Как найти плотность через вес тела

Так как чего-то не могу пересылать латинницу, то буду в формулах всё писать русскими буквами.
————————————–

ДАНО:

М1 – масса в воздухе; М2 – масса в воде.

НАЙТИ:

РО – искомая плотность тела.

————————————————

РЕШЕНИЕ:

Формула плотности:

РО = М1/В

где “В” – это объём тела, но он нам неизвестен

Откуда же взять это “В”? Обратимся к силе, котороя облегчает вес тела в воде – СИЛА АРХИМЕДА.

Имеются 2 формулы, по которым она вычисляется .Первая из них:

Фа = Ф1 – Ф2,

где Ф1 = М1*Г; Ф2 = М2*Г;

Теперь вторая формула силы Архимеда:

Фа = РОв * В * Г,

где РОв – плотность воды, Г – гравитационная постоянная (9,8 Н/м) ;

А теперь важный шаг – соеденям две предыдущие формулы в одну:

Ф1 – Ф2 = РОв * В * Г

Упрощаем:

Ф1 – Ф2 = РОв * В * Г;

М1*Г – М2*Г = РОв * В *Г;

М1 – М2 = РОв * В;

Уже близок ответ. Из последней формулы, которую мы получили, вычисляем объём “В”…

В = (М1 – М2) / РОв ;

… И подставляем в самую первую формулу, получая КОНЕЧНЫЙ ОТВЕТ:

РО = (М1*РОв) / (М1 – М2)

Онлайн-калькулятор плотности, который поможет вам определить соотношение между плотностью, массой и весом объекта с помощью формулы плотности. В этом калькуляторе есть небольшая, но очень важная опция, где вы можете легко определить плотность объекта по категории и названию материала. Если вы хотите получить краткие сведения о том, как рассчитать плотность по формуле, продолжайте читать!

Кроме того, вы можете попробовать наш онлайн-калькулятор импульса, который поможет вам найти импульс движущегося объекта, а также определить массу объекта.

Читать дальше!

Что такое формула плотности?

Расчеты не слишком сложные, а очень простые. Просто введите значения в следующее уравнение плотности, чтобы легко вычислить любую из требуемых переменных:

р = м / В

Где,

V – объем & m – масса объекта.

Если вы хотите найти объем с помощью плотности и массы, калькулятор плотности использует формулу:

V = м / п

Чтобы найти массу с плотностью и объемом, рассмотрите следующую формулу:

т = р * V

Плотность можно определить как массу на единицу объема объекта. Со значениями введите единицы измерения, и этот калькулятор выполнит преобразование единиц измерения.

Как найти плотность объекта по массе и объему (шаг за шагом):

Рассчитать плотность с помощью этого расчет плотности очень просто. Вы можете найти любое из трех значений, введя два значения в формулу. Вот пример для каждого расчета:

Проведите по!

Пример:

Объект весил около 150 г и объем 90 см3. Найти плотность объекта?

Решение:

Формула:

р = м / В

Вот,

m = 150 г

V = 90 см3

Так,

р = 150/90

p = 1,66 г · см-3

как определить плотность объем по и массе:

Вы можете легко определить объем объекта, изменив уравнение плотности. Давайте посмотрим на пример:

Пример:

Какой у тела объем, если его масса 500 г, а плотность 4 см-3?

Решение:

Формула:

V = м / п

Вот,

м = 500г

р = 4 см-3

Так,

V = 500/4

V = 125 см3

Как найти массу объекта с учетом плотности и объема:

Расчет массы по объему и плотности становится простым. Просто следуйте следующему примеру:

Пример:

Объем объекта 200 см3, а плотность 9 см-3, какова масса объекта?

Решение:

Формула:

т = р * V

Вот,

V = 200 см3

р = 9 см-3

Так,

т = (9) * (200)

м = 1800г

Какая плотность воды?

Плотность воды между 0 ° C и 4 ° C обычно составляет 100 кг / м3, но она меняется в зависимости от температуры. При повышении температуры объем материала увеличивается. Согласно формуле, объем и плотность обратно пропорциональны друг другу, в конечном итоге плотность материала уменьшается. Плотность воды при различных температурах приведена в следующей таблице:

Стол

Ниже приведена таблица единиц, в которой плотность обычно выражается плотностями некоторых материалов.

