Как найти площядь прямоугольника

Выбирайте формулу, ориентируясь на известные величины.

1. Если известны две соседние стороны

Просто перемножьте две стороны прямоугольника.

  • S — искомая площадь прямоугольника;
  • a и b — соседние стороны.

2. Если известны любая сторона и диагональ

Найдите квадраты диагонали и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте длину известной стороны на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • d — любая диагональ (напомним: обе диагонали прямоугольника имеют одинаковую длину).

3. Если известны любая сторона и диаметр описанной окружности

Найдите квадраты диаметра и любой стороны прямоугольника.

От первого числа отнимите второе и найдите корень из результата.

Умножьте известную сторону на полученное число.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • D — диаметр описанной окружности.

4. Если известны любая сторона и радиус описанной окружности

Найдите квадрат радиуса и умножьте результат на 4.

Отнимите от полученного числа квадрат известной стороны.

Найдите корень из результата и умножьте на него длину известной стороны.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • R — радиус описанной окружности.

5. Если известны любая сторона и периметр

Умножьте периметр на длину известной стороны.

Найдите квадрат известной стороны и умножьте полученное число на 2.

От первого произведения отнимите второе и разделите результат на 2.

  • S — искомая площадь прямоугольника;
  • a — известная сторона;
  • P — периметр прямоугольника (равен сумме всех сторон).

6. Если известны диагональ и угол между диагоналями

Найдите квадрат диагонали.

Разделите полученное число на 2.

Умножьте результат на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • d — любая диагональ прямоугольника;
  • α — любой угол между диагоналями прямоугольника.

7. Если известны радиус описанной окружности и угол между диагоналями

Найдите квадрат радиуса окружности, описанной вокруг прямоугольника.

Умножьте полученное число на 2, а потом на синус угла между диагоналями.

  • S — искомая площадь прямоугольника;
  • R — радиус описанной окружности;
  • α — любой угол между диагоналями прямоугольника.

Читайте также 🎓❓📐

  • ТЕСТ:​ ​​Умеете ли вы считать в уме?
  • Как легко и быстро считать проценты в уме
  • Как найти площадь любого треугольника
  • ТЕСТ: Сколько центнеров в тонне? А сантиметров в дециметре? Проверьте, умеете ли вы переводить единицы измерения
  • Как освоить устный счёт школьникам и взрослым
  • Главная
  • Справочник
  • Как найти площадь прямоугольника

Поможем решить контрольную, написать реферат, курсовую и диплом от 800р
Узнать стоимость

Как найти площадь прямоугольника

Содержание:

  • Формула
  • Примеры вычисления площади прямоугольника

Формула

Чтобы найти площадь прямоугольника (рис. 1), надо его длину умножить на ширину, то есть

Прямоугольником называется четырехугольник, у которого все углы равны. Все углы в прямоугольнике прямые, то есть равны $90^{circ}$.

Примеры вычисления площади прямоугольника

Пример

Задание. Найти площадь прямоугольника, если одна его сторона равна 3 см, а вторая, смежная с ней – 5 см.

Решение. Искомая площадь прямоугольника равна произведению двух заданных сторон:

$S=3 cdot 5=15$ (см2)

Ответ. $S=15$ (см2)

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти площадь прямоугольника, если одна его сторона равна 3 м, а диагональ – 5 м.

Решение. Сделаем чертеж (рис. 2).

Рассмотрим прямоугольный треугольник $ABC$, из которого по
теореме Пифагора найдем длину катета $BC$ :

$B C=sqrt{A C^{2}-A B^{2}}=sqrt{5^{2}-3^{2}}=sqrt{25-9}=sqrt{16}=4$ (м)

Тогда искомая площадь равна

$S=3 cdot 4=12$ (м2)

Ответ. $S=12$ (м2)

Читать дальше: как найти площадь параллелограмма.

Статьи по теме

  • Как найти площадь
  • Как найти площадь треугольника
  • Как найти площадь ромба
  • Как найти площадь эллипса
  • Как найти площадь прямоугольного треугольника
  • Все темы раздела “Как найти площадь”

Разделы

  • Формулы сокращенного умножения
  • Формулы по физике
  • Логарифмы
  • Векторы
  • Матрицы
  • Комплексные числа
  • Пределы
  • Производные
  • Интегралы
  • СЛАУ
  • Числа
  • Дроби

Все еще сложно?

Не получается написать работу самому?

Доверь это кандидату наук!

Ищещь ответ на вопрос с которым нужна помощь?

80% ответов приходят в течение 10 минут

250 ответов по вашей теме сегодня

2 специалиста свободны онлайн

Ответы приходят уже через 10 минут

90% ответов положительные

Как найти площадь прямоугольника

Сегодня клоун Бим и дрессировщик Бом вместе с ребятами применяют на практике знания, как найти площадь для прямоугольника с разными сторонами.

