольника, обнаружится, что их площадь в сумме () дает площадь треугольника (S▲) плюс площадь искомого трехлистника (S). Sж=S▲+S. Откуда искомая площадь S=Sж-S▲.

Найти площадь заштрихованной фигуры. Задача для 9 класса, которая не по зубам большинству школьников

Учитывая ранее выведенное равенство Sж=Sокр-S▲, получаем, что искомая площадь находится через площадь описанной окружности и площадь треугольника S=Sокр-2•S▲=π•a²/3 – (a²•√3)/2 = π•15²/3 – 15²√3/2 = 15²/6•(2π-3√3) = 37,5•(2π-3√3) = 70•(π-1,5√3) = 112,5√3.

Как вам задача? Если понравилась, то, где найти похожие, вы знаете. Можете не благодарить, поставьте лайк, подпишитесь на канал и велком на мои каналы в Ютубе, Инстаграме и ТикТоке.

Ещё интересно: Где искать репетитора ребенку и как развить у него логику и нестандартное мышление

Задача про яблоки, которая вынесла почти всех

Легендарная задача, которая сбила с толку половину моих одноклассников и до сих путает учеников и родителей

Площадь круга S=Pi*R^2. В примере 1 заштрихованная площадь сегмента окружности Sсг, его площадь равна площади сектора АОВ минус площадь равнобедренного треугольника ОАВ. Площадь сектора Sс=S*β/360, где β угол АОВ в градусах, площадь треугольника ОАВ Sт=R^2*Sin(β/2)*Cos(β/2), R=12. Sсг=144*3,14*β/360-144*Sin(β/2)*Cos(β/2). В этом примере не задан не угол β, не длина АВ,поэтому вычислить Sсг нельзя. В примере 2 радиус R=20, длина хорды MN=12,тогда угол β/2= arc Sin(MN/2R)=17,45°, β=34,9°. Sсг=400*3,14*34,9/360-400*0,3*0,95= 121,8 – 113,9=7,8. Остальные примеры решаются аналогично.

автор вопроса выбрал этот ответ лучшим

Знаете ответ?

Решение:

Площадь под графиком функции f(x) на отрезке [a; b] равна разности первообразных:

S = F(b) – F(a)

Нам необходимо найти площадь закрашенной фигуры на отрезке [-8; -6], то есть a = -8; b = -6. Значит S = F(-6) – F(-8).

Найдем F(-8):

F(-8) = (-8)3 + 21⋅(-8)2 +151⋅(-8) – 1

F(-8) = – 512 + 21⋅64 – 151⋅8 – 1

F(-8) = – 512 + 1344 – 1208 – 1

F(-8) = – 513 + 136

F(-8) = -377

Найдем F(-6):

F(-6) = (-6)3 + 21⋅(-6)2 +151⋅(-6) – 1

F(-6) = – 216 + 21⋅36 – 151⋅6 – 1

F(-6) = – 216 + 756 – 906 – 1

F(-6) = – 217 – 150

F(-6) = -367

Тогда площадь закрашенной фигуры равна:

S = F(-6) – F(-8) = -367 – (-377) = -367 + 377 = 10

Ответ: 10

Найди площадь заштрихованной фигуры:
Задание рисунок 1

reshalka.com

ГДЗ учебник по математике 3 класс Петерсон. Часть 2. Урок 3. Номер №5

Решение

1) 14 * 7 = 98

(

д

м

2

)

− общая площадь большого прямоугольника;

×

14

7

¯

98

2) 5 * 3 = 15

(

д

м

2

)

− площадь маленького прямоугольника;
3) 9815 = 83

(

д

м

2

)

− площадь заштрихованной фигуры.
Ответ: 83

д

м

2

Содержание:

1.      Модуль
1: Основные формулы площадей.

2.      Модуль
2: Методы нахождения площадей.

3.      Модуль
3: Задачи с решением.

4.      Модуль
4: Задачи для закрепления.

5.      Модуль
5: Задачи для самостоятельной работы и зачета.

Модуль
1. Теоретическая часть

1.1.Основные
определения и формулы для площадей фигур.

Площадь прямоугольника Прямоугольник.

Прямоугольником
называется четырехугольник, у которого все углы равны. Все 
углы в
прямоугольнике прямые, т.е. составляют 90°.Площадь прямоугольника равна
произведению его сторон .

Квадрат.