Столы

Как пользоваться калькулятором плотности:

Следуйте данным инструкциям по расчету с помощью этого онлайн-инструмента. С помощью этого калькулятора вы можете производить расчеты в простом и продвинутом режимах. Давайте взглянем!

Входы:

  • Прежде всего, выберите во вкладке то, что вам нужно найти.
  • Затем введите значения во все обозначенные поля в соответствии с выбранной опцией.
  • Наконец, нажмите кнопку “Рассчитать”.

Выходы:

Как только вы заполните все поля, калькулятор покажет:

  • Плотность объекта
  • Масса объекта
  • Объем объекта
  • Корень кубический из объема

Заметка:

Есть дополнительное поле, где вы можете ввести категорию материала и название материала, этот калькулятор найдет плотность выбранного материала. Если вы не знаете значение объема, используйте предварительный вариант этого калькулятора для расчета объема, в противном случае используйте простой режим.

Заключение:

Плотности широко используются для идентификации чистых веществ и определения состава различных видов смесей. В реальной жизни это полезно, когда выясняется, что что-то будет плавать в воде, и важно при расчете объема и массы вещества. Когда дело доходит до расчетов, запишите онлайн-калькулятор плотности, который поможет вам в кратчайшие сроки найти взаимосвязь между массой, объемом и плотностью вещества.

Others Languages:Density Calculator, Yoğunluk Hesaplama, Kalkulator Gęstości, Kalkulator Kepadatan, Dichte Rechner, 密度 計算, 밀도 계산, Výpočet Hustoty, Cálculo De Densidade, Calcul Densité, Calculadora De Densidad, Calcolo Densità, حساب الكثافة, Tiheys Laskuri, Massefylde Beregning, Tetthets Kalkulator.

Плотность
{displaystyle rho ={frac {M}{V}}}
Размерность L−3 M
Единицы измерения
СИ кг/м³
СГС г/см³
Примечания
скалярная величина

Пло́тность — скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму или как производная массы по объёму:

{displaystyle rho ={frac {M}{V}},qquad rho ={frac {dm}{dV}}}.

Данные выражения не эквивалентны, и выбор зависит от того, какая именно плотность рассматривается. Различаются:

Для точечной массы плотность является бесконечной. Математически её можно определить или как меру, или как производную Радона — Никодима по отношению к некоторой опорной мере.

Для обозначения плотности обычно используется греческая буква rho (ро) (происхождение обозначения подлежит уточнению), иногда используются латинские буквы D и d (от лат. densitas «плотность»). Исходя из определения плотности, её размерность представляет собой кг/м³ в СИ и г/см³ в системе СГС.

Понятие «плотность» в физике может иметь более широкую трактовку. Существуют поверхностная плотность (отношение массы к площади) и линейная плотность (отношение массы к длине), применяемые соответственно к плоским (двумерным) и вытянутым (одномерным) объектам. Кроме того, говорят не только о плотности массы, но и о плотности других величин, например энергии, электрического заряда. В таких случаях к термину «плотность» добавляются конкретизирующие слова, скажем «линейная плотность заряда». «По умолчанию» под плотностью понимается вышеуказанная (трёхмерная, кг/м³) плотность массы.

Формула нахождения плотности[править | править код]

Плотность (плотность однородного тела или средняя плотность неоднородного) находится по формуле:

{displaystyle rho ={frac {M}{V}},}

где M — масса тела, V — его объём;
формула является просто математической записью определения термина «плотность», данного выше.

При вычислении плотности газов при стандартных условиях эта формула может быть записана и в виде:

{displaystyle rho ={frac {M_{mol}}{V_{mol}}},}

где {displaystyle M_{mol}} — молярная масса газа, {displaystyle V_{mol}} — молярный объём (при стандартных условиях приближённо равен 22,4 л/моль).

Плотность тела в точке записывается как

rho ={frac  {dm}{dV}},

тогда масса неоднородного тела (тела с плотностью, зависящей от координат) рассчитывается как

{displaystyle M=int rho (mathbf {r} )d^{3}mathbf {r} =int rho (mathbf {r} )dV=int dm.}

Случай сыпучих и пористых тел[править | править код]

В случае сыпучих и пористых тел различают

  • истинную плотность, определяемую без учёта пустот;
  • насыпную плотность, рассчитываемую как отношение массы вещества ко всему занимаемому им объёму.

Истинную плотность из насыпной (кажущейся) получают с помощью величины коэффициента пористости — доли объёма пустот в занимаемом объёме.

