Как найти плотность угарного газа

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,653
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,926
  • разное
    16,901

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Ответы Mail.ru


Образование


ВУЗы, Колледжи
Детские сады

Школы


Дополнительное образование
Образование за рубежом
Прочее образование

Вопросы – лидеры.

frenky

Где найти ответы на ОГЭ 2023?


1 ставка

frenky

Написать экологическое обоснование изделия из кольца


1 ставка

frenky

Помогите с английским 21 упражнением, расставить a,an,the.


1 ставка

frenky

Чем на ваш взгляд лучше заменить ЕГЭ?


1 ставка

Лидеры категории

Лена-пена


Лена-пена

Искусственный Интеллект

М.И.


М.И.

Искусственный Интеллект

Y.Nine


Y.Nine

Искусственный Интеллект

king71alex
Куклин Андрей
Gentleman
Dmitriy
•••

r b



Ученик

(133),
закрыт



2 года назад

Решение полностью

Лучший ответ

Вячек

Высший разум

(391245)


4 года назад

p(CO) = M/Vm = 28 г/моль/22,4 л/моль = 1,25 г/л

Остальные ответы

Похожие вопросы

Физические свойства угарного газа: теплоемкость, теплопроводность, вязкость и плотность угарного газа

Рассмотрены физические свойства угарного газа (окиси углерода CO) при нормальном атмосферном давлении в зависимости от температуры при отрицательных и положительных ее значениях.

В таблицах представлены следующие физические свойства CO: плотность угарного газа ρ, удельная теплоемкость при постоянном давлении Cp, коэффициенты теплопроводности λ и динамической вязкости μ.

В первой таблице приведены значения плотности и удельной теплоемкости окиси углерода CO в диапазоне температуры от -73 до 2727°С.

Во второй таблице даны значения таких физических свойств угарного газа, как теплопроводность и его динамическая вязкость в интервале температуры от минус 200 до 1000°С. 

Плотность угарного газа, как и плотность других газов, существенно зависит от температуры — при нагревании оксида углерода CO его плотность снижается. Например, при комнатной температуре плотность угарного газа имеет значение 1,129 кг/м3, но в процессе нагрева до температуры 1000°С, плотность этого газа уменьшается в 4,2 раза — до величины 0,268 кг/м3.

При нормальных условиях (температура 0°С) угарный газ имеет плотность 1,25 кг/м3. Если же сравнить его плотность с воздухом или другими распространенными газами, то плотность угарного газа относительно воздуха имеет меньшее значение — угарный газ легче воздуха. Он также легче углекислого газа и аргона, но тяжелее азота, водорода, гелия и других легких газов.

Удельная теплоемкость угарного газа при нормальных условиях равна 1040 Дж/(кг·град). В процессе роста температуры этого газа его удельная теплоемкость увеличивается. Например, при 2727°С ее значение составляет 1329 Дж/(кг·град).

Плотность угарного газа CO и его удельная теплоемкость

t, °С ρ, кг/м3 Cp, Дж/(кг·град) t, °С ρ, кг/м3 Cp, Дж/(кг·град) t, °С ρ, кг/м3 Cp, Дж/(кг·град)
-73 1,689 1045 157 0,783 1053 1227 0,224 1258
-53 1,534 1044 200 0,723 1058 1327 0,21 1267
-33 1,406 1043 257 0,635 1071 1427 0,198 1275
-13 1,297 1043 300 0,596 1080 1527 0,187 1283
-3 1,249 1043 357 0,535 1095 1627 0,177 1289
0 1,25 1040 400 0,508 1106 1727 0,168 1295
7 1,204 1042 457 0,461 1122 1827 0,16 1299
17 1,162 1043 500 0,442 1132 1927 0,153 1304
27 1,123 1043 577 0,396 1152 2027 0,147 1308
37 1,087 1043 627 0,374 1164 2127 0,14 1312
47 1,053 1043 677 0,354 1175 2227 0,134 1315
57 1,021 1044 727 0,337 1185 2327 0,129 1319
67 0,991 1044 827 0,306 1204 2427 0,125 1322
77 0,952 1045 927 0,281 1221 2527 0,12 1324
87 0,936 1045 1027 0,259 1235 2627 0,116 1327
100 0,916 1045 1127 0,241 1247 2727 0,112 1329

Теплопроводность угарного газа при нормальных условиях имеет значение 0,02326 Вт/(м·град). Она увеличивается с ростом его температуры и при 1000°С становится равной 0,0806 Вт/(м·град). Следует отметить, что величина теплопроводности угарного газа немногим меньше этой величины у воздуха.