Площадь квадратаКвадратом
называется 
параллелограмм с
прямыми углами и равными сторонами. Квадрат есть частный вид прямоугольника, а
также частный вид ромба. См. также 
площадь ромба.
Площадь квадрата равна квадрату длины его стороны. Или половине квадрата
диагонали.

;     

Трапеция.

Площадь трапецииТрапецией называется
четырехугольник, у которого две стороны параллельны, а две другие не
параллельны. Площадь трапеции равна произведению полусуммы ее
оснований на высоту.

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0019.png Площадь трапеции равна произведению её средней
линии на высоту. 

http://math4school.ru/img/math4school_ru/ploschadifigur/f0022.png

Параллелограмм.

Площадь паралллелограммаПараллелограммом называется
четырехугольник, у которого противоположные стороны попарно
параллельны. Площадь параллелограмма равна произведению его
основания  на высоту.

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0011.pngПлощадь параллелограмма равна произведению двух соседних его
сторон на синус угла между ними.  

http://math4school.ru/img/math4school_ru/ploschadifigur/f0011.png

Правильный многоугольник.

Площадь правильного многоугольникаДля
того чтобы вычислить площадь правильного многоугольника его разбивают
на равные треугольники с общей вершиной в центре вписанной окружности. А
площадь правильного многоугольника равна произведению его полупериметра
на 
радиус вписанной окружности правильного
многоугольника
.

Выпуклый четырёхугольник.

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0014.png Площадь выпуклого четырёхугольника равна половине произведения
его диагоналей на синус угла между ними.
  

http://math4school.ru/img/math4school_ru/ploschadifigur/f0014.png

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0030.png Площадь четырёхугольника, вписанного в окружность, равна корню
квадратному из произведения разностей полупериметра этого четырёхугольника и
всех его сторон

http://math4school.ru/img/math4school_ru/ploschadifigur/f0023.png

Ромб.

Площадь ромбаРомбом называется параллелограмм с
равными сторонами. Квадрат есть частный вид ромба. У квадрата диагонали равны.
См. также 
площадь квадрата. Площадь
ромба равна половине произведения его диагоналей.

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0018.png

 Площадь ромба равна произведению
квадрата его стороны на синус одного из его углов.  

http://math4school.ru/img/math4school_ru/ploschadifigur/f0021.png

Сектор.

Сектор круга, окружностиСектор
круга, окружности — это часть 
круга, окружности ограниченная
дугой и двумя радиусами, проведенными к концам дуги. Площадь сектора
круга равна произведению половины 
длины дуги
сектора  на радиус круга.

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0016.png Площадь кругового сектора равна произведению площади единичного
сектора (сектор, соответствующий центральному углу с мерой равной единице) на
меру центрального угла, соответствующего данному сектору (
формулы для случаев градусной и радианной мер центральных
углов).

http://math4school.ru/img/math4school_ru/ploschadifigur/f0016.pnghttp://math4school.ru/img/math4school_ru/ploschadifigur/f0016a.png

Окружность.

Площадь кругаОкружность есть
геометрическое место точек плоскости, равноудаленных от одной ее точки. Равные
отрезки, соединяющие центр с точками окружности, называются радиусами. Круг
есть часть плоскости, лежащая внутри окружности. Площадь круга равна
произведению полуокружности на радиус.

Площадь сегмента круга, окружностиПлощадь
сегмента круга, окружности.

Сегмент круга, окружности — это
часть 
круга, окружности,
ограниченная дугой и стягивающей ее хордой.

Площадь сегмента круга, окружности
находится, как разность 
площади сектора и площади равнобедренного треугольника выраженную через угол.

Площадь кольца.

Формула площади кольца через радиусыПлощадь
кольца через радиусы находится как произведение числаπ на разность
квадратов внешнего и внутреннего радиусов кольца.

Формула площади кольца через диаметры

Площадь кольца через
диаметры находится как произведение одной четвертой числа π на
разность квадратов внешнего и внутреннего диаметров кольца.

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0024.png Площадь кругового кольца равна удвоенному произведению числа
“пи”, среднего радиуса кольца и его ширины.
 

http://math4school.ru/img/math4school_ru/ploschadifigur/f0028.png

Площадь сектора кольца.

Площадь сектора кольцаСектор
кольца — это часть круга, окружности ограниченная дугами разных радиусов и
двумя линиями радиусами, проведенными к концам дуги большего радиуса.

Площадь сектора кольца вычисляется
как разность площадей большего и меньшего 
секторов круга.

Площадь сектора кольца если угол в
градусах, вычисляется как произведение числа π на отношение угла
сектора к углу полной окружности 360° и на разность квадратов большего и
меньшего радиусов.