Площадь фигуры — это размер куска плоскости внутри границ фигуры, измеренный в единицах измерения площади.

Единицы измерения площади — это площади квадратов, у которых стороны равны либо единице измерения длины, либо 10 м, либо 100 м: 1 кв.мм (квадрат со стороной 1 мм), 1 кв.см (квадрат со стороной 1 см), 1 кв.дм (квадрат со стороной 1 дм), 1 кв.м (квадрат со стороной 1 м), 1 кв.км (квадрат со стороной 1 км), 1 ар (квадрат со сторонами 10 м), 1 га (квадрат со стороной 100 м).

Определение. Площадь прямоугольника — это размер куска плоскости, лежащего внутри границ прямоугольника.

Правило. Для вычисления площади прямоугольника (с разными сторонами), если известны длины его сторон, достаточно перемножить длины двух прилежащих сторон. Результат записывается в единицах измерения площади. При необходимости результат укрупняют или раздробляют (см. Статью о переводе из одной единицы измерения площади в другую).

Содержание статьи:

Площадь — это?

Площадь любого куска плоскости (фигуры)— это размер этого куска плоскости (куска плоскости внутри границ фигуры), измеренный в единицах измерения площади.

Бим и Бом пришли на работу в цирк пораньше. Бим зашел к Бому в гримерку.

— Привет, Бим!

— Привет, Бом!

— У нашей Буфетчицы сегодня день рождения. Я купил очень вкусных конфет, только вот упаковка видишь какая длинная. У тебя есть какая-нибудь красивая коробка, куда мы можем сложить конфеты и подарить Буфетчице?

— У меня много разных красивых коробочек. Но как мы узнаем, какая из них подходит, чтобы вместились все конфеты и было красиво?

Бом и Бим задумались.

— Ура!!! Придумал, — нашелся Бим. — У каждой коробки есть плоское донышко. Давай вычислим площади донышек у каждой коробки, то есть измерим площадь донышек в единицах измерения площади — квадратных сантиметрах.

— Тогда найдем, какая коробка подходит больше всего, — подхватил Бом. — Начнем с упаковки, где лежат конфеты. У упаковки донышко в виде прямоугольника. Значит, достаточно измерить длины короткой и длинной стороны.

— А чем будем измерять? — задумался Бим.

— Сейчас поищу, — ответил Бом. — Вот у меня есть сантиметр, линейка и листочек в клеточку.

— Дай, пожалуйста, мне листочек в клеточку, — попросил Бом. — Я проверю, что донышко упаковки — прямоугольник.

Как найти площадь прямоугольника с разными сторонами. Площадь прямоугольника — это?

Определение. Площадь прямоугольника — это размер куска плоскости, лежащего внутри границ прямоугольника.

Правило. Для вычисления площади прямоугольника, если известны длины его сторон, достаточно перемножить длины двух прилежащих сторон. Результат записывается в единицах измерения площади. При необходимости результат можно укрупнить или раздробить (см. Статью о переводе из одной единицы измерения площади в другую).

Как найти площадь прямоугольника

Бим приложил листочек к углам донышка упаковки.

— Проверил: у упаковки четыре угла, и все они — прямые. Тогда донышко упаковки — прямоугольник.

Бом начал читать свои записи:

Площадь прямоугольника — это размер куска плоскости, лежащего внутри границ прямоугольника. Как найти площадь прямоугольника (с разными сторонами), если известны длины его сторон? Достаточно перемножить длины двух прилежащих сторон. Результат записывается в единицах измерения площади”.

— Теперь надо измерить длины двух сторон. Упаковка — длинная, тогда лучше взять сантиметр.

Бим измерил упаковку.

— Короткая сторона 8 см, длинная — 72 см. Вспоминаем, что для вычисления площади прямоугольника надо длину одной стороны умножить на длину прилежащей стороны. Умножаем:

72 х 8 =576 кв.см (см2).

Как найти площадь прямоугольника

— Сейчас принесу из подсобки коробки, которые у меня есть, — побежал Бом.

И — надо же! — по дороге Бом встретил Олю, Колю и Васю, которые пришли пораньше на представление.

— Ребята, как хорошо, что вы здесь! Идемте, поможете нам с Бимом подобрать Буфетчице на день рождения коробку.

Бом достал из подсобки коробки, и они все вместе вернулись к Биму.

— Ребята, мы с Бимом измерили площадь упаковки конфет, которые мы хотим переложить в более красивую коробку. Красиво сложим и подарим Буфетчице на день рождения, — объяснил Бим.

— Давайте вычислим площадь донышка каждой коробки, — предложил Вася. — В коробку, у которой площадь донышка равна площади донышка упаковки, мы переложим конфеты.