Динамическая вязкость угарного газа при комнатной температуре равна 0,0246·10-7 Па·с. При нагревании окиси углерода, ее вязкость увеличивается. Такой характер зависимости динамической вязкости от температуры наблюдается у большинства газов. Необходимо отметить, что угарный газ более вязкий чем водяной пар и диоксид углерода CO2, однако имеет меньшую вязкость по сравнению с окисью азота NO и воздухом.

Теплопроводность и вязкость окиси углерода CO

t, °С λ, Вт/(м·град) μ·107, Па·с t, °С λ, Вт/(м·град) μ·107, Па·с
-200 0,00603 48 200 0,03652 245
-160 0,009 74,5 300 0,04257 279
-140 0,01163 88 400 0,0485 309
-120 0,01349 102 500 0,05408 337
-100 0,01512 113 600 0,05966 363
-75 0,01698 127 700 0,06501 387
-50 0,0193 140 800 0,07013 410
0 0,02326 166 900 0,07548 433
100 0,03012 207 1000 0,08059 453

Источники:

  1. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей.
  2. Чиркин В.С. Теплофизические свойства материалов ядерной техники.

Ответ

Проверено экспертом

Ответ:

Объяснение:

4.

а) Дано:

M(CO)=
12+16=28г./моль

M(H₂)=2г./моль

——————————

D(H₂)-?

D(H₂)=M(CO)÷M(H₂)

D(H₂)=28г./моль÷2г./моль=14

Ответ:относительную плотность угарного газа СО по водороду=14

б)

Дано:

Mr(воздух)=
29

D(воздух)=2

——————————

Mr(газа)-?

D(воздух)=Mr(газа)÷Mr(воздух)

Mr(газа)=D(воздух)×Mr(воздух)

Mr(газа)=2×29=58

Ответ: молярную массу газа =58

Ответы и объяснения

Запрос «CO» перенаправляется сюда; см. также другие значения.

Монооксид углерода
Изображение химической структуры Изображение молекулярной модели
Общие
Систематическое
наименование
Оксид углерода​(II)​
Традиционные названия Угарный газ
Хим. формула CO
Рац. формула CO
Физические свойства
Состояние Газообразное
Молярная масса 28,01 г/моль
Плотность 1,25 кг/м3 (при 0 °C), 814 кг/м3 (при -195 °C)
Энергия ионизации 14,01 ± 0,01 эВ[3]
Термические свойства
Температура
 • плавления −205 °C
 • кипения −191,5 °C
Пределы взрываемости 12,5 ± 0,1 об.%[3]
Критическая точка  
 • температура −140,23 °C
 • давление 3,499 МПа
Энтальпия
 • образования −110,52 кДж/моль
 • плавления 0,838 кДж/моль
 • кипения 6,04 кДж/моль
Давление пара 35 ± 1 атм[3]
Химические свойства
Растворимость
 • в воде 0,0026 г/100 мл
Классификация
Рег. номер CAS 630-08-0
PubChem 281
Рег. номер EINECS 211-128-3
SMILES

[C-]#[O+]

InChI

InChI=1S/CO/c1-2

UGFAIRIUMAVXCW-UHFFFAOYSA-N

RTECS FG3500000
ChEBI 17245
Номер ООН 1016
ChemSpider 275
Безопасность
Предельная концентрация 20 мг/м3[1]
ЛД50 200—250 мг/кг
Токсичность общетоксическое действием. 4-й класс опасности.
Пиктограммы ECB Пиктограмма «T+: Крайне токсично» системы ECBПиктограмма «F+: Крайне огнеопасно» системы ECBПиктограмма «N: Опасно для окружающей среды» системы ECB
NFPA 704

NFPA 704 four-colored diamond

4

3

0

[2]

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Моноокси́д углеро́да (оксид углерода(II), о́кись углеро́да, уга́рный газ, химическая формула — CO) — химическое соединение, представляющее собой несолеобразующий оксид углерода, состоящий из одного атома кислорода и углерода.

При стандартных условиях, монооксид углерода — это бесцветный токсичный газ без вкуса и запаха, легче воздуха.

Строение молекулы[править | править код]

Молекула CO имеет тройную связь, как и молекула азота N2. Так как эти молекулы сходны по строению (изоэлектронны, двухатомны, имеют близкую молярную массу), то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

В рамках метода валентных связей строение молекулы CO можно описать формулой :C≡O:.