Площадь треугольника.

Площадь треугольникаТреугольник образуется
соединением отрезками трех точек, не лежащих на одной прямой. При этом точки
называются вершинами треугольника, а отрезки – его сторонами. Площадь
треугольника равна произведению половины основания треугольника на его
высоту.

Площадь треугольника по формуле Герона

Площадь треугольника по формуле
Герона равна корню из произведения разностей полупериметра треугольника
(p) и каждой из его сторон.

Площадь треугольника через две стороны и угол между нимиЕсли
известно две стороны треугольника и 
угол
между ними, то площадь данного треугольника вычисляется, как половина
произведения этих сторон умноженная на синус угла между ними.

Площадь прямоугольного треугольникаЕсли
один из углов прямой, то треугольник – прямоугольный. Площадь прямоугольного
треугольника равна половине произведения катетов треугольника.

Высота равнобедренного треугольника

Площадь равнобедренного треугольника
вычисляется по 
классической формуле площади
треугольника
 — произведение половины
основания треугольника на его высоту. Высоту мы подставим в эту формулу
из 
формулы высоты равнобедренного
треугольника
.

Высота равностороннего треугольника Площадь
равностороннего треугольника вычисляется по 
классической формуле площади
треугольника
 — произведение половины
основания треугольника на его высоту. Высоту мы подставим в эту формулу
из 
формулы высоты равностороннего
треугольника

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0025.pngПлощадь треугольника равна отношению произведения
квадрата его стороны на синусы прилежащих углов к удвоенному синусу
противолежащего угла.
 

http://math4school.ru/img/math4school_ru/ploschadifigur/f0017.png

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0026.pngПлощадь треугольника равна отношению произведения
квадрата его высоты на синус угла, из вершины которого проведена эта высота, к
удвоенному произведению синусов двух других углов.

http://math4school.ru/img/math4school_ru/ploschadifigur/f0018.png

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0032.png Площадь треугольника равна произведению квадрата
его полупериметра на тангенсы половин всех углов треугольника. 

http://math4school.ru/img/math4school_ru/ploschadifigur/f0031.png

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0029.png Площадь
треугольника равна отношению произведения всех его сторон к четырём радиусам,
описанной около него окружности. 

http://math4school.ru/img/math4school_ru/ploschadifigur/f0005.png

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0028.png Площадь треугольника равна удвоенному
произведению квадрата радиуса, описанной около него окружности, и синусов всех
его углов.

http://math4school.ru/img/math4school_ru/ploschadifigur/f0029.png

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0006.png Площадь треугольника (многоугольника) равна
произведению его полупериметра и радиуса окружности, вписанной в этот
треугольник (многоугольник). 

http://math4school.ru/img/math4school_ru/ploschadifigur/f0006.png

http://math4school.ru/img/math4school_ru/ploschadifigur/pf0031.png Площадь треугольника равна произведению квадрата
радиуса вписанной окружности на котангенсы половин всех углов треугольника.

http://math4school.ru/img/math4school_ru/ploschadifigur/f0030.png

Шар и сфера.

Площадь поверхности сферы Шаровой,
или сферической поверхностью (иногда просто сферой) называется геометрическое
место точек пространства, равноудаленных от одной точки – центра шара. Площадь
поверхности сферы равна учетверенной площади большого круга:

Куб.

Площадь поверхности кубаПрямоугольный параллелепипед,
все грани которого – квадраты, называется кубом. Все ребра куба равны,
а площадь поверхности куба равна сумме площадей шести его граней, т.е.
площади квадрата со
стороной H умноженной на шесть. Площадь поверхности куба равна.

Конус.

Площадь поверхности круглого конусаКруглый конус может
быть получен вращением 
прямоугольного треугольника вокруг
одного из его катетов, поэтому круглый конус называют также конусом вращения.

Боковая площадь поверхности круглого
конуса равна произведению половины окружности основания на образующую.

Цилиндр.

Площадь поверхности цилиндраЦилиндрической
поверхностью называется поверхность, образуемая прямой, сохраняющей одно и тоже
направление и пересекающей направляющую линию. 
Цилиндр —
круговой если в основании его лежит круг. Площадь боковой поверхности круглого
цилиндра равна произведению 
длины окружности основания
на высоту.

Прямоугольный параллелепипед.