Зависимость плотности от температуры[править | править код]

Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность в определённом диапазоне температур ведёт себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого значения.

При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Вода, кремний, висмут и некоторые другие вещества являются исключениями из данного правила, так как их плотность при затвердевании уменьшается.

Диапазон плотностей в природе[править | править код]

Для различных природных объектов плотность меняется в очень широком диапазоне.

  • Самую низкую плотность имеет межгалактическая среда (2·10−31—5·10−31 кг/м³, без учёта тёмной материи)[2].
  • Плотность межзвёздной среды приблизительно равна 10−23—10−21 кг/м³.
  • Средняя плотность красных гигантов в пределах их фотосфер много меньше, чем у Солнца — из-за того, что их радиус в сотни раз больше при сравнимой массе.
  • Плотность газообразного водорода (самого лёгкого газа) при стандартных условиях равна 0,0899 кг/м³.
  • Плотность сухого воздуха при стандартных условиях составляет 1,293 кг/м³.
  • Один из самых тяжёлых газов, гексафторид вольфрама, примерно в 10 раз тяжелее воздуха (12,9 кг/м³ при +20 °C)
  • Жидкий водород при атмосферном давлении и температуре −253 °C имеет плотность 70 кг/м³.
  • Плотность жидкого гелия при атмосферном давлении равна 130 кг/м³.
  • Усреднённая плотность тела человека от 940—990 кг/м³ при полном вдохе, до 1010—1070 кг/м³ при полном выдохе.
  • Плотность пресной воды при 4 °C 1000 кг/м³.
  • Средняя плотность Солнца в пределах фотосферы около 1410 кг/м³, примерно в 1,4 раза выше плотности воды.
  • Гранит имеет плотность 2600 кг/м³.
  • Средняя плотность Земли равна 5520 кг/м³.
  • Плотность железа равна 7874 кг/м³.
  • Плотность металлического урана 19100 кг/м³.
  • Плотность золота 19320 кг/м³.
  • Плотность нептуния — самого плотного актиноида — 20200 кг/м³.
  • Самые плотные вещества при стандартных условиях — металлы платиновой группы шестого периода (осмий, иридий, платина), а также рений. Имеют плотность 21000—22700 кг/м³.
  • Плотность атомных ядер приблизительно 2·1017 кг/м³.
  • Теоретически верхняя граница плотности по современным[когда?] физическим представлениям — это планковская плотность 5,1⋅1096 кг/м³.

Плотности астрономических объектов[править | править код]

Средняя плотность небесных тел Солнечной
системы (в г/см³)[3][4][5]

  • Средние плотности небесных тел Солнечной системы см. на врезке.
  • Межпланетная среда в Солнечной системе достаточно неоднородна и может меняться во времени, её плотность в окрестностях Земли ~10−21÷10−20 кг/м³.
  • Плотность межзвёздной среды ~10−23÷10−21 кг/м³.
  • Плотность межгалактической среды 2×10−34÷5×10−34 кг/м³.
  • Средняя плотность красных гигантов на много порядков меньше чем у Солнца из-за того, что их радиус в сотни раз больше.
  • Плотность белых карликов 108÷1012 кг/м³
  • Плотность нейтронных звёзд имеет порядок 1017÷1018 кг/м³.
  • Средняя (по объёму под горизонтом событий) плотность чёрной дыры зависит от её массы и выражается формулой:
rho ={frac {3,c^{6}}{32pi M^{2}G^{3}}}.
Средняя плотность падает обратно пропорционально квадрату массы чёрной дыры (ρ~M−2). Так, если чёрная дыра с массой порядка солнечной обладает плотностью около 1019 кг/м³, превышающей ядерную плотность (2×1017 кг/м³), то сверхмассивная чёрная дыра с массой в 109 солнечных масс (существование таких чёрных дыр предполагается в квазарах) обладает средней плотностью около 20 кг/м³, что существенно меньше плотности воды (1000 кг/м³).

Плотности некоторых газов[править | править код]

Плотность газов, кг/м³ при НУ.

