Как найти плотность тока в физике

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июля 2021 года; проверки требуют 5 правок.

Плотность тока
vec j
Размерность L−2I
Единицы измерения
СИ А/м2
Примечания
векторная величина

Пло́тность то́ка — векторная физическая величина, характеризующая плотность потока электрического заряда в рассматриваемой точке. В СИ измеряется в Кл/м2/c или, что то же самое, А/м2.

Если все носители заряда имеют одинаковый заряд q, плотность тока вычисляется по формуле

{displaystyle {vec {j}}=n,q,{vec {v}}},

где n-3) — концентрация носителей, а vec{v} — средняя скорость их движения. В более сложных случаях производится суммирование по носителям разных сортов.

Плотность тока имеет технический смысл силы электрического тока, протекающего через элемент поверхности единичной площади[1]. При равномерном распределении плотности тока и сонаправленности её с нормалью к поверхности, через которую протекает ток, для величины вектора плотности тока выполняется:

{displaystyle j=|{vec {j}}|={frac {I}{S}}},

где I — сила тока через поперечное сечение проводника площадью S. Иногда говорится о скалярной[2] плотности тока, в таких случаях под ней подразумевается величина j в формуле выше.

Варианты вычисления плотности тока[править | править код]

В простейшем предположении, что все носители тока (заряженные частицы) двигаются с одинаковым вектором скорости {vec  v} и имеют одинаковые заряды q (такое предположение может иногда быть приближенно верным; оно позволяет лучше всего понять физический смысл плотности тока), а концентрация их n,

{displaystyle {vec {j}}=n,q,{vec {v}}=rho _{q}{vec {v}},}

где {displaystyle rho _{q}} — плотность заряда этих носителей. Направление вектора  vec j соответствует направлению вектора скорости {vec  v}, с которой движутся заряды, создающие ток, если q положительно. В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под {vec {v}} следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

{displaystyle {vec {j}}=sum _{s}n_{s}q_{s}{vec {v}}_{s}},

то есть вектор плотности тока есть сумма плотностей тока по всем разновидностям (сортам) подвижных носителей; где n_s — концентрация частиц, {displaystyle q_{s}} — заряд частицы, {displaystyle {vec {v}}_{s}} — вектор средней скорости частиц s-го сорта.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам из некоторого малого объёма V, содержащего рассматриваемую точку:

{displaystyle {vec {j}}={frac {1}{V}}sum _{i}q_{i}{vec {v}}_{i}}.

Сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны.

Плотность тока и сила тока[править | править код]

Связь между током и плотностью тока

В общем случае сила тока (полный ток) может быть рассчитана исходя из плотности тока по формуле

{displaystyle I=left|int limits _{S}({vec {j}}cdot d{vec {S}})right|=left|int limits _{S}j_{n},dSright|},

где j_n — нормальная (ортогональная) составляющая вектора плотности тока по отношению к элементу поверхности площадью dS; вектор {displaystyle d{vec {S}}} — специально вводимый вектор элемента поверхности, ортогональный элементарной площадке и имеющий абсолютную величину, равную её площади, позволяющий записать подынтегральное выражение как обычное скалярное произведение. Обратное нахождение плотности тока по известной силе тока невозможно; в предположении равноплотного токопротекания перпендикулярно площадке будет {displaystyle j=I/S}.

Сила тока представляет собой поток вектора плотности тока через заданную фиксированную поверхность. Часто в качестве такой поверхности рассматривается поперечное сечение проводника.

Величиной плотности тока обычно оперируют при решении физических задач, в которых анализируется движение заряженных носителей (электронов, ионов, дырок и других). Напротив, использование силы тока удобнее в задачах электротехники, особенно когда рассматриваются электрические цепи с сосредоточенными элементами.

Плотность тока и законы электродинамики[править | править код]

Величина плотности тока фигурирует в ряде важнейших формул классической электродинамики, некоторые из них представлены ниже.