Площадь поверхности параллелепипедаПараллелепипедом
называется призма, основание которой 
параллелограммПараллелепипед
имеет шесть граней, и все они — параллелограммы. Параллелепипед, четыре боковые
грани которого — прямоугольники, называется прямым. Прямой параллелепипед у
которого все шесть граней прямоугольники, называется
прямоугольным. Площадь поверхности прямоугольного
параллелепипеда равна удвоенной сумме площадей трех граней этого
параллелепипеда.

Усеченный конус.

Полная площадь поверхности усеченного конусаУсеченный
конус получится, если в конусе провести сечение, параллельное основанию.
Тело ограниченное этим сечением, основанием и боковой поверхностью конуса
называется усеченным конусом. Боковая площадь поверхности усеченного
конуса вычисляется по формуле.

Шаровой сегмент.

Площадь поверхности шарового сегментаЧасть
шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или
сферическим сегментом. Основанием шарового сегмента называется круг ABCD.
Высотой шарового сегмента называется отрезок NM, т.е. длина перпендикуляра,
восстановленного из центра N основания до пересечения с поверхностью
шара. Точка M называется вершиной шарового сегмента. Площадь
поверхности шарового сегмента равняется произведению его высоты на
окружность большого круга шара.

Площадь поверхности шарового слояШаровой
слой.

 Шаровой слой — это часть шара,
заключенная между двумя секущими параллельными плоскостями. Шаровой пояс или Шаровая
зона — это кривая поверхность шарового слоя. Круги ABC и DEF это основания
шарового пояса. Расстояние между основаниями это высота шарового слоя. Кривая
поверхность шарового слоя равна произведению его высоты на окружность
большого круга шара.

Шаровой сектор.

Площадь поверхности шарового сектораШаровой
сектор — это часть шара, ограниченная кривой поверхностью шарового
сегмента и конической поверхностью основанием которой служит основание
сегмента, а вершиной — центр шара. Поверхность шарового сектора складывается из
кривых поверхностей шарового сегмента и конуса. Зная радиус основания сегмента
и конуса r при помощи теоремы Пифагора и прямоугольного треугольника
получим высоты сегмента и конуса:

1.2.Справочные
таблицы «Площади плоских фигур, площади поверхности и объема тел вращения»
Формулы вычисления площади геометрических фигур Формулы вычисления объема и площади поверхностиhttp://ege-study.ru/wp-content/uploads/2013/02/%D0%A1%D1%82%D0%B5%D1%80%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F-%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8-911_2.gifhttp://all-ege.ru/wp-content/uploads/2015/07/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F-%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%B5-%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B-1.pngПланиметрия основные формулы 2Планиметрия основные формулы 4

Модуль
2.  Методы нахождения площади плоских фигур.

Рассмотрим несколько способов нахождения
площади плоских фигур:

·        
формула Пика,

·        
метод обводки.

1.1 
Формула Пика.

Формула, при помощи которой можно находить площадь фигуры
построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник,
многоугольник). Об этой формуле обычно рассказывается применительно к
нахождению площади треугольника. На примере треугольника мы её и рассмотрим.

Площадь искомой фигуры можно найти по формуле:

Формула Пика

М – количество узлов на границе треугольника (на сторонах и
вершинах)

N – количество узлов внутри  треугольника

*Под «узлами» имеется ввиду пересечение линий.

Найдём
площадь треугольника
:                     Отметим узлы:

http://matematikalegko.ru/wp-content/uploads/2013/09/9.jpg                       http://matematikalegko.ru/wp-content/uploads/2013/09/10.jpg

1 клетка = 1 см

M = 15 (обозначены красным)

N = 34 (обозначены синим)

http://matematikalegko.ru/wp-content/uploads/2013/09/101.gif

Пример 1. Найдём площадь параллелограмма:            
Отметим узлы:

http://matematikalegko.ru/wp-content/uploads/2013/09/11.jpg                http://matematikalegko.ru/wp-content/uploads/2013/09/12.jpg

M = 18 (обозначены красным)

N = 20 (обозначены синим)

http://matematikalegko.ru/wp-content/uploads/2013/09/102.gif

Пример 2. Найдём площадь трапеции:                      Отметим
узлы:

http://matematikalegko.ru/wp-content/uploads/2013/09/13.jpg                       http://matematikalegko.ru/wp-content/uploads/2013/09/14.jpg

M = 24 (обозначены красным)

N = 25 (обозначены синим)

http://matematikalegko.ru/wp-content/uploads/2013/09/103.gif

Пример 3. Найдём площадь многоугольника:                     
Отметим узлы:

http://matematikalegko.ru/wp-content/uploads/2013/09/15.jpg           http://matematikalegko.ru/wp-content/uploads/2013/09/16.jpg

M = 14 (обозначены красным)

N = 43 (обозначены синим)

http://matematikalegko.ru/wp-content/uploads/2013/09/105.gif

Понятно, что находить площадь трапеции, параллелограмма,
треугольника проще и быстрее по соответствующим формулам площадей этих фигур.
Но знайте, что можно  это делать и таким образом. 
А вот когда дан многоугольник, у которого пять и более углов эта
формула работает хорошо.