Азот 1,250 Кислород 1,429
Аммиак 0,771 Криптон 3,743
Аргон 1,784 Ксенон 5,851
Водород 0,090 Метан 0,717
Водяной пар (100 °C) 0,598 Неон 0,900
Воздух 1,293 Радон 9,81
Гексафторид вольфрама 12,9 Углекислый газ 1,977
Гелий 0,178 Хлор 3,164
Дициан 2,38 Этилен 1,260

Для вычисления плотности произвольного идеального газа, находящегося в произвольных условиях, можно использовать формулу, выводящуюся из уравнения состояния идеального газа:[6]

{displaystyle rho ={frac {pM_{mol}}{RT}}},

где:

Плотности некоторых жидкостей[править | править код]

Плотность жидкостей, кг/м³

Бензин 710 Молоко 1040
Вода (4 °C) 1000 Ртуть (0 °C) 13600
Керосин 820 Диэтиловый эфир 714
Глицерин 1260 Этанол 789
Морская вода 1030 Скипидар 860
Масло оливковое 920 Ацетон 792
Масло моторное 910 Серная кислота 1835
Нефть 550—1050 Жидкий водород (−253 °C) 70

Плотность некоторых пород древесины[править | править код]

Плотность древесины, г/см³

Бальса 0,15 Пихта сибирская 0,39
Секвойя вечнозелёная 0,41 Ель 0,45
Ива 0,46 Ольха 0,49
Осина 0,51 Сосна 0,52
Липа 0,53 Конский каштан 0,56
Каштан съедобный 0,59 Кипарис 0,60
Черёмуха 0,61 Лещина 0,63
Грецкий орех 0,64 Берёза 0,65
Вишня 0,66 Вяз гладкий 0,66
Лиственница 0,66 Клён полевой 0,67
Тиковое дерево 0,67 Бук 0,68
Груша 0,69 Дуб 0,69
Свитения (Махагони) 0,70 Платан 0,70
Жостер (крушина) 0,71 Тис 0,75
Ясень 0,75 Слива 0,80
Сирень 0,80 Боярышник 0,80
Пекан (кария) 0,83 Сандаловое дерево 0,90
Самшит 0,96 Эбеновое дерево 1,08
Квебрахо 1,21 Бакаут 1,28
Пробка 0,20

Плотность некоторых металлов[править | править код]

Значения плотности металлов могут изменяться в весьма широких пределах: от наименьшего значения у лития, который легче воды, до наибольшего значения у осмия, который тяжелее золота и платины.

Плотность металлов, кг/м³

Осмий 22610[7] Родий 12410[8] Хром 7190[9]
Иридий 22560[10] Палладий 12020[11] Германий 5320[12]
Плутоний 19840[13] Свинец 11350[14] Алюминий 2700[15]
Платина 19590[16] Серебро 10500[17] Бериллий 1850[18]
Золото 19300[14] Никель 8910[19] Рубидий 1530[20]
Уран 19050[21] Кобальт 8860[22] Натрий 970[23]
Тантал 16650[24] Медь 8940[25] Цезий 1840[26]
Ртуть 13530[27] Железо 7870[28] Калий 860[29]
Рутений 12450[30] Марганец 7440[31] Литий 530[32]

Измерение плотности[править | править код]

Для измерений плотности используются:

  • Пикнометр — прибор для измерения истинной плотности
  • Различные виды ареометров — измерители плотности жидкостей.
  • Бурик Качинского и бур Зайдельмана — приборы для измерения плотности почвы.
  • Вибрационный плотномер — прибор для измерения плотности жидкости и газа под давлением.
  • Метод гидростатического взвешивания.

Остеоденситометрия — процедура измерения плотности костной ткани человека.

См. также[править | править код]

Видеоурок: плотность вещества

  • Список химических элементов с указанием их плотности
  • Удельный вес
  • Удельная плотность
  • Относительная плотность
  • Объёмная плотность
  • Конденсация
  • Консистенция (лат. consistere — состоять) — состояние вещества, степень мягкости или плотности (твёрдости) чего-либо — полутвердых-полумягких веществ (масел, мыла, красок, строительных растворов и т. д.); наприм., глицерин имеет сиропообразную консистенцию.
  • Консистометр — прибор для измерения в условных физических единицах консистенции различных коллоидных и желеобразных веществ, а также суспензий и грубодисперсных сред, к примеру, паст, линиментов, гелей, кремов, мазей.
  • Концентрация частиц
  • Концентрация растворов
  • Плотность заряда
  • Уравнение неразрывности

Примечания[править | править код]