— Как здорово, что Бом принес все коробки, донышки у которых имеют вид прямоугольника! — обрадовался Коля. — Как найти площадь прямоугольника с разными сторонами? Надо измерить длины двух прилежащих сторон в одинаковых единицах измерения длины и их перемножить, — получим площадь прямоугольника в единицах измерения площади. Для коробок удобнее всего измерять длины сторон в сантиметрах, а площадь самих прямоугольников уже будет в квадратных сантиметрах. Оля, давай проверим, что донышки коробок — прямоугольники.

Коля и Оля взяли листочек в клеточку и с помощью него проверили, что у донышек все углы прямые.

Затем Коля, Вася и Оля вооружились листочком в клеточку, линейкой и сантиметровой лентой и измерили в сантиметрах длины прилежащих сторон донышек коробок.

Первым управился Коля:

— У меня большая сторона 36 сантиметров и короткая 16 сантиметров. Получаем площадь моей коробки

36 х 16 = 576 (кв.см).

Следующим был Вася:

— У меня длина коробки 30 см, а ширина — 20 см. Для вычисления площади коробки надо длину умножить на ширину прямоугольника. Получаем:

30 х 20 = 600 (кв.см)

Оля измеряла тщательнее всех, ведь у нее коробка была похожа на квадрат. Но надо было убедиться, точно ли у этой коробки равны обе стороны. Так и оказалось:

— У меня прилежащие стороны одинаковые по длине, обе равны 24 см. Перемножаем длины двух прилежащих сторон, получаем: 24 х 24 = 576 (кв.см).

— Тогда у нас выходят 3 коробки с одинаковыми площадями донышек — у упаковки, — подытожил Бом:

8 х 72 = 576 (кв.см), —

и еще у двух коробок

16 х 36 = 576 (кв.см),

24 х 24 = 576 (кв.см),

а также одна коробка  площадью больше, чем у упаковки

30 х 20 = 600 (кв.см).

— Какую же коробку выбрать? — озадаченно спросил Бим.

— Давай возьмем в виде квадрата, посмотрите какая здесь красивая крышка! — решил Бом.

Ребята выложили конфеты из упаковки в коробку.

— Ага, — посмотрел Бом. — получились три ряда. Какая же площадь донышка одного ряда? Длина ряда 24 см, ширина — 8 см. Значит площадь донышка одного ряда равна:

24 х 8 = 192 (кв.см).

Всего три одинаковых ряда

192 х 3 = 576 (кв.см).

Ура! Все совпадает!

Бим, все же, спросил:

— Сейчас мы измеряли площадь в квадратных сантиметрах. А какие еще есть единицы измерения площади?

Как найти площадь прямоугольника

Единицы измерения площади

Единицы измерения площади — это площадь квадратов, у которых стороны равны либо единице измерения длины, либо 10 м, либо 100 м: 1 кв.мм (квадрат со стороной 1 мм), 1 кв.см (квадрат со стороной 1 см), 1 кв.дм (квадрат со стороной 1 дм), 1 кв.м (квадрат со стороной 1 м), 1 кв.км (квадрат со стороной 1 км), 1 ар (квадрат со сторонами 10 м), 1 га (квадрат со стороной 100 м). (См. статью “Единицы измерения площади”)

В каких единицах измерения площади мы можем записать площадь донышка одного ряда? — продолжил вопрос Бим.

Оля ответила сразу:

— Если мы будем укрупнять, то в дециметрах и сантиметрах.

576 кв.см = 5 кв.дм 76 кв.см

— А если мы будем раздроблять — в миллиметрах, — добавил Коля. —

576 кв.см =576 х 100 (кв.мм).

А еще единицы измерения площади 1 кв.м (квадрат со стороною 1 м), 1 кв.км (квадрат со стороной 1 км), 1 ар (квадрат со сторонами 10 м), 1 га (квадрат со стороной 100 м).

— Теперь я подпишу открытку. У меня красивый артистический почерк, — вызвался Бом.

— Хорошо, Бом. А мы с ребятами составим вопросы и ответы на них, — согласился Бим.

Первый вопрос: Что называется площадью? — начал Вася.

Второй вопрос: Дайте определение прямоугольника. — продолжил Коля. —

И третий вопрос: Что такое площадь прямоугольника?

Четвертый вопрос: Как найти площадь прямоугольника (с разными сторонами)? — закончила Оля.

И еще один, пятый, вопрос: Какие вы знаете единицы измерения площади? — добавил Бим.

Теперь я запишу ответы для проверки, — продолжил клоун:

1.      Площадь — это размер куска плоскости внутри фигуры.

2.      Прямоугольник — это фигура с 4-мя прямыми углами и с замкнутой границей из четырех отрезков.

3.      Площадь прямоугольника — это площадь куска плоскости внутри границ прямоугольника.