Уравнения Максвелла[править | править код]

Плотность тока в явном виде входит в одно из четырёх уравнений Максвелла, а именно в уравнение для ротора напряжённости магнитного поля

{displaystyle nabla times {vec {H}}={vec {j}}+{frac {partial {vec {D}}}{partial t}}},

физическое содержание которого в том, что вихревое магнитное поле порождается электрическим током, а также изменением электрической индукции {displaystyle {vec {D}}}; значок partial обозначает частную производную (по времени t). Это уравнение приведено здесь в системе СИ.

Уравнение непрерывности[править | править код]

Уравнение непрерывности выводится из уравнений Максвелла и утверждает, что дивергенция плотности тока равна изменению плотности заряда со знаком минус, то есть

{displaystyle nabla cdot {vec {j}}+{partial rho _{q} over partial t}=0}.

Закон Ома в дифференциальной форме[править | править код]

В линейной и изотропной проводящей среде плотность тока связана с напряжённостью электрического поля в данной точке по закону Ома (в дифференциальной форме):

vec j = sigmavec E,

где sigma  — удельная проводимость среды, vec E — напряжённость электрического поля. Или:

{displaystyle {vec {j}}={frac {1}{rho }},{vec {E}}},

где rho   — удельное сопротивление.

В линейной анизотропной среде имеет место такое же соотношение, однако удельная электропроводность sigma в этом случае, вообще говоря, должна рассматриваться как тензор, а умножение на неё — как умножение вектора на матрицу.

Плотность тока и мощность[править | править код]

Работа, совершаемая электрическим полем над носителями тока, характеризуется[3] плотностью мощности [энергия/(время•объем)]:

{displaystyle w={vec {E}}cdot {vec {j}}},

где точкой обозначено скалярное произведение.

Чаще всего эта мощность рассеивается в среду в виде тепла, но вообще говоря она связана с полной работой электрического поля и часть её может переходить в другие виды энергии, например такие, как энергия того или иного вида излучения, механическая работа (особенно — в электродвигателях) и т. д.

С использованием закона Ома формула для изотропной среды переписывается как

{displaystyle w=sigma E^{2}={frac {j^{2}}{sigma }}equiv rho j^{2}},

где sigma и rho  — скаляры. Для анизотропного случая будет

{displaystyle w={vec {E}}sigma {vec {E}}={vec {j}}rho {vec {j}}},

где подразумевается матричное умножение (справа налево) вектора-столбца на матрицу и на вектор-строку, а тензор sigma и тензор rho порождают соответствующие квадратичные формы.

4-вектор плотности тока[править | править код]

Основная статья: 4-ток

В теории относительности вводится четырёхвектор плотности тока (4-ток), составленный из объёмной плотности заряда {displaystyle rho _{q}} и 3-вектора плотности тока vec{j}:

{displaystyle J^{mu }=(crho _{q},{vec {j}}),}

где c — скорость света.

4-ток является прямым и естественным обобщением понятия плотности тока на четырёхмерный пространственно-временной формализм и позволяет, в частности, записывать уравнения электродинамики в ковариантном виде.

Примечания[править | править код]

  1. Тур А. В., Яновский В. В. Плотность электрического тока // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 639. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Чаще в таких случаях она даже не называется явно скаляром, но просто не упоминается её векторный характер.
  3. Это прямо следует из формул, приведенных выше вкупе с определением работы или с формулой мощности P = vec F cdot vec v.

В этой статье мы познакомим вас с плотностью электрического тока. Мы объясним, почему это величина важна в электротехнике, покажем ее формулу, а также проведем несколько примеров расчетов.

Простое объяснение

Плотность тока J — векторная физическая величина, характеризующая плотность потока электрического заряда в рассматриваемой точке.

Википедия

Высокая плотность электрического тока вызывает нагрев кабеля. Поэтому необходимо следить за тем, чтобы не превысить допустимую допустимую силу тока в линии или проводнике. Кроме того, эффективное сечение проводника может уменьшаться при воздействии высокочастотных сигналов (скин-эффект), что увеличивает плотность тока. Поэтому при выборе проводника необходимо учитывать не только фактический ток, но и частоту сигнала.