Согласно методу молекулярных орбиталей, электронная конфигурация невозбуждённой молекулы CO σ2
O
σ2
z
π4
x, y
σ2
C
. Тройная связь образована σ-связью, образованной за счёт σz электронной пары, а электроны дважды вырожденного уровня πx, y соответствуют двум π-связям. Электроны на несвязывающих σC-орбитали и σO-орбитали соответствуют двум электронным парам, одна из которых локализована у атома углерода, другая — у атома кислорода.

Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль (256 ккал/моль), что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (dC≡O=0,1128 нм).

Молекула слабо поляризована, её электрический дипольный момент μ = 0,04⋅10−29 Кл·м. Многочисленные исследования показали, что отрицательный заряд в молекуле CO сосредоточен на атоме углерода C←O+ (направление дипольного момента в молекуле противоположно предполагавшемуся ранее). Энергия ионизации 14,0 эВ, силовая константа связи k = 18,6.

Свойства[править | править код]

Оксид углерода(II) представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Свойства оксида углерода(II)

Стандартная энергия Гиббса образования ΔG −137,14 кДж/моль (г.) (при 298 К)
Стандартная энтропия образования S 197,54 Дж/моль·K (г.) (при 298 К)
Стандартная мольная теплоёмкость Cp 29,11 Дж/моль·K (г.) (при 298 К)
Энтальпия плавления ΔHпл 0,838 кДж/моль
Энтальпия кипения ΔHкип 6,04 кДж/моль
Критическая температура tкрит −140,23 °C
Критическое давление Pкрит 3,499 МПа
Критическая плотность ρкрит 0,301 г/см³

Основными типами химических реакций, в которых участвует оксид углерода(II), являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах. Так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и другие металлы, например CO + CuO → Cu + CO2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO.

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, KClO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830 °C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции {mathsf  {H_{2}O+COrightleftarrows CO_{2}+H_{2}}} до 830 °C смещено вправо, выше 830 °C — влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Оксид углерода(II) горит пламенем синего цвета[4] (температура начала реакции 700 °C) на воздухе:

{mathsf  {2CO+O_{2}rightarrow 2CO_{2}}} (ΔG°298 = −257 кДж, ΔS°298 = −86 Дж/K).

Благодаря такой хорошей теплотворной способности CO является компонентом разных технических газовых смесей (например, генераторный газ), используемых, в том числе, для отопления. В смеси с воздухом взрывоопасен; нижний и верхний концентрационные пределы распространения пламени: от 12,5 до 74 % (по объёму)[5].

Оксид углерода(II) реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:

{displaystyle {mathsf {CO+Cl_{2}{xrightarrow {hnu }}COCl_{2}}}.}

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакциям могут быть получены COF2 (карбонилфторид) и COBr2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж). Можно также получать и смешанные производные, например COFCl (см. галогенпроизводные угольной кислоты).

Реакцией CO с F2, кроме карбонилфторида COF2, можно получить перекисное соединение (FCO)2O2. Его характеристики: температура плавления −42 °C, кипения +16 °C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200 °C разлагается со взрывом (продукты реакции CO2, O2 и COF2), в кислой среде реагирует с иодидом калия по уравнению:

{mathsf  {(FCO)_{2}O_{2}+2KIrightarrow 2KF+I_{2}+2CO_{2}.}}

Оксид углерода(II) реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

{mathsf  {CO+Srightarrow COS}} (ΔG°298 = −229 кДж, ΔS°298 = −134 Дж/K).

Получены также аналогичные селеноксид углерода COSe и теллуроксид углерода COTe.

Восстанавливает SO2:

{mathsf  {2CO+SO_{2}rightarrow 2CO_{2}+S.}}

C переходными металлами образует горючие и ядовитые соединения — карбонилы,
такие как [Fe(CO)5], [Cr(CO)6], [Ni(CO)4], [Mn2(CO)10], [Co2(CO)9] и др. Некоторые из них летучие.