4.      Как найти площадь прямоугольника? Для нахождения площади прямоугольника перемножаются длины двух прилежащих сторон. Результат записывается в единицах измерения площади.

5.      Единицы измерения площади — это площади квадратов, у которых стороны равны либо единице измерения длины, либо 10 м, либо 100 м: 1 кв.мм (квадрат со стороной 1 мм), 1 кв.см (квадрат со стороной 1 см), 1 кв.дм (квадрат со стороной 1 дм), 1 кв.м (квадрат со стороной 1 м), 1 кв.км (квадрат со стороной 1 км), 1 ар (квадрат со сторонами 10 м), 1 га (квадрат со стороной 100 м).

Итог подвел Бом:

— Мы сегодня узнали :

  • что такое площадь
  • что такое площадь прямоугольника
  • как найти площадь прямоугольника
  • единицы измерения площади.

Всем спасибо за помощь.

Заключение

Итак, теперь мы знаем ответ на вопрос: Как найти площадь прямоугольника с разными сторонами. А вам приходилось дарить конфеты в коробочках? Как видим, можно, в случае чего, упаковать подарок более изящно, а заодно — и математику повторить.

Идея необычной подачи материала принадлежит замечательному преподавателю математики Стуловой Лилии Валериевне.

Ждём Ваши оценки и комментарии!)))

Как рассчитать площадь прямоугольника

На данной странице калькулятор поможет рассчитать площадь прямоугольника онлайн. Для расчета задайте длину сторон или длины диагоналей и угол между ними.

Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).

Через стороны


Площадь прямоугольника через стороны


Формула для нахождения площади прямоугольника через стороны:

a, b – стороны прямоугольника.


Через диагонали и угол между ними


Площадь прямоугольника через диагонали и угол между ними


Формула для нахождения площади прямоугольника через диагонали и угол между ними:

d – диагональ; α – угол между диагоналями.

Математика, 3 класс

Урок №22. Площадь прямоугольника

Перечень вопросов, рассматриваемых в теме:

  1. Как вычислить площадь прямоугольника?
  2. В каких единицах измеряется площадь?
  3. Какими способами можно сравнить геометрические фигуры?

Глоссарий по теме:

Площадь – внутренняя часть любой плоской геометрической фигуры.

Квадрат – это прямоугольник, у которого все стороны равны.

Прямоугольник – это четырёхугольник, у которого все углы прямые.

Квадратный сантиметр – квадрат со стороной 1 сантиметр.

Основная и дополнительная литература по теме урока:

1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017. – с. 60-61.

2. Рудницкая В. Н. Тесты по математике:3 класс. М.: Издательство «Экзамен», 2016 с. 38-43.

3. Волкова Е. В. ВПР. Математика 3 класс Практикум по выполнению типовых заданий. ФГОС .М.: Издательство «Экзамен», 2018, с. 36-53.

Теоретический материал для самостоятельного изучения

Упоминание о первых геометрических фигурах встречается еще у древних египтян и древних шумеров. Учёными-археологами (они ищут разные исторические древности) был найден папирусный свиток (бумага древних египтян, изготавливаемая из растения папирус) с геометрическими задачами, в которых упоминались геометрические фигуры. И каждая из них называлась каким-то определенным словом. Одним определенным словом называлась фигура прямоугольник независимо от того какие стороны были у этого прямоугольника. А если у прямоугольника все стороны были одинаковые, то такой прямоугольник имел специальное название – квадрат.  Таким образом, значит, что уже в те далекие времена люди имели представление о геометрии и знали изучаемые этой наукой фигуры. Название «геометрическая фигура» придумали древние греки. И названия всем геометрическим фигурам дали тоже древнегреческие учёные.

Найдём площадь геометрической фигуры.

Чтобы найти площадь фигуры, надо узнать сколько раз в фигуре поместится квадрат со стороной 1 см. Площадь этой геометрической фигуры составляет 18 квадратов. Для удобства подсчёта количество квадратов можно воспользоваться знаниями таблицы умножения. По 6 взять 3 раза получится 18 квадратов.

Найдём площадь прямоугольника со сторонами 6 см и 3 см.

Для этого достаточно умножить длину на ширину. 6 ∙ 3 = 18 см2

Таким образом, формулируем вывод: чтобы найти площадь прямоугольника, надо длину умножить на ширину.

S = a ∙ b

S – площадь

a – длина

b – ширина

Задания тренировочного модуля:

1. Заполните пропуски в таблице.

а

5

6

3

b

8

9

S

15

56

24

Правильный ответ:

а

5

7

6

3

b

3

8

9

8

S

15

56

54

24

2. Длина прямоугольника 8см, ширина 4 см. Чему равна площадь прямоугольника? Выделите правильный ответ.

12 см; 32 см; 24 см2; 32 см2; 24; 12 см2.

Правильный ответ: 32см2.

Добавить комментарий