Перейти к содержимому Меню Закрыть
ГДЗ, ответы, контрольные работы, решение заданий, тесты на Знания.ком
Искать:
Знания.ком
Меню
Знания.ком
Искать:
Меню
ГДЗ, ответы, контрольные работы, решение заданий, тесты на Знания.ком
Искать:
Кнопка
- Главная страница
- Вопросы
- как найти площадь жену?
как найти площадь жену?
10 просмотров10.07.2022Геометрия
0
admin304.70K 10.07.2022 0 комментариев
как найти площадь жену?
Регистрация или Вход
Рубрики
- Биология
17385 вопросов
- Русский язык
9844 вопроса
- География
8823 вопроса
- Литература
6037 вопросов
- Геометрия
6030 вопросов
- Технология
6001 вопрос
- Программирование
5367 вопросов
- Обществознание
3011 вопросов
- Музыка
3006 вопросов
- Астрономия
3001 вопрос
Вопросы
Информатика. 9 класс. 3 ответа | 0 Голосов
характеристика автора романа Бедная Лиза 2 ответа | 0 Голосов
Пример со скрытым числом 1 ответ | 0 Голосов
Разработка на Python 1 ответ | 0 Голосов
Обществознание законы 1 ответ | 0 Голосов
Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.
Площади равных фигур равны. Их периметры тоже равны.
Площадь квадрата
Запомните!
Для вычисления площади квадрата нужно умножить его длину на саму себя.
S = a · a
Пример:
SEKFM = EK · EK
SEKFM = 3 · 3 = 9 см2
Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:
S = a2
Площадь прямоугольника
Запомните!
Для вычисления площади прямоугольника нужно умножить его длину на ширину.
S = a · b
Пример:
SABCD = AB · BC
SABCD = 3 · 7 = 21 см2
Запомните!
Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.
Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.
Площадь сложных фигур
Запомните!
Площадь всей фигуры равна сумме площадей её частей.
Задача: найти площадь огородного участка.
Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.
Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2
Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2
Ответ: S = 65 м2 — площадь огородного участка.
Свойство ниже может вам пригодиться при решении задач на площадь.
Запомните!
Диагональ прямоугольника делит прямоугольник на два равных треугольника.
Площадь любого из этих треугольников равна половине площади прямоугольника.
Рассмотрим прямоугольник:
АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
ABC и
ACD
Вначале найдём площадь прямоугольника по формуле.
SABCD = AB · BC
SABCD = 5 · 4 = 20 см2
S
ABC = SABCD : 2
S
ABC = 20 : 2 = 10 см2
S
ABC =
S
ACD = 10 см2
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
3 декабря 2015 в 22:54
Ирина Петренко
Профиль
Благодарили: 0
Сообщений: 1
Ирина Петренко
Профиль
Благодарили: 0
Сообщений: 1
как написать правильно площадь треугольника?
0
Спасибо
Ответить
9 декабря 2015 в 19:41
Ответ для Ирина Петренко
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
S(рисуешь мини треугольник) = ,,,,,
0
Спасибо
Ответить
Найти площадь прямоугольного треугольника
- Главная
- /
- Математика
- /
- Геометрия
- /
- Найти площадь прямоугольного треугольника
Чтобы посчитать площадь прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Чтобы вычислить площадь прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
- длины катетов a и b
- длину гипотенузы с и длину любого из катетов (a или b)
- длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
- длину гипотенузы с и один из острых углов (α или β)
Найти площадь прямоугольного треугольника по двум катетам
Катет a =
Катет b =
S =
0
Просто введите длины двух катетов, и получите ответ.
Теория
Чему равна площадь (S) прямоугольного треугольника если известны оба катета (a и b)?
Формула
S = ½ ⋅ a ⋅ b
Пример
К примеру найдём площадь прямоугольного треугольника у которого сторона a = 2 см, а сторона b = 4 см:
S = 2 ⋅ 4 / 2 = 8 / 2 = 4 см²
Найти площадь прямоугольного треугольника по катету и гипотенузе
Гипотенуза c =
Катет (a или b) =
S =
0
Введите длины гипотенузы и одного из катетов, и получите ответ.
Теория
Чему равна площадь (S) прямоугольного треугольника если известны его гипотенуза (c) и один из катетов (a или b)?
Формула
S = ½ ⋅ a ⋅ √c² – a² = ½ ⋅ b ⋅ √c² – b²
Пример
К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 2 см, а гипотенуза c = 5 см:
S = 2 ⋅ √5² – 2² / 2 = √25 – 4 ≈ 4.58 см²
Найти площадь прямоугольного треугольника по катету и прилежащему к нему острому углу
Катет (a или b) =
Прилежащий угол (β или α) = °
S =
0
Введите длину одного из катетов и прилежащий к нему острый угол в градусах.
То есть к катету a прилежащий ∠β, а к катету b – ∠α
Теория
Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и прилежащий к нему угол?