{displaystyle {mathsf {nCO+Merightarrow [Me(CO)_{n}]}}}

Оксид углерода(II) незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако реагирует с расплавами щелочей с образованием соответствующих формиатов:

{mathsf  {CO+KOHrightarrow HCOOK.}}

Интересна реакция оксида углерода(II) с металлическим калием в аммиачном растворе. При этом образуется взрывчатое соединение диоксодикарбонат калия:

{mathsf  {2K+2COrightarrow K_{2}C_{2}O_{2}.}}

Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение — циановодород HCN. Реакция идёт в присутствии катализатора (диоксид тория ThO2) по уравнению:

{mathsf  {CO+NH_{3}rightarrow H_{2}O+HCN.}}

Важнейшим свойством оксида углерода(II) является его способность реагировать с водородом с образованием органических соединений (процесс синтеза Фишера — Тропша):

{mathsf  {xCO+yH_{2}rightarrow }} спирты + линейные алканы.

Этот процесс является источником производства таких важнейших промышленных продуктов как метанол, синтетическое дизельное топливо, многоатомные спирты, масла и смазки.

Физиологическое действие[править | править код]

Токсичность[править | править код]

Оксид углерода — токсичное вещество. В соответствии с ГОСТ 12.1.007-76 «Система стандартов безопасности труда (ССБТ). Вредные вещества. Классификация и общие требования безопасности» оксид углерода является токсичным малоопасным веществом по степени воздействия на организм, 4-го класса опасности.

TLV (предельная пороговая концентрация, США) — 25 ppm; TWA (среднесменная концентрация, США; ACGIH 1994—1995) — 29 мг/м³; MAC (максимальная допустимая концентрация, США): 30 ppm; 33 мг/м³. ПДКр.з. по ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» составляет 20 мг/м³ (около 0,0017 %).

В выхлопе бензинового автомобиля допускается до 1,5—3,0 % (допустимая концентрация сильно различается в зависимости от страны/применяемых стандартов; 3 % — много даже для старого карбюраторного автомобиля без каталитического нейтрализатора).

По классификации ООН оксид углерода(II) относится к классу опасности 2,3, вторичная опасность по классификации ООН равна 2,1.

Угарный газ очень опасен, так как не имеет запаха. Он связывает гемоглобин, переводя его в карбоксигемоглобин и лишая его способности захватывать кислород, и обладает общей токсичностью, вызывает отравление[6] с поражением жизненно важных органов и систем, с последующим летальным исходом.

Признаки отравления: головная боль и головокружение, сужение поля восприятия; отмечается шум в ушах, одышка, учащённое сердцебиение, мерцание перед глазами, покраснение всех кожных покровов (характерно для всех ингибиторов дыхательной цепи), общая мышечная слабость, тошнота, иногда рвота; в терминальных стадиях судороги, потеря сознания, кома[4][7].

Токсическое действие оксида углерода(2+) обусловлено образованием карбоксигемоглобина — значительно более прочного карбонильного комплекса с гемоглобином, по сравнению с комплексом гемоглобина с кислородом (оксигемоглобином)[7]. Таким образом, блокируются процессы транспортировки кислорода и клеточного дыхания. Концентрация в воздухе более 0,1 % приводит к смерти в течение одного часа[7].

Опыты на молодых крысах показали, что концентрация CO в воздухе 0,02 % замедляет их рост и снижает активность по сравнению с контрольной группой[источник не указан 587 дней].

Помощь при отравлении оксидом углерода(II)[править | править код]

При отравлении рекомендуются следующие действия[7]:

  • пострадавшего следует вынести на свежий воздух. При отравлении лёгкой степени достаточно гипервентиляции лёгких кислородом;
  • искусственная вентиляция лёгких, О2-терапия, в том числе в барокамере;
  • ацизол, хромосмон, метиленовый синий внутривенно.

Мировой медицине неизвестны надежные антидоты для применения в случае отравления угарным газом[8].

Защита от оксида углерода(II)[править | править код]

CO очень слабо поглощается активированным углём обычных фильтрующих противогазов, поэтому для защиты от него применяется специальный фильтрующий элемент (он может также подключаться дополнительно к основному) — гопкалитовый патрон. Гопкалит представляет собой катализатор, способствующий окислению CO в CO2 при нормальных температурах. Недостатком использования гопкалита является то, что при его применении приходится вдыхать нагретый в результате реакции воздух. Обычный способ защиты — использование изолирующего дыхательного аппарата[4].

Эндогенный монооксид углерода[править | править код]

Эндогенный монооксид углерода вырабатывается в норме клетками организма человека и животных и выполняет функцию сигнальной молекулы. Он играет известную физиологическую роль в организме, в частности, является
нейротрансмиттером и вызывает вазодилатацию[9]. Ввиду роли эндогенного угарного газа в организме, нарушения его метаболизма связывают с различными заболеваниями, такими, как нейродегенеративные заболевания, атеросклероз кровеносных сосудов, гипертоническая болезнь, сердечная недостаточность, различные воспалительные процессы[9].

Эндогенный угарный газ образуется в организме благодаря окисляющему действию фермента гемоксигеназы на гем, являющийся продуктом разрушения гемоглобина и миоглобина, а также других гемосодержащих белков. Этот процесс вызывает образование в крови человека небольшого количества карбоксигемоглобина, даже если человек не курит и дышит не атмосферным воздухом (всегда содержащим небольшие количества экзогенного угарного газа), а чистым кислородом или смесью азота с кислородом.

Вслед за появившимися в 1993 году данными о том, что эндогенный угарный газ является нормальным нейротрансмиттером в организме человека[10][11], а также одним из трёх эндогенных газов, которые в норме модулируют течение воспалительных реакций в организме (два других — оксид азота (II) и сероводород), эндогенный угарный газ привлёк значительное внимание клиницистов и исследователей как важный биологический регулятор. Было показано, что во многих тканях все три вышеупомянутых газа являются противовоспалительными веществами, вазодилататорами, а также вызывают ангиогенез[12]. Однако не всё так просто и однозначно. Ангиогенез — не всегда полезный эффект, поскольку он, в частности, играет роль в росте злокачественных опухолей, а также является одной из причин повреждения сетчатки при макулярной дегенерации. В частности, курение (основной источник угарного газа в крови, дающий в несколько раз большую концентрацию его, чем естественная продукция) повышает риск макулярной дегенерации сетчатки в 4—6 раз.

Существует теория о том, что в некоторых синапсах нервных клеток, где происходит долговременное запоминание информации, принимающая клетка в ответ на принятый сигнал вырабатывает эндогенный угарный газ, который передаёт сигнал обратно передающей клетке, чем сообщает ей о своей готовности и в дальнейшем принимать сигналы от неё и повышая активность клетки-передатчика сигнала. Некоторые из этих нервных клеток содержат гуанилатциклазу, фермент, который активируется при воздействии эндогенного угарного газа[11].

Исследования, посвящённые роли эндогенного угарного газа как противовоспалительного вещества и цитопротектора, проводились во множестве лабораторий по всему миру. Эти свойства эндогенного угарного газа делают воздействие на его метаболизм интересной терапевтической мишенью для лечения таких разных патологических состояний, как повреждение тканей, вызванное ишемией и последующей реперфузией (а это, например, инфаркт миокарда, ишемический инсульт), отторжение трансплантата, атеросклероз сосудов, тяжёлый сепсис, тяжёлая малярия, аутоиммунные заболевания. Проводились в том числе и клинические испытания на человеке, однако результаты их пока ещё не опубликованы[13].

На 2015 год о роли эндогенного угарного газа в организме известно следующее[14]:

  • он является одной из важных эндогенных сигнальных молекул;
  • он модулирует функции ЦНС и сердечно-сосудистой системы;
  • он ингибирует агрегацию тромбоцитов и их адгезию к стенкам сосудов;
  • влияние на обмен эндогенного угарного газа в будущем может быть одной из важных терапевтических стратегий при ряде заболеваний.

История открытия[править | править код]

Токсичность дыма, выделяющегося при горении угля, была описана ещё Аристотелем и Галеном.

Оксид углерода(II) был впервые получен французским химиком Жаком де Лассоном в 1776 году при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем.

То, что в состав этого газа входит углерод и кислород, обнаружил в 1800 году английский химик Вильям Крюйкшенк. Токсичность газа была исследована в 1846 году французским медиком Клодом Бернаром в опытах на собаках[15].

Оксид углерода(II) вне атмосферы Земли впервые был обнаружен бельгийским учёным М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК-спектре Солнца. Оксид углерода(II) в межзвёздной среде был обнаружен в 1970 году[16].

Получение[править | править код]

Промышленный способ[править | править код]

Влияние температуры на равновесие реакции: {mathsf  {CO_{2}+Crightleftarrows 2CO}}

Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода:

{displaystyle {mathsf {2C+O_{2}rightarrow 2COuparrow }}} (тепловой эффект этой реакции 220 кДж),

Также образуется при восстановлении диоксида углерода раскалённым углём:

{displaystyle {mathsf {CO_{2}+Crightleftarrows 2COuparrow }}} (ΔH = 172 кДж, ΔS = 176 Дж/К)

Эта реакция происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом оксид углерода(II) вследствие своей ядовитости вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий — «угарный газ»[4].

Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево — энтальпийный. При температуре ниже 400 °C равновесие практически полностью сдвинуто влево, а при температуре выше 1000 °C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому оксид углерода(II) при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара.

Смеси оксида углерода(II) с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ, водяной газ, смешанный газ, синтез-газ).

Лабораторный способ[править | править код]

Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты либо пропускание газообразной муравьиной кислоты над P2O5. Схема реакции:

{displaystyle {mathsf {HCOOH{xrightarrow[{H_{2}SO_{4}}]{^{o}t}}H_{2}O+COuparrow }}}

Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:

{displaystyle {mathsf {HCOOH+HSO_{3}Clrightarrow H_{2}SO_{4}+HCluparrow +COuparrow .}}}

Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:

{mathsf  {H_{2}C_{2}O_{4}{xrightarrow[ {H_{2}SO_{4}}]{^{o}t}}COuparrow +CO_{2}uparrow +H_{2}O.}}

Нагревание смеси гексацианоферрата(II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:

{mathsf  {K_{4}[Fe(CN)_{6}]+6H_{2}SO_{4}+6H_{2}O{xrightarrow[ {}]{^{o}t}}2K_{2}SO_{4}+FeSO_{4}+3(NH_{4})_{2}SO_{4}+6COuparrow .}}

Восстановлением из карбоната цинка магнием при нагревании:

{mathsf  {Mg+ZnCO_{3}{xrightarrow[ {}]{^{o}t}}MgO+ZnO+COuparrow .}}

Определение оксида углерода(II)[править | править код]

Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

{displaystyle {mathsf {PdCl_{2}+CO+H_{2}Orightarrow Pddownarrow +CO_{2}uparrow +2HCl.}}}

Эта реакция очень чувствительная. Стандартный раствор: 1 грамм хлорида палладия на литр воды.

Количественное определение оксида углерода(II) основано на иодометрической реакции:

{displaystyle {mathsf {5CO+I_{2}O_{5}rightarrow 5CO_{2}uparrow +I_{2}.}}}

Применение[править | править код]

  • Оксид углерода(II) является промежуточным реагентом, используемым в реакциях с водородом в важнейших промышленных процессах для получения органических спиртов и неразветвлённых углеводородов.
  • Оксид углерода(II) применяется для обработки мяса животных и рыбы, придаёт им ярко-красный цвет и вид свежести, не изменяя вкуса (технологии Clear smoke[en] и Tasteless smoke[en]). Допустимая концентрация CO равна 200 мг/кг мяса.
  • Оксид углерода(II) является основным компонентом генераторного газа, использовавшегося в качестве топлива в газогенераторных автомобилях.
  • Угарный газ от выхлопа двигателей применялся нацистами в годы Второй мировой войны для массового умерщвления людей путём отравления (газовая камера, газенваген).

Оксид углерода(II) в атмосфере Земли[править | править код]

Содержание CO в атмосфере Земли по данным MOPITT

Различают природные и антропогенные источники поступления в атмосферу Земли. В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Оксид углерода(II) образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение оксида углерода(II) за счёт обычных в почвах фенольных соединений, содержащих группы OCH3 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.

Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и значения pH. Например, из аридных почв оксид углерода(II) выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.

В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).

Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления CO в CO2). В прошлом значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ, использовавшийся для освещения помещений в XIX веке. По составу он примерно соответствовал водяному газу, то есть содержал до 45 % оксида углерода(II). В коммунальной сфере не применяется в виду наличия значительно более дешёвого и энергоэффективного аналога — природного газа.

Поступление CO от природных и антропогенных источников примерно одинаково.

Оксид углерода(II) в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 35 суток[источник не указан 587 дней]. Основной канал потери CO — окисление гидроксилом до диоксида углерода.

Оксид углерода(II) в космическом пространстве[править | править код]

Оксид углерода(II) — вторая по распространённости (после H2) молекула в межзвёздной среде[16]. Этот газ играет важную роль в эволюции молекулярных газовых облаков, в которых происходит активное звездообразование. Как и другие молекулы, CO излучает ряд инфракрасных линий, возникающих при переходах между вращательными уровнями молекулы; эти уровни возбуждаются уже при температурах в несколько десятков кельвин. Концентрация CO в межзвёздной среде достаточно мала, чтобы (в отличие от гораздо более распространённой молекулы H2) излучение в молекулярных вращательных линиях не испытывало сильного самопоглощения в облаке. В результате энергия почти беспрепятственно уходит из облака, которое остывает и сжимается, запуская механизм звездообразования. В наиболее плотных облаках, где самопоглощение в линиях CO оказывается значительным, становится заметной потеря энергии в линиях редкого изотопного аналога 13CO (относительная изотопная распространённость 13C — около 1 %). В связи с его более сильным излучением, по сравнению с атомарным водородом, оксид углерода(II) используется для поиска подобных газовых скоплений. В феврале 2012 года астрономы с использованием европейского космического телескопа «Планк» составили наиболее полную карту его распределения по небесной сфере[17].

См. также[править | править код]

  • Водяной газ
  • Выхлопные газы
  • Генераторный газ
  • Синтез-газ
  • Смешанный газ
  • Отравление угарным газом

Примечания[править | править код]

  1. ГОСТ 12.1.005-76 «Воздух рабочей зоны. Общие санитарно-гигиенические требования».
  2. Carbon Monoxide
  3. 1 2 3 http://www.cdc.gov/niosh/npg/npgd0105.html
  4. 1 2 3 4 Оксид углерода // Российская энциклопедия по охране труда: В 3 тт. — 2-е изд., перераб. и доп. — М.: Изд-во НЦ ЭНАС, 2007.
  5. Баратов А. Н. Пожаровзрывоопасность веществ и материалов и средства их тушения: Справочное издание: в 2-х книгах. — М.: Химия, 1990. — Т. Книга 2. — С. 384.
  6. Рощин А. В., Томилин В. В., Штернберг Э. Я. Окись углерода // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1981. — Т. 17. Ниландера проба – Остеопатии. — 512 с. — 150 800 экз.
  7. 1 2 3 4 Справочник фельдшера. Под ред. А. Н. Шабанова. — М.: «Медицина», 1984.
  8. Scientists hunt for carbon monoxide poisoning antidote (англ.), Associated Press (9 December 2016). Дата обращения: 29 сентября 2018. «we don’t have antidotes for carbon monoxide poisoning, and it’s the most common poisoning».
  9. 1 2 Wu, L; Wang, R. Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications (англ.) // Pharmacol Rev  (англ.) (рус. : journal. — 2005. — December (vol. 57, no. 4). — P. 585—630. — doi:10.1124/pr.57.4.3. — PMID 16382109.
  10. Verma, A; Hirsch, D.; Glatt, C.; Ronnett, G.; Snyder, S. Carbon monoxide: A putative neural messenger (англ.) // Science. — 1993. — Vol. 259, no. 5093. — P. 381—384. — doi:10.1126/science.7678352. — Bibcode: 1993Sci…259..381V. — PMID 7678352.
  11. 1 2 Kolata, Gina. Carbon Monoxide Gas Is Used by Brain Cells As a Neurotransmitter (26 января 1993). Дата обращения: 2 мая 2010.
  12. Li, L; Hsu, A; Moore, P. K. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases! (англ.) // Pharmacology & therapeutics : journal. — 2009. — Vol. 123, no. 3. — P. 386—400. — doi:10.1016/j.pharmthera.2009.05.005. — PMID 19486912.
  13. Johnson, Carolyn Y.. Poison gas may carry a medical benefit (16 октября 2009). Дата обращения: 16 октября 2009.
  14. Olas, Beata. Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO (англ.) // Chemico-Biological Interactions  (англ.) (рус. : journal. — 2014. — 25 April (vol. 222, no. 5 October 2014). — P. 37—43. — doi:10.1016/j.cbi.2014.08.005.
  15. Rosemary H. Waring, Glyn B. Steventon, Steve C. Mitchell. Molecules of death (неопр.). — Imperial College Press, 2007. — С. 38. — ISBN 1-86094-814-6.
  16. 1 2 Combes, Françoise. Distribution of CO in the Milky Way (англ.) // Annual Review of Astronomy & Astrophysics  (англ.) (рус. : journal. — 1991. — Vol. 29. — P. 195. — doi:10.1146/annurev.aa.29.090191.001211. — Bibcode: 1991ARA&A..29..195C.
  17. «Планк» составил карту угарного газа в Галактике.

Литература[править | править код]

  • Ахметов Н. С. Общая и неорганическая химия. 5-е изд., испр. — М.: «Высшая школа», 2003. — ISBN 5-06-003363-5.
  • Некрасов Б. В. Основы общей химии. Т. I, изд. 3-е, испр. и доп. — М.: «Химия», 1973. — Сс. 495—497, 511—513.
  • В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др. Химия: Справ. Пер. с. с нем. 2-е изд., стереотип. — М.: «Химия», 2000. — ISBN 5-7245-0360-3.
  • Баратов А. Н. Пожаровзрывоопасность веществ и материалов и средства их тушения: Справочное издание: в 2-х книгах. Книга 2. — М.: Химия, 1990. — 384 с.

Ссылки[править | править код]

  • Международная карта химической безопасности для монооксида углерода (ICSC 0023, апрель 2007) (англ.)
пор Оксиды
H2O
Li2O
LiCoO2
Li3PaO4
Li5PuO6
Ba2LiNpO6
LiAlO2
Li3NpO4
Li2NpO4
Li5NpO6
LiNbO3
BeO B2O3 С3О2
C12O9
CO
C12O12
C4O6
CO2
N2O
NO
N2O3
N4O6
NO2
N2O4
N2O5
O F
Na2O
NaPaO3
NaAlO2
Na2PtO3
MgO AlO
Al2O3
NaAlO2
LiAlO2
AlO(OH)
SiO
SiO2
P4O
P4O2
P2O3
P4O8
P2O5
S2O
SO
SO2
SO3
Cl2O
ClO2
Cl2O6
Cl2O7
K2O
K2PtO3
KPaO3
CaO
Ca3OSiO4
CaTiO3
Sc2O3 TiO
Ti2O3
TiO2
TiOSO4
CaTiO3
BaTiO3
VO
V2O3
V3O5
VO2
V2O5
FeCr2O4
CrO
Cr2O3
CrO2
CrO3
MgCr2O4
MnO
Mn3O4
Mn2O3
MnO(OH)
Mn5O8
MnO2
MnO3
Mn2O7
FeCr2O4
FeO
Fe3O4
Fe2O3
CoFe2O4
CoO
Co3O4
CoO(OH)
Co2O3
CoO2
NiO
NiFe2O4
Ni3O4
NiO(OH)
Ni2O3
Cu2O
CuO
CuFe2O4
Cu2O3
CuO2
ZnO Ga2O
Ga2O3
GeO
GeO2
As2O3
As2O4
As2O5
SeOCl2
SeOBr2
SeO2
Se2O5
SeO3
Br2O
Br2O3
BrO2
Rb2O
RbPaO3
Rb4O6
SrO Y2O3
YOF
YOCl
ZrO(OH)2
ZrO2
ZrOS
Zr2О3Сl2
NbO
Nb2O3
NbO2
Nb2O5
Nb2O3(SO4)2
LiNbO3
Mo2O3
Mo4O11
MoO2
Mo2O5
MoO3
TcO2
Tc2O7
Ru2O3
RuO2
Ru2O5
RuO4
RhO
Rh2O3
RhO2
PdO
Pd2O3
PdO2
Ag2O
Ag2O2
Cd2O
CdO
In2O
InO
In2O3
SnO
SnO2
Sb2O3
Sb2O4
Hg2Sb2O7
Sb2O5
TeO2
TeO3
I2O4
I4O9
I2O5
Cs2O
Cs2ReCl5O
BaO
BaPaO3
BaTiO3
BaPtO3
  HfO(OH)2
HfO2
Ta2O
TaO
TaO2
Ta2O5
WO2Br2
WO2
WO2Cl2
WOBr4
WOF4
WOCl4
WO3
Re2O
ReO
Re2O3
ReO2
Re2O5
ReO3
Re2O7
OsO
Os2O3
OsO2
OsO4
Ir2O3
IrO2
PtO
Pt3O4
Pt2O3
PtO2
K2PtO3
Na2PtO3
PtO3
Au2O
AuO
Au2O3
Hg2O
HgO
(Hg3O2)SO4
Hg2O(CN)2
Hg2Sb2O7
Hg3O2Cl2
Hg5O4Cl2
Tl2O
Tl2O3
Pb2O
PbO
Pb3O4
Pb2O3
PbO2
BiO
Bi2O3
Bi2O4
Bi2O5
PoO
PoO2
PoO3
At
Fr Ra   Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts
La2O2S
La2O3
Ce2O3
CeO2
PrO
Pr2O2S
Pr2O3
Pr6O11
PrO2
NdO
Nd2O2S
Nd2O3
NdHO
Pm2O3 SmO
Sm2O3
EuO
Eu3O4
Eu2O3
EuO(OH)
Eu2O2S
Gd2O3 Tb Dy2O3 Ho2O3
Ho2O2S
Er2O3 