  1. Подразумевается также, что область стягивается к точке, то есть, не только её объём стремится к нулю (что могло бы быть не только при стягивании области к точке, но, например, к отрезку), но также стремится к нулю и её диаметр (максимальный линейный размер).
  2. Агекян Т. А. . Расширение Вселенной. Модель Вселенной // Звёзды, галактики, Метагалактика. 3-е изд. / Под ред. А. Б. Васильева. — М.: Наука, 1982. — 416 с. — С. 249.
  3. Planetary Fact Sheet Архивировано 14 марта 2016 года. (англ.)
  4. Sun Fact Sheet Архивная копия от 15 июля 2010 на Wayback Machine (англ.)
  5. Stern, S. A., et al. The Pluto system: Initial results from its exploration by New Horizons (англ.) // Science : journal. — 2015. — Vol. 350, no. 6258. — P. 249—352. — doi:10.1126/science.aad1815.
  6. МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА. Учебно-методическое пособие к лабораторным работам № 1-51, 1-61, 1-71, 1-72. Санкт-Петербургский Государственный Технологический Университет Растительных Полимеров (2014). Дата обращения: 4 января 2019. Архивировано 23 ноября 2018 года.
  7. Krebs, 2006, p. 158.
  8. Krebs, 2006, p. 136.
  9. Krebs, 2006, p. 96.
  10. Krebs, 2006, p. 160.
  11. Krebs, 2006, p. 138.
  12. Krebs, 2006, p. 198.
  13. Krebs, 2006, p. 319.
  14. 1 2 Krebs, 2006, p. 165.
  15. Krebs, 2006, p. 179.
  16. Krebs, 2006, p. 163.
  17. Krebs, 2006, p. 141.
  18. Krebs, 2006, p. 67.
  19. Krebs, 2006, p. 108.
  20. Krebs, 2006, p. 57.
  21. Krebs, 2006, p. 313.
  22. Krebs, 2006, p. 105.
  23. Krebs, 2006, p. 50.
  24. Krebs, 2006, p. 151.
  25. Krebs, 2006, p. 111.
  26. Krebs, 2006, p. 60.
  27. Krebs, 2006, p. 168.
  28. Krebs, 2006, p. 101.
  29. Krebs, 2006, p. 54.
  30. Krebs, 2006, p. 134.
  31. Krebs, 2006, p. 98.
  32. Krebs, 2006, p. 47.

Литература[править | править код]

  • Плотность — статья из Большой советской энциклопедии.  — М.: «Советская Энциклопедия», 1975. — Т. 20. — С. 49.
  • Плотность — статья из Физической энциклопедии. Т. 3, С. 637.
  • Krebs R. E. . The History and Use of Our Earth’s Chemical Elements: A Reference Guide. 2nd edition. — Westport: Greenwood Publishing Group, 2006. — xxv + 422 p. — ISBN 0-313-33438-2.

Ссылки[править | править код]

  • Онлайн интерактивная таблица плотности веществ Архивная копия от 29 апреля 2011 на Wayback Machine (рус.)
  • Подробная таблица значений плотности распространенных жидкостей Архивная копия от 5 октября 2016 на Wayback Machine (рус.)
  • Урок по теме “Плотность вещества” Архивная копия от 30 января 2022 на Wayback Machine

Любое физическое тело имеет некоторую массу. Определить массу тела можно с помощью весов — путем взвешивания. А также и более сложным способом — при взаимодействии двух тел, зная их скорости, и массу одного из них. Согласитесь, что первый способ — более легкий и практичный.

Тела имеют разные характеристики: разные размеры и формы, разные материалы, разные состояния и структуру (жидкие, твердые и газообразные), разные массы.

Сегодня мы познакомимся с такой характеристикой как плотность. Она покажет и объяснит нам, как может различаться масса тел одинаковой формы и размера.

Связь массы, объема и вещества, из которого состоит тело

Рассмотрим опыт, представленный на рисунке 1.

Рисунок 1. Взвешивание двух одинаковых тел, состоящих из разных веществ

Возьмем два одинаковых цилиндра: они одинаковой формы и объема, но изготовлены из разных материалов.

Один сделан из алюминия, а другой из свинца. Поместим их на разные чаши весов.

В итоге, мы увидим, что масса цилиндра из алюминия будет почти в 4 раза меньше массы цилиндра из свинца.

Тела, имеющие равные объемы, но состоящие из разных веществ, имеют разные массы.

На рисунке изображены 2 тела массой $100 space г$: лед, железо и золото.