Формула
S = ½ ⋅ a² ⋅ tg(β) = ½ ⋅ b² ⋅ tg(α)
Пример
К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а прилежащий к нему ∠β = 45°:
S = ½ ⋅ 4² ⋅ tg(45) = ½ ⋅ 16 ⋅ 1 = 16 / 2 = 8 см²
Найти площадь прямоугольного треугольника по катету и противолежащему к нему острому углу
Катет (a или b) =
Противолежащий угол (α или β) = °
S =
0
Введите длину одного из катетов и противолежащий к нему острый угол в градусах.
То есть к катету a противолежащий ∠α, а к катету b – ∠β
Теория
Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и противолежащий к нему угол?
Формула
S = ½ ⋅ a² ⋅ tg(90 – α) = ½ ⋅ b² ⋅ tg(90 – β)
Пример
К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а противолежащий к нему ∠α = 45°:
S = 4² / 2⋅ tg(45) = 16 / 2 ⋅ 1 = 8 см²
Найти площадь прямоугольного треугольника зная длину гипотенузы и один из острых углов
Гипотенуза c =
Угол (α или β) = °
S =
0
Введите длину гипотенузы и один из острых угол в градусах.
Теория
Чему равна площадь (S) прямоугольного треугольника если известны длина гипотенузы (c) и один из острых углов?
Формула
S = ½ ⋅ c² ⋅ sin(α) ⋅ cos(α) = ½ ⋅ c² ⋅ sin(β) ⋅ cos(β)
Пример
К примеру посчитаем чему равна площадь прямоугольного треугольника у которого гипотенуза c = 8 см, а ∠α = 45°:
S = ½ ⋅ 8² ⋅ sin(45) ⋅ cos(45) ≈ ½ ⋅ 64 ⋅ 0.7071067812 ⋅ 0.7071067812 ≈ 16 см²
1. Формула площади равнобедренной трапеции через стороны и угол
b – верхнее основание
a – нижнее основание
c – равные боковые стороны
α – угол при нижнем основании
Формула площади равнобедренной трапеции через стороны, (S):
Формула площади равнобедренной трапеции через стороны и угол, (S):
2. Формула площади равнобокой трапеции через радиус вписанной окружности
R – радиус вписанной окружности
D – диаметр вписанной окружности
O – центр вписанной окружности
H – высота трапеции
α, β – углы трапеции
Формула площади равнобокой трапеции через радиус вписанной окружности, (S):
СПРАВЕДЛИВО, для вписанной окружности в равнобокую трапецию:
3. Формула площади равнобедренной трапеции через диагонали и угол между ними
d – диагональ трапеции
α, β – углы между диагоналями
Формула площади равнобедренной трапеции через диагонали и угол между ними, (S):
4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании
m – средняя линия трапеции
c – боковая сторона
α, β – углы при основании
Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):
5. Формула площади равнобедренной трапеции через основания и высоту
b – верхнее основание
a – нижнее основание
h – высота трапеции
Формула площади равнобедренной трапеции через основания и высоту, (S):
Загрузить PDF
Загрузить PDF
Существует множество различных геометрических фигур и множество причин для того, чтобы найти их площадь. Прочитайте эту статью, если вы делаете домашнее задание по геометрии или просто хотите выяснить количество краски для ремонта комнаты.
-
1
Измерьте длину и ширину фигуры. Другими словами, найдите значения двух смежных сторон фигуры.[1]
- В параллелограмме измерьте высоту и сторону, на которую опущена высота.
- В геометрической задаче значения сторон, как правило, даны. В повседневной жизни стороны необходимо замерить.
-
2
Перемножьте значения сторон, и вы найдете площадь. Например, чтобы найти площадь прямоугольника со сторонами 16 см и 42 см, нужно умножить 16 на 42.[2]
- В параллелограмме перемножьте высоту и сторону, на которую опущена высота.
- Для вычисления площади квадрата вы можете возвести одну из его сторон в квадрат. Для этого можно воспользоваться калькулятором: для этого сначала нажмите нужное число, а затем клавишу, отвечающую за возведение числа в квадрат (на многих калькуляторах это x2).
-
3
Запишите ответ с единицами измерения. Площадь измеряется в квадратных сантиметрах (метрах, километрах и так далее.). Таким образом, площадь прямоугольника равна 672 квадратных сантиметра.
- Нередко в задачах квадрат числа приводится так: x2.
Реклама
-
1
Найдите значения верхнего и нижнего оснований трапеции, а также ее высоты. Основания — две параллельные стороны трапеции; высота — отрезок, расположенный перпендикулярно к основаниям трапеции.[3]
- В геометрической задаче значения сторон, как правило, даны. В повседневной жизни стороны необходимо замерить.
-
2
Сложите верхнее и нижнее основания. Например, дана трапеция с основаниями 5 см и 7 см и высотой 6 см. Сумма оснований равна 12 см.