Теперь взгляните на следующие фигуры:

http://matematikalegko.ru/wp-content/uploads/2013/09/17.gif

Это типовые фигуры, в заданиях стоит вопрос о нахождении их
площади. При помощи формулы Пика такие задачи решаются за минуту. Например,
найдём площадь фигуры:

http://matematikalegko.ru/wp-content/uploads/2013/09/18.jpg                                http://matematikalegko.ru/wp-content/uploads/2013/09/19.jpg

M = 11 (обозначены красным)

N = 5 (обозначены синим)

http://matematikalegko.ru/wp-content/uploads/2013/09/106.gif

Ответ: 9,5

1.2 Метод обводки.

  1. Достроить
    искомую фигуру до прямоугольника.
  2. Найти
    площадь всех получившихся дополнительных фигур и площадь самого
    прямоугольника.
  3. Из
    площади прямоугольника вычесть сумму площадей всех лишних фигур.

Площадь фигур на клетчатой бумаге рис. 2Бывает,
что не так-то просто рассчитать, сколько клеток в нужном отрезке. Вот смотри, треугольник:

Вроде бы даже прямоугольный и S=12abS=2​​1ab, но чему
тут равно 
aa, и чему
равно 
bb? Как узнать?
Применим для полной ясности оба способа

I способ.

Найдем  по
теореме Пифагора из ΔADC а 
 по
теореме Пифагора из ΔBCE.
На  листе в клетку легко посчитать длину катетов.
Площадь фигур на клетчатой бумаге рис. 3

Итак:

Значит, 

Теперь 

 Значит, 

Подставляем в формулу:

Значит, 

II способ 

Нужно окружить нашу фигуру прямоугольником. Вот
так:

Площадь фигур на клетчатой бумаге рис. 4Получился
один (нужный) треугольник внутри и три ненужных треугольника снаружи. Но
площади этих ненужных треугольников легко считаются на листе в клетку. Посчитаем
их, а потом просто вычтем из целого прямоугольника.

Итак,                             

Почему же этот способ лучше? Потому что он работает
и для любых фигур. К примеру, нужно посчитать площадь такой фигуры:

Площадь фигур на клетчатой бумаге рис. 5Окружаем
ее прямоугольником и снова получаем одну нужную, но сложную площадь и много
ненужных, но простых.

А теперь чтобы найти
площадь 
 просто находим площадь прямоугольника и вычитаем из него оставшуюся
площадь фигур на клетчатой бумаге.

 

Значит, 

Вот и ответ: 

Модуль
3: Задачи с решением.

1.      Найдите площадь четырёхугольника, изображённого на клетчатой бумаге (вар. 86)Найдите площадь четырёхугольника, изображённого
на клетчатой бумаге 

с размером клетки 1 см * 1 см. Ответ
дайте в квадратных сантиметрах
.

Решение:
Разобьём четырёхугольник
диагональю РС на два треугольника.
Диагональ эта хороша тем, что идёт под
углом 45° к горизонту.
Проведём через точки А и В прямые, параллельные диагонали.


Найдите площадь четырёхугольника, изображённого на клетчатой бумаге (вар. 86)Если на верхней прямой взять любую точку Т, то площадь треугольника РТС окажется равной площади треугольника РАС, т.к. основание РС у них общее,
а высоты, проведённые к РС, равны. Такие же рассуждения
о точке К.


4(B5). Найдите площадь четырёхугольника, изображённого на клетчатой бумаге (вар. 86)Таким образом, если удачно разместить точки Т и К, как на рисунке
выше, то 

SACBP = SPAC + SPBC = SPTC + SPKC = STKP = 0,5·6·3 = 9


Ответ: 9

Возможны и другие варианты
расположения точек Т и
К
:

4(B5). Найдите площадь четырёхугольника, изображённого на клетчатой бумаге (вар. 86)4(B5). Найдите площадь четырёхугольника, изображённого на клетчатой бумаге (вар. 86)4(B5). Найдите площадь четырёхугольника, изображённого на клетчатой бумаге (вар. 86)

2.      Найти площадь причудливой фигуры (вар. 54)Найдите
площадь фигуры, изображенной на рисунке, считая стороны квадратных клеток
равными единице.