Рисунок 2. Тела одинаковой массы, но состоящие из разных веществ

Здесь представлены тела одинаковой массы, но взгляните на их объем. Объем льда будет почти в 8,5 раз больше объема куска железа той же массы. А объем золота будет почти в 3 раза меньше объема железа.

Тела с равными массами, но состоящие из разных веществ, имеют разные объемы.

Определение плотности вещества

Вышерассмотренные свойства веществ, из которых состоят тела, объясняется тем, что разные вещества имеют разную плотность.

Рассмотрим два тела объемом $1 space м^3$ каждое. Если они будут состоять из разных веществ, то их массы тоже будут разными.

Итак, алюминий такого объема будет иметь массу 2700 кг, а свинец такого же объема ( $1 space м^3$) будет имеет массу 11 300 кг.

На рисунке 3 приведены другие примеры тел равного объема, но состоящих из разных веществ.

Тела равного объема, состоящие из разных веществ.
Рисунок 3. Тела равного объема, состоящие из разных веществ

Плотность показывает, чему равна масса вещества, взятого в объеме  $1 space м^3$ (или  $1 space см^3$). Чтобы найти плотность вещества, нужно массу тела разделить на его объем.

По какой формуле можно рассчитать плотность вещества? Дадим определение.

Плотность  — это физическая величина, которая равна отношению массы тела к его объему:
$плотность = frac{масса}{объем}$
или
$rho = frac{m}{V}$,
где $rho$ (“ро”) — плотность вещества, $m$ — масса тела, $V$ — объем тела.

Единицы измерения плотности

Какова единица плотности в СИ?
В СИ плотность вещества измеряется в килограммах на кубический метр ($1 frac{кг}{м^3}$).

Какие еще единицы плотности вам известны?
Часто используется другая единица измерения — граммы на кубический сантиметр ($1 frac{г}{см^3}$) (рисунок 4).

Плотности различных веществ

Рисунок 4. Плотности различных веществ в $frac{г}{см^3}$

Иногда нам потребуется переводить плотность веществ, выраженную в $frac{кг}{м^3}$ в $ frac{г}{см^3}$.

Давайте выразим плотность мрамора ($2700 frac{кг}{м^3}$) в $frac{г}{см^3}$:

$$rho = 2700 cdot frac{1 space кг}{1 space м^3} = 2700 cdot frac{1000 space г}{1 space 000 space 000 space см^3} = frac{2700}{1000} cdot frac{г}{см^3} = 2.7 frac{г}{см^3}$$

Таблицы плотности некоторых тел и веществ

Плотность одного и того же вещества в твердом, жидком и газообразном состояниях различна. 

Например, плотность воды составляет $1000 frac{кг}{м^3}$, льда — $900 frac{кг}{м^3}$, водяного пара — $0.590 frac{кг}{м^3}$ (рисунок 5).

Плотности одного вещества в разных агрегатных состояниях.
Рисунок 5. Плотности одного вещества в разных агрегатных состояниях

Плотности различных твердых тел

Твердое тело $rho, frac{кг}{м^3}$ $rho, frac{г}{см^3}$ Твердое тело $rho, frac{кг}{м^3}$ $rho, frac{г}{см^3}$
Осмий 22 600 22,6 Мрамор 2700 2,7
Иридий 22 400 22,4 Стекло 2500 2,5
Платина 21 500 21,5 Фарфор 2300 2,3
Золото 19 300 19,3 Бетон 2300 2,3
Свинец 11 300 11,3 Кирпич 1800 1,8
Серебро 10 500 10,5 Сахар 1600 1,6
Медь 8900 8,9 Оргстекло 1200 1,2
Латунь 8500 8,5 Капрон 1100 1,1
Сталь, железо 7800 7,8 Полиэтилен 920 0,92
Олово 7300 7,3 Парафин 900 0,90
Цинк 7100 7,1 Лед 900 0,90
Чугун 7000 7,0 Дуб сухой 700 0,70
Корунд 4000 4,0 Сосна сухая 400 0,40
Алюминий 2700 2,7 Пробка 240 0,24
Таблица 1. Плотности твердых тел