-
3
Умножьте результат на 1/2. В нашем примере вы получите 6.
-
4
Умножьте результат на высоту. В нашем примере вы получите 36 — это и есть площадь трапеции.[4]
-
5
Запишите ответ. Площадь трапеции равна 36 кв. см.
Реклама
-
1
Найдите радиус окружности. Это отрезок, соединяющий центр окружности и любую точку на окружности. Вы также можете найти радиус, разделив диаметр круга пополам.[5]
- В геометрической задаче значение радиуса или диаметра, как правило, даны. В повседневной жизни их необходимо замерить.
-
2
Возведите радиус в квадрат (умножьте самого на себя). Например, радиус равен 8 см. Тогда квадрат радиуса равен 64.
-
3
Умножьте результат на Пи. Пи (π) – это постоянная величина, равная 3,14159. В нашем примере получим 201,06176 — это и есть площадь круга.[6]
-
4
Запишите ответ. Площадь круга равна 201,06176 кв. см.
Реклама
-
1
Используйте данные задачи. Сектор — это часть круга, ограниченная двумя радиусами и дугой. Для вычисления его площади необходимо знать радиус окружности и центральный угол. Например: радиус равен 14 см, а угол 60°.[7]
- В геометрической задаче начальные данные, как правило, даны. В повседневной жизни их необходимо замерить.
-
2
Возведите радиус в квадрат (умножьте самого на себя). В нашем примере квадрат радиуса равен 196 (14×14).
-
3
Умножьте результат на Пи. Пи (π) — это постоянная величина, равная 3,14159. В нашем примере получим 615,75164.[8]
-
4
Разделите центральный угол на 360. В нашем примере центральный угол равен 60 градусам, в итоге получим 0,166.
-
5
Умножьте этот результат (деление угла на 360 ) на результат, полученный ранее (произведение пи на квадрат радиуса). В нашем примере вы получите 102,214 — это и есть площадь сектора.
-
6
Запишите ответ. Площадь сектора равна 102,214 кв. см.
Реклама
-
1
Используйте начальные данные. Для вычисления площади эллипса нужно знать большую полуось и малую полуось эллипса (то есть половины осей эллипса). Полуоси — это отрезки, проведённые из центра эллипса к его вершинам на большой и малой осях. Полуоси образуют прямой угол.[9]
- В геометрической задаче начальные данные, как правило, даны. В повседневной жизни их необходимо замерить.
-
2
Перемножьте полуоси. Например, оси эллипса равны 6 см и 4 см. Таким образом, полуоси эллипса равны 3 см и 2 см. Перемножьте полуоси и получите 6.
-
3
Умножьте результат на пи. Пи (π) — это постоянная величина, равная 3,14159. В нашем примере получим 18,84954 — это и есть площадь эллипса.
-
4
Запишите ответ. Площадь эллипса равна 18,84954 кв. см.
Реклама
-
1
Найдите значения высоты треугольника и стороны, на которую опущена эта высота. Например, высота треугольника равна 1 м, а сторона, на которую опущена высота, равна 3 м.[10]
- В геометрической задаче начальные данные, как правило, даны. В повседневной жизни их необходимо замерить.
-
2
Перемножьте высоту и сторону. В нашем примере вы получите 3.[11]
-
3
Умножьте результат на 1/2. В нашем примере вы получите 1,5 — это и есть площадь треугольника.
-
4
Запишите ответ. Площадь треугольника равна 1,5 кв. м.
Реклама
-
1
Для вычисления площади фигуры сложной формы разбейте ее на несколько стандартных фигур, вычислите площадь каждой из них и сложите результаты. В геометрической задаче это легко сделать, но в повседневной жизни вам, скорее всего, придется разбить фигуру сложной формы на множество стандартных фигур.[12]
- Начните с поиска прямых углов и параллельных линий. Они послужат в качестве основ для стандартных фигур.
-
2
Вычислить площадь каждой стандартной фигуры, применив вышеописанные методы.
-
3
Сложите найденные площади. Так вы вычислите площадь фигуры сложной формы.
-
4
Используйте альтернативные методы. Например, к фигуре сложной формы пририсуйте «воображаемую» фигуру, которая превратит фигуру сложной формы в стандартную фигуру. Найдите площадь такой стандартной фигуры, а затем вычтите из нее площадь «воображаемой» фигуры. Вы найдете площадь фигуры сложной формы.
Реклама
Советы
- Воспользуйтесь этим калькулятором площадей, если вам нужна помощь или вы хотите посмотреть на процесс вычислений.
- Если вам нужна помощь, попросите ее у человека, разбирающегося в геометрии.
Реклама
Предупреждения
- Убедитесь, что в вычислениях принимают участие величины, измеренные в одних единицах (например, только в сантиметрах, или только в метрах и так далее).
- Всегда проверяйте ответ!
Реклама
Об этой статье
Эту страницу просматривали 106 753 раза.