Решение:

Отрежем у данной фигуры все полукруглые части (выпуклости),
которые выходят за рамки квадрата 4·4, и аккуратно упакуем их
на свободные в квадрате места.
Площадь данной причудливой фигуры просто равна площади квадрата 4·4 =
16
.
Ответ: 16

Найти площадь причудливой фигуры (вар. 54)

Найти площадь причудливой фигуры (вар. 54)

3.     
Найдите площадь четырехугольника, изображенного на клетчатой
бумаге с размером клетки 1 см * 1 см. Ответ дайте в квадратных сантиметрах.

http://matematikalegko.ru/wp-content/uploads/2013/09/24.jpg

Решение:

Опишем около неё прямоугольник.

Из площади прямоугольника (в данном случае это квадрат) вычтем
площади полученных простых фигур:

http://matematikalegko.ru/wp-content/uploads/2013/09/25.jpghttp://matematikalegko.ru/wp-content/uploads/2013/09/107.gif

Ответ: 4,5

4.      Найдите
площадь треугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.

5.      Найдите
площадь треугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.

6.      На
клетчатой бумаге нарисован круг площадью 93. Найдите площадь заштрихованного
сектора.

7.      На
клетчатой бумаге нарисованы два круга. Площадь внутреннего круга равна 9.
Найдите площадь заштрихованной фигуры.

8.      Найдите
(в см2) площадь
S
фигуры, изображенной на клетчатой бумаге с разме
ром
клетки 1см×1см. В ответе запишите
S/π.

9.      Найдите
площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки
1см×1см. Ответ дайте в квадратных сантиметрах.

Модуль
4. Задачи для закрепления.

1.
Найдите площадь треугольника
ABC,
считая стороны квадратных клеток равными 1.

2.
Найдите площадь треугольника
ABC,
считая стороны квадратных клеток равными 1.

3.
Найдите площадь прямоугольника
ABCD,
считая стороны квадратных клеток равными 1.

4.
Найдите площадь ромба
ABCD,
считая стороны квадратных клеток равными 1.

5.
Найдите площадь трапеции
ABCD,
считая стороны квадратных клеток равными 1.

6.
Найдите площадь трапеции
ABCD,
считая стороны квадратных клеток равными 1.

7.
Найдите площадь четырехугольника
ABCD,
считая стороны квадратных клеток равными 1.

8.
Найдите площадь четырехугольника
ABCD,
считая стороны квадратных клеток равными 1.

9.
Найдите площадь
S сектора,
считая стороны квадратных клеток равными 1. В ответе укажите .

10.
Найдите площадь
S кольца,
считая стороны квадратных клеток равными 1. В ответе укажите .

11.  Найдите площадь треугольника, вершины которого имеют
координаты (1, 1), (4,4), (5, 1).

12.
Найдите площадь четырехугольника, вершины которого имеют координаты (1, 0), (0,
2), (4, 4), (5, 2).

13. Найдите площадь S круга,
изображенного на рисунке. В ответе укажите
. Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.

14. Найдите площадь S круга,
описанного около прямоугольника ABCD. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите 
 (в кв. см).

15. В ромб ABCD, площадь которого
равна 
, вписан круг. Найдите
площадь круга, если размер каждой клетки на чертеже равен 1см *1см.

16.Найдите площадь S круга,
описанного около прямоугольника ABCD. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите
 (в кв. см).

17. Найдите площадь круга, описанного
около прямоугольного треугольника АВС. Размер каждой клетки на чертеже
равен 1см *1см. В ответе укажите
 ( в кв. см).

18. Найдите площадь круга, описанного
около прямоугольного треугольника АВС. Размер каждой клетки на чертеже
равен 1см*1см. В ответе укажите
 (в кв. см).

19. Найдите площадь S круга,
описанного около четырехугольника, изображенного на рисунке. В ответе укажите
 . Размер каждой клетки 1
см × 1 см. Ответ дайте в сантиметрах.

20. Найдите площадь S круга,
описанного около четырехугольника, изображенного на рисунке. В ответе укажите 
.  Размер каждой клетки 1
см × 1 см. Ответ дайте в сантиметрах.

21. Найдите площадь S круга,
изображенного на рисунке. В ответе укажите
. Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.

22. Найдите площадь S сектора. В
ответе укажите
. Размер каждой клетки 1
см ×1 см. Ответ дайте в квадратных сантиметрах.

23. Найдите площадь S заштрихованной
части кругового сектора АОВ. Размер каждой клетки на чертеже равен 1см *1см.
В ответе укажите
 (в кв. см).

24.Найдите площадь круга, описанного около
прямоугольника АВСD. Размер каждой клетки на чертеже равен 1см 1см.
В ответе укажите
 (в кв. см).

25. Два одинаковых круга касаются друг
друга и сторон прямоугольника ABCD. Найдите площадь одного круга, если площадь
прямоугольника равна 
.

26. Две одинаковых окружности касаются
друг друга и сторон прямоугольника ABCD. Найдите периметр прямоугольника, если
длина каждой окружности равна 3,6

27. Диаметр полукруга совпадает со
стороной прямоугольника ABCD, а 3 другие стороны прямоугольника касаются
полукруга. Найдите длину полуокружности, если периметр прямоугольника равен
.

 

Модуль
5. Задачи для самостоятельных и зачетных работ.

1.       На клет­ча­той
бу­ма­ге с клет­ка­ми раз­ме­ром 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см
изоб­ра­же­на фи­гу­ра (см. ри­су­нок). Най­ди­те ее пло­щадь в квад­рат­ных
сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=5479

2.      Най­ди­те пло­щадь квад­ра­та ABCD, счи­тая сто­ро­ны квад­рат­ных
кле­ток рав­ны­ми 1.

http://mathb.reshuege.ru/get_file?id=5478

3.      Най­ди­те пло­щадь квад­ра­та, вер­ши­ны ко­то­ро­го
имеют ко­ор­ди­на­ты (4;3), (10;3), (10;9), (4;9).

http://mathb.reshuege.ru/get_file?id=210

4.      Во сколь­ко раз пло­щадь квад­ра­та, опи­сан­но­го
около окруж­но­сти, боль­ше пло­ща­ди квад­ра­та, впи­сан­но­го в эту окруж­ность?

http://mathb.reshuege.ru/get_file?id=261

5.      В пря­мо­уголь­ни­ке рас­сто­я­ние от точки пе­ре­се­че­ния
диа­го­на­лей до мень­шей сто­ро­ны на 1 боль­ше, чем рас­сто­я­ние от нее до
боль­шей сто­ро­ны. Пе­ри­метр пря­мо­уголь­ни­ка равен 28. Най­ди­те мень­шую
сто­ро­ну пря­мо­уголь­ни­ка.

http://mathb.reshuege.ru/get_file?id=1411

6.      На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1
см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см изоб­ра­жен па­рал­ле­ло­грамм (см. ри­су­нок).
Най­ди­те его пло­щадь в квад­рат­ных сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=5484

7.      Най­ди­те пло­щадь па­рал­ле­ло­грам­ма, изоб­ра­жен­но­го
на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см (см. рис.). Ответ дайте в квад­рат­ных
сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=5501

8.      Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го
на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см (см. рис.). Ответ дайте в квад­рат­ных
сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=18289

9.      Най­ди­те пе­ри­метр че­ты­рех­уголь­ни­ка http://reshuege.ru/formula/cb/cb08ca4a7bb5f9683c19133a84872ca7.png, если сто­ро­ны квад­рат­ных кле­ток равны http://reshuege.ru/formula/21/216554093aa007ab9947ed316b9c44a1.png.

http://mathb.reshuege.ru/get_file?id=5490

10.  На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1
см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см изоб­ра­же­на тра­пе­ция (см. ри­су­нок).
Най­ди­те ее пло­щадь в квад­рат­ных сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=195

11.  На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром 1
см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см изоб­ра­же­на тра­пе­ция (см. ри­су­нок).
Най­ди­те ее пло­щадь в квад­рат­ных сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=5482

12.  Най­ди­те пло­щадь тра­пе­ции, вер­ши­ны ко­то­рой
имеют ко­ор­ди­на­ты (1;1), (10;1), (8;6), (5;6).

http://mathb.reshuege.ru/get_file?id=219

13.  Най­ди­те вы­со­ту тра­пе­ции http://reshuege.ru/formula/cb/cb08ca4a7bb5f9683c19133a84872ca7.png, опу­щен­ную из вер­ши­ны http://reshuege.ru/formula/9d/9d5ed678fe57bcca610140957afab571.png, если сто­ро­ны квад­рат­ных кле­ток равны http://reshuege.ru/formula/d2/d21848cdd835abcb491be1f151e9b6c6.png.

http://mathb.reshuege.ru/get_file?id=1438

14.  На клет­ча­той бу­ма­ге с клет­ка­ми раз­ме­ром
1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см изоб­ра­же­на фи­гу­ра (см. ри­су­нок).
Най­ди­те ее пло­щадь в квад­рат­ных сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=5480

15. 
Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка,
вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты (8;0), (10;8), (2;10), (0;2).

http://mathb.reshuege.ru/get_file?id=213

16.    Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го
на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см (см. рис.). Ответ дайте в квад­рат­ных
сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=5506

17.  Най­ди­те
пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го на клет­ча­той бу­ма­ге с раз­ме­ром
клет­ки 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1
см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=5549

18.   Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го
на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=3339

19. 
Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го на
клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1
см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.

http://mathb.reshuege.ru/get_file?id=3345

20.   Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го
на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах

http://mathb.reshuege.ru/get_file?id=3350

21.   На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1×1 изоб­ражён
тре­уголь­ник. Най­ди­те ра­ди­ус опи­са­ной около него окруж­но­сти.

http://mathb.reshuege.ru/get_file?id=13174

22.   На клет­ча­той бу­ма­ге на­ри­со­ва­ны два круга. Пло­щадь
внут­рен­не­го круга равна 11. Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры.

http://mathb.reshuege.ru/get_file?id=19399

23. 
Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, вер­ши­ны
ко­то­ро­го имеют ко­ор­ди­на­ты (1;7), (8;2), (8;4), (1;9).

http://mathb.reshuege.ru/get_file?id=223

24.   Най­ди­те пло­щадь за­кра­шен­ной фи­гу­ры на ко­ор­ди­нат­ной
плос­ко­сти.

http://mathb.reshuege.ru/get_file?id=232

25.  Точки O(0;
0), A(10; 0), B(8; 6), C(2; 6) яв­ля­ют­ся вер­ши­на­ми
тра­пе­ции. Най­ди­те длину ее сред­ней линии DE.

http://mathb.reshuege.ru/get_file?id=399

26.  Най­ди­те (в см2) пло­щадь S за­кра­шен­ной фи­гу­ры,
изоб­ра­жен­ной на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см 
http://reshuege.ru/formula/60/60c13e05d3ec8c10b8564eae7023d9db.png 1 см (см. рис.). В от­ве­те за­пи­ши­те http://reshuege.ru/formula/40/401e995ec40423e36c24320d4dbe7955.png.

http://reshuege.ru/pic?id=p780

27.   Най­ди­те пло­щадь сек­то­ра круга ра­ди­у­са http://reshuege.ru/formula/13/13860f727d1dbbccdb22450163d21983.png, цен­траль­ный угол ко­то­ро­го равен 90°

http://reshuege.ru/get_file?id=255

28.  .  Най­ди­те
цен­траль­ный угол сек­то­ра круга ра­ди­у­са 
http://reshuege.ru/formula/28/2858434a182f866ae5b8c06629016353.png, пло­щадь ко­то­ро­го равна http://reshuege.ru/formula/c4/c4ca4238a0b923820dcc509a6f75849b.png. Ответ дайте в гра­ду­сах.

http://reshuege.ru/get_file?id=298

29.  На клет­ча­той бу­ма­ге на­ри­со­ва­но два круга. Пло­щадь
внут­рен­не­го круга равна 1. Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры.

315123_101.0.eps

30.  На клет­ча­той бу­ма­ге на­ри­со­ва­но два круга. Пло­щадь
внут­рен­не­го круга равна 9. Най­ди­те пло­щадь за­штри­хо­ван­ной фи­гу­ры.

315124_11.0.eps

Зачет

№1

Найдите площадь окрашенной фигуры,
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

№2

Найдите площадь окрашенной фигуры,
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

№3

В детском саду дети делали аппликации
родителям в подарок. Найдите площадь аппликации (окрашенной фигуры),
изображенной на чертеже. Размер каждой клетки равен 1см*1см.
Ответ дайте в квадратных сантиметрах.

1.

2.

3.

4.

5.

№4  В детском саду дети делали фото- рамки
родителям в подарок. Найдите площадь фото-рамки (окрашенной фигуры),
изображенной на чертеже. Размер каждой клетки равен 1см *1см.
Ответ дайте в квадратных сантиметрах.

6.

7.

8.

9.

10

Добавить комментарий