Плотности различных жидкостей

Жидкость $rho, frac{кг}{м^3}$ $rho, frac{г}{см^3}$ Жидкость $rho, frac{кг}{м^3}$ $rho, frac{г}{см^3}$
Ртуть 13 600 13,60 Керосин 800 0,80
Серная кислота 1800 1,80 Спирт 800 0,80
Мед 1350 1,35 Нефть 800 0,80
Вода морская 1030 1,03 Ацетон 790 0,79
Молоко цельное 1030 1,03 Эфир 710 0,41
Вода чистая 1000 1,00 Бензин 710 0,71
Масло подсолнечное 930 0,93 Жидкое олово (при $400^{circ}$) 6800 6,80
Масло машинное 900 0,90 Жидкий воздух (при $-194^{circ}$) 860 0,86
Таблица 2. Плотности жидкостей

Плотности различных газов

Газ $rho, frac{кг}{м^3}$ $rho, frac{г}{см^3}$ Газ $rho, frac{кг}{м^3}$ $rho, frac{г}{см^3}$
Хлор 3,210 0,00321 Угарный газ 1,250 0,00125
Углекислый газ 1,980 0,00198 Природный газ 0,800 0,0008
Кислород 1,430 0,00143 Водяной пар (при $100^{circ}$) 0,590 0,00059
Воздух (при $0^{circ}C$ 1,290 0,00129 Гелий 0,180 0,00018
Азот 1,250 0,00125 Водород 0,090 0,00009
Таблица 3. Плотности газов

Примеры задач на расчет плотности вещества

Задача №1

В таблице 1 указана плотность сахара — $1600 frac{кг}{м^3}$. Что это значит? Какой здесь физический смысл?

Посмотреть ответ

Скрыть

Ответ:

Значение плотности показывает нам, какое количество вещества (его масса) будет находиться в объеме $1 space м^3$. Итак, это означает, что масса сахара объемом $1 space м^3$ будет равна $1600 space кг$.

Задача №2

Канистра объемом 30 л наполнена бензином. Масса полной канистры составляет 21,3 кг. Рассчитайте плотность бензина.

Переведем литры в кубические метры ($1 space л = 0.001 space м^3$): 
$30 cdot 0.001 = 0.03 space м^3$.

Дано:
$V = 30 space л$
$m =  21.3 space кг$

$rho -?$

Показать решение и ответ

Скрыть

Решение:

По определению плотности:
$rho = frac{m}{V}$.

$rho = frac{21.3 space кг}{0.03 space м^3} = 710 frac{кг}{м^3}$.

Если мы сравним полученное значение с табличным, то получим подтверждение, что задача решена верно.

Ответ: $rho = 710 frac{кг}{м^3}$.

Задача №3

Деревянный брусок из березы имеет следующие размеры: длину 3 м, высоту 10 см, и ширину 50 см. Масса бруска составляет 75 кг. Найдите плотность березы.

Дано:
$а = 3 space м$
$b = 10 space см$
$c = 50 space см$
$m = 75 space кг$

$rho -?$

Показать решение и ответ

Скрыть

Решение:
Найдем объем бруска:
$V = a cdot b cdot c$,
$V = 3 space м cdot 0.1 space м cdot 0.5 space м = 0.15 space м^3$.

По определению плотности:
$rho = frac{m}{V}$.

$rho = frac{75 space кг}{0.15 space м^3} = 500 frac{кг}{м^3}$.

Ответ: $rho = 500 frac{кг}{м^3}$.

Больше задач с подробными решениями смотрите в отдельном уроке.

Упражнения

Упражнение №1

Плотность редкого металла осмия равна $22 space 600 frac{кг}{м^3}$. Что это означает?

Посмотреть ответ

Скрыть

Ответ:

Значение плотности показывает нам, какое количество вещества (его масса) будет находиться в объеме $1 space м^3$. Итак, это означает, что масса осмия объемом $1 space м^3$ будет равна $22 space 600 space кг$ или $22.6 space т$.

Упражнение №2

Пользуясь таблицами плотностей (таблицы 1, 2), определите, плотность какого вещества больше: цинка или серебра; бетона или мрамора; бензина или спирта.

Показать ответ

Скрыть

Плотность цинка составляет $7100 frac{кг}{м^3}$, а серебра — $10 space 500 frac{кг}{м^3}$. Получается, что плотность серебра больше плотности цинка.

Плотность бетона составляет $2300 frac{кг}{м^3}$, а мрамора — $2700 frac{кг}{м^3}$. Получается, что плотность мрамора больше плотности бетона.

Плотность бензина составляет $710 frac{кг}{м^3}$, а спирта — $800 frac{кг}{м^3}$. Получается, что плотность спирта больше плотности бензина.

Упражнение №3

Три кубика — из мрамора, льда и латуни — имеют одинаковый объем. Какой из них имеет большую массу, а какой — меньшую?

Показать ответ

Скрыть

Выразим массу из формулы плотности:
$rho = frac{m}{V}$,
$m = rho V$.

Объем кубиков у нас одинаковый. Значит, чем больше плотность вещества, из которого изготовлен кубик, тем больше его масса.

Плотность мрамора составляет $2700 frac{кг}{м^3}$, льда — $900 frac{кг}{м^3}$, а латуни — $8500 frac{кг}{м^3}$. У латуни наибольшая плотность, а у льда — наименьшая. Значит, кубик из латуни будет иметь наибольшую массу, а из льда — наименьшую.

Упражнение №4

Самое легкое дерево — бальза. Масса древесины этого дерева равна $12 space г$ при объеме в $100 space см^3$. Определите плотность древесины в $frac{г}{см^3}$ и $frac{кг}{м^3}$.

Дано:
$m = 12 space г$
$V = 100 space см^3$

$rho — ?$

Показать решение и ответ

Скрыть

Решение:

Мы не стали переводить единицы измерения в СИ. Сначала мы рассчитаем плотность этой древесины в $frac{г}{см^3}$, а затем переведем в $frac{кг}{м^3}$.

Рассчитаем плотность по известной нам формуле:
$rho = frac{m}{V}$,
$rho = frac{12 space г}{100 space см^3} = 0.12 frac{г}{см^3}$.

Теперь переведем полученное значение в $frac{кг}{м^3}$:
$rho = 0.12 frac{г}{см^3} = 0.12 frac{0.001 space кг}{0.01^3 space м^3} = 0.12 frac{10^{-3} space кг}{10^{-6} space м^3} = 0.12 cdot 10^3 frac{кг}{м^3} = 120 frac{кг}{м^3}$.

Ответ: $rho = 0.12 frac{г}{см^3} = 120 frac{кг}{м^3}$.

Упражнение №5

Кусочек сахара имеет размеры: $а = 2.5 space см$, $b = 1 space см$, $с = 0.7 space см$ (рис. 53). Его масса равна $0.32 space г$. Определите плотность сахара. Проверьте полученный результат по таблице 1.

Дано:
$а = 2.5 space см$
$b = 1 space см$
$с = 0.7 space см$
$m = 0.32 space г$

$rho — ?$

Показать решение и ответ

Скрыть

Решение:

Чтобы рассчитать плотность сахара, нужно знать его объем. Его мы можем вычислить перемножив друг на друга известные высоту, ширину и длину:
$V = a cdot b cdot c$.

Подставим в формулу плотности и рассчитаем ее:
$rho = frac{m}{V} = frac{m}{a cdot cdot b cdot c}$,
$rho = frac{0.32 space г}{2.5 space см cdot 1 space см cdot 0.7 space см} = frac{0.32 space г}{1.75 space см^3} approx 0.18 frac{г}{см^3}$.

Полученный результат не совпадает с табличным ($rho = 1.6 frac{г}{см^3}$). Расчеты произведены верно, значит ошибка или в условии задачи, или мы наблюдаем очень необычный сахар.

Ответ: $rho approx 0.18 frac{г}{см^3}$.

Задание

В вашем распоряжении имеются весы с разновесами, измерительный цилиндр с водой и металлический шарик на нити. Предложите, как определить плотность шарика.

Взвесим шарик, мы узнаем его массу. Чтобы определить его объем, мы можем использовать измерительный цилиндр с водой. Для этого нужно опустить шарик в воду, и посмотреть, до какого уровня теперь поднялась воды. Разность этого объема и первоначального объема жидкости будет равна объему шарику.

Зная его массу и объем, мы сможем рассчитать его плотность по формуле: $rho = frac{m}{V}$.

Найти массу, плотность или объем онлайн

На данной странице калькулятор поможет найти плотность, массу или объем вещества онлайн. Для расчета введите значения в калькулятор.

Объем, масса и плотность


Найти

Масса:

Объем:

Плотность:


Ответы:

Формула для нахождения массы тела через плотность и объем:

m – масса; V – объем; p – плотность.

Формула для нахождения объема тела через плотность и массу:

m – масса; V – объем; p – плотность.

Формула для нахождения плотности тела через объем и массу:

m – масса; V – объем; p – плотность.

Калькулятор

Добавить комментарий