Формулы

Как уже упоминалось выше, плотность тока J описывает отношение электрического тока к площади, через которую он протекает, то есть: J = I / S . Здесь J — плотность тока, I — сила тока, S — площадь поперечного сечения.

Единица измерения — соответственно амперы на квадратный метр, то есть [ J ] = А / м2 .

Однако часто плотность тока также указывают в амперах на квадратный миллиметр ( А / мм2 ), поскольку сечения обычных проводников (проводов, кабелей) имеют такой порядок величины.

Пример расчёта

В общем случае для расчета плотности тока учитываются геометрические свойства кабеля. На их основе можно сначала рассчитать площадь поперечного сечения, а затем, при известной силе тока, плотность тока.

Медный провод

Ниже приводится расчет плотности тока для медного провода диаметром 1 мм, по которому течет ток 8 А. Предполагается, что линия имеет круглое поперечное сечение.

Сначала рассчитаем площадь поперечного сечения провода, зная, что его диаметр d = 1 мм:

S = r2 * π = π * d2 / 4 = π * 12 / 4 = 0, 785 мм2 .

Тогда плотность тока J может быть рассчитана по приведенной выше формуле. Для тока I = 8А и площади поперечного сечения S = 0,785 мм2 получаем: J = 8 / 0,785 = 10, 2 А / мм2 .

Токопроводящие дорожки

В отличие от кабеля, сечение токопроводящей дорожки не круглое, а прямоугольное. Здесь мы рассматриваем медную проводниковую дорожку шириной 0,5 мм и толщиной 0,035 мм.

плотность тока для токопроводящих дорожек

Рис. 1. Расчёт плотности тока в токопроводящей дорожке

Вы можете рассчитать площадь прямоугольного поперечного сечения токопроводящей дорожки, умножив ширину токопроводящей дорожки на толщину меди: S = 0,5 * 0,035 = 0,0175 мм2 .

Для тока I, равного 200 мА, плотность тока J составляет: J = I / S = 0,2 / 0,0175 = 11,43 А / мм2 .

Применение

Плотность тока особенно важна в тех случаях, когда необходимо оптимизировать сечение проводника по соображениям стоимости, площади и веса. Как правило, сечение проводника выбирается как можно меньше, чтобы соответствовать условиям применения.

Здесь важно, чтобы фактическая плотность тока в проводнике не превышала максимально допустимую плотность тока. Причина этого в том, что каждый электрический проводник имеет электрическое сопротивление. При протекании электрического тока на этом сопротивлении возникает падение электрического напряжения. В результате происходит преобразование энергии и нагрев линии. Чрезмерный нагрев может повредить изоляцию проводника и вызвать серьезные повреждения.

Именно поэтому, например, допустимые плотности тока для бытовых установок регламентируются соответствующими стандартами. Кроме того, все кабели в домашних хозяйствах оснащены предохранителем, который срабатывает до достижения максимально допустимой плотности электрического тока.

В автомобильном секторе важную роль играет экономия веса и пространства. Поэтому здесь также тщательно подбираются кабели, чтобы найти компромисс между нагревом и весом/пространством.

Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.

Определение 1

Таким образом выходит, что сила тока — это поток заряженных частиц через некоторую поверхность S.

Определение 2

Электрический ток является процессом движения как отрицательных, так и положительных зарядов.

Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков (dq+ и dq−), справедливым будет заключение о том, что сила тока равна следующему выражению:

I=dq+dt+dq-dt.

В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:

I=q∆t,

где сила тока определена в качестве заряда, который пересекает некоторую поверхность S в единицу времени. В системе СИ роль основной единицы измерения силы тока играет Ампер (А).

1A=1 Кл1 с.

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, в котором протекает ток, малый объем dV случайной формы. С помощью следующего обозначения υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку dS, которая расположена ортогонально скорости υ (рис. 1).

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Рисунок 1

Проиллюстрируем на поверхности площадки dS очень короткий прямой цилиндр, имеющий высоту υdt. Весь массив частиц, которые располагались внутри такого цилиндра за время dt пересекут плоскость dS и перенесут через нее, в направлении скорости υ, заряд, выражающийся в виде следующего выражения:

dq=n0qeυdSdt,

где qe=1,6·10-19 Кл является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на dSdt и получим:

j=dqdSdt,

где j представляет собой модуль плотности электрического тока.

j=n0qeυ,

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

j=∑niqiυii,

где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1. Пускай n→ представляет собой единичный перпендикуляр к плоскости dS. В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля. В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:

dqdt=j→n→dS=jndS.

Формула приведенная выше справедлива также в том случае, когда плоскость площадки dS неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j→, направленная под прямым углом к нормали, через сечение dS электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j=n0qeυ в таком виде:

j→=-n0qeυ→.

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

j=IS∆t,

где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника (S1,S2) с постоянным током справедливо следующее равенство:

j1j2=S2S1.

Основываясь на законе Ома для плотности токов можно записать такое выражение:

j→=λE→,

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

I=∫SjndS,

где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока Aм2.

Линии тока

Определение 3

Линии, вдоль которых движутся заряженные частицы, носят название линий тока.

Направления движения положительных зарядов также определяются в качестве направлений линий тока. Изобразив линии тока, можно получить наглядное представление о движении электронов и ионов, которые формируют собой ток. Если внутри проводника выделить трубку с током, у которой боковая поверхность состоит из линий тока, то движущиеся заряженные частицы не будут пересекать боковую поверхность данной трубки. Такую трубка представляет собой так называемую трубку тока. К примеру, поверхность металлической проволоки в изоляторе будет определяться как труба тока.

Пример 1

Сила тока в проводнике равномерно возрастает от 0 до 5 А на протяжении 20 с. Определите заряд, который прошел через поперечное сечение проводника за данный отрезок времени.

Решение

В качестве основы решения данной задачи возьмем формулу, которая характеризует собой силу тока, то есть:

I=dqdt.

Таким образом, заряд будет найден как:

q=∫t1t2Idt.

В условии задачи сказано, что сила тока изменяется равномерно, а это означает то, что мы можем записать закон изменения силы тока в следующем виде:

I=kt.

Найдем коэффициент пропорциональности в приведенном выражении, для чего необходимо запишем закон изменения силы тока еще раз для момента времени, при котором сила тока эквивалентна I2=3А (t2):

I2=kt2→k=I2t2.

Подставим выражение выше в I=kt и проинтегрируем в соответствии с q=∫t1t2Idt, получим формулу такого вида: q=∫t1t2ktdt=∫t1t2I2t2tdt=I2t2∫t1t2tdt=t22t1t2=I22t2t22-t12.

В качестве начального момента времени возьмем момент, когда сила тока эквивалентна нулю, другими словами t1=0, I1=0 A; t2=20, I2=5 А. Проведем следующие вычисления:

q=I22t2t22=I2t22=5·202=50 (Кл).

Ответ: q=50 Кл.

Пример 2

Определите среднюю скорость движения электронов в проводнике, молярная масса вещества которого эквивалентна μ, поперечное сечение проводника S. Сила тока в проводнике I. Примем, что на каждый атом вещества в проводнике приходится два свободных электрона.

Решение

Силу тока (I) в проводнике можно считать постоянной, что позволяет нам записать следующее выражение:

I=q∆t=Nqe∆t,

где заряд q определим как произведение числа электронов проводимости в проводнике, на заряд одного электрона qe, представляющего собой известную величину. ∆t играет роль промежутка времени, за который через поперечное сечение проводника проходит заряд q. Найти N можно, если применять известное в молекулярной физике соотношение:

N’NА=mμ=ρVμ,

где N′ играет роль количества атомов в проводнике, объем которого V, плотность ρ, а молярная масса μ. NA представляет собой число Авогадро. По условию задачи N=2N′. Найдем из N’NА=mμ=ρVμ число свободных электронов: N=2ρVμNA.

Подставим выражение, приведенное выше, в I=q∆t=Nqe∆t, в результате чего получим:

I=2ρVμNAqe∆t=2ρqeNASlμ∆t,

где объем проводника найден как V=Sl, где l – длина проводника. Выразим ее.

l=μ∆tI2ρqeNAS.

Среднюю скорость движения электронов или, другими словами, скорость тока в проводнике можно определить следующим образом: υ=l∆t=μI2ρqeNAS.

Ответ: υ=μI2ρqeNAS.

Подробно о плотности электрического тока

Содержание

  • 1 Что называют плотностью тока
  • 2 Чем отличается плотность от силы тока
  • 3 Физический смысл
  • 4 Связь с законом Ома
  • 5 Особенности
    • 5.1 Плотность тока насыщения
    • 5.2 Высокая частота
  • 6 Применение
  • 7 Видео по теме

При наличии электрополя в проводящей среде и свободных носителей заряда в данной среде возникает электрический ток. Именно он является мерой измерения количества зарядов одного типа, которые протекают в проводнике за определенное время. Как известно из школьного курса физики, сила тока определяется величиной напряжения (разности потенциалов) и сопротивления данного участка цепи, что отражает закон Ома. Можно заметить, если в рассматриваемой электроцепи проводник имеет различное сечение, то в одно время на различных участках через единичный элемент площади будет проходить различное количество носителей электрозаряда.

Сила тока в проводнике

Что называют плотностью тока

Плотность тока — это физическая величина, которая определяет количество носителей электрозаряда в конкретной точке. Она является векторной величиной, поскольку прямо пропорциональна концентрации носителей заряда и их скорости, а скорость — величина направленная (векторная).

Обозначается плотность электротока латинской буквой j. Допускается также обозначение большой буквой J. Раннее плотность обозначалась греческой буквой дельта δ.

Формула плотности тока выглядит следующим образом:

Формула плотности электротока

Плотность электрического тока измеряется в Кл/кв. м/с или А/кв. м. Обе единицы равноправны, но наиболее широкое применение в электротехнике нашла единица измерения плотности ампер на метр в квадрате. На практике обычно используется не метр в квадрате, а более малая величина — миллиметр (А/кв. мм). Единицы измерения электрозаряда и силы электротока связаны уравнением 1 Кл = 1 А*1 с.

Чем отличается плотность от силы тока

Сила  и плотность тока — величины взаимосвязанные. Согласно определению, силой тока является поток вектора плотности тока через заданную фиксированную поверхность (в частном случае — через поперечное сечение проводника). Понятия электрический ток, сила и плотность электрического тока используются в теоретических и практических разделах физики, но, как правило, в области электротехники более удобно использовать силу элетротока, а при анализе движения носителей электрозаряда — плотность электротока (плотность тока проводимости).

Следует заметить, что существует большое количество типов приборов, позволяющих определить силу электротока, в то время как проводить прямые измерения плотности невозможно, поэтому это чисто теоретическая (расчетная) величина.

Амперметр прибор для измерения силы электротока

Физический смысл

В физическом понятии плотность тока — это мера измерения силы тока, протекающего через единицу площади сечения проводника. Самая простая аналогия для понимания понятия плотности тока — водопровод. Представьте, что участок водопровода от точки А до точки Б состоит из труб различного сечения. Поскольку в каждый момент времени через трубопровод протекает одинаковое количество жидкости, то, чем меньше диаметр трубы, соответственно, ее сечение, то тем больше проходит воды через единицу пощади.

Соответственно, можно рассматривать электрическую цепь, которая состоит из проводников различного поперечного сечения. Так как электроток в цепи имеет одинаковую величину, то через участки с малым и большим сечением за единицу времени проходит одинаковое количество носителей заряда. Следовательно, в более тонком проводнике на единицу площади припадает большее количество носителей.

Характеристики электротока

Связь с законом Ома

Как было сказано выше, закон Ома гласит: сила тока прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению. Это только частный случай. Для большей полноты необходимо рассматривать закон Ома в дифференциальной форме. Здесь он напрямую связан с плотностью тока:

Связь плотности с законом Ома

Особенности

Поскольку подвижные электрозаряды могут возникать не только в проводящей среде, то понятие плотности электротока используется в ряде иных случаев.

Плотность тока насыщения

Принцип работы электровакуумных и газоразрядных приборов (электронных ламп, рентгеновских трубок, электронных микроскопов) основан на движении электронов в вакууме или газе. В данном контексте плотность электротока характеризует эмиссионную способность катода, то есть, его способность испускать электроны в нагретом состоянии.

Устройство вакуумного диода

Высокая частота

Если рассматривается не постоянный электрический ток, а переменный, то следует учитывать скин-эффект. Суть эффекта в том, что переменный электроток высокой частоты распределяется не равномерно по сечению проводника, а преимущественно в наружном (поверхностном) слое. При этом, чем выше частота, тем тоньше слой, по которому происходит распространение носителей электрозаряда.

График плотности при скин-эффекте

Таким образом, если рассматривать проводники одинакового сечения при работе на постоянном электротоке или высокочастотном, то во втором случае плотность электротока будет тем больше, чем выше частота, поскольку в передаче электротока будет использоваться лишь тонкий поверхностный слой проводника. В связи с этим производят покрытие высокочастотных элементов электрических цепей металлом с малым электрическим сопротивлением — серебром.

Применение

Плотность тока в проводнике имеет большое практическое значение. Прохождение электротока вызывает нагрев проводника. Величину нагрева можно найти в зависимости от силы протекающего электротока и сопротивления провода. Поскольку на всех участках линейной цепи сила электротока одинакова, то более тонкий проводник имеет большее сопротивление и на нем выделяется большее количество теплоты.

Существуют предельные нормы допустимой плотности электротока в зависимости от условий работы проводников и их материала. Превышение норм вызывает недопустимый нагрев вплоть до расплавления материала. Данное свойство используется в плавких электрических предохранителях, в которых материал и его сечение подобраны таким образом, что превышение плотности электротока сверх нормы вызывает практически мгновенное перегорание и размыкание электрической цепи.

Плавкий предохранитель

Также плотность тока используется в электролизе. Так называют процесс выделения составляющих веществ из раствора электролита при прохождении через него электрического тока или нанесение металлических покрытий. Увеличение плотности тока повышает коэффициент полезного действия электролизных установок при разложении электролита, но снижает качество металлического покрытия.

Схема электролиза

Разные проводники имеют разную плотность электротока. Сейчас преимущественно используются медные провода, для которых этот параметр составляет 6-10 А/кв. мм. Об этом следует помнить, создавая электроцепи для длительной эксплуатации.

Видео по теме

В электродинамике — разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроскопических заряженных тел, важнейшим понятием является понятие элек­трического тока.

Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенно­го электрического поля Ε свободные элек­трические заряды перемещаются: поло­жительные — по полю, отрицательные — против поля, т.е. в провод­нике возникает электрический ток, на­зываемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела, то возникает так называемый конвекционный ток.

Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей то­ка – заряженных частиц, способных перемещаться упорядоченно, а с другой – наличие электрического поля, энергия ко­торого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения поло­жительных зарядов.

Количественной мерой электрического тока служит сила тока I — скалярная фи­зическая величина, определяемая элек­трическим зарядом, проходящим через по­перечное сечение проводника в единицу времени:

Ток, сила и направление которого не изме­няются со временем, называется посто­янным. Для постоянного тока

где Qэлектрический заряд, проходя­щий за время t через поперечное сечение проводника.

Единица силы тока – ампер (А). Более детально ток можно охарактеризовать с помощью вектора плотности тока j.

Плотностью тока называется физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока:

Направле­ние вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).

Выразим силу и плотность тока через скорость v упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обя­зательно для ионов), то за время dt через поперечное сечение S проводника перено­сится заряд

Сила тока

,

а плотность тока

.

Сила тока сквозь произвольную по­верхность S определяется как поток векто­ра j, т. е.

,

где dS = n dS (n — единичный вектор нор­мали к площадке dS, составляющей с век­тором j угол ).

Добавить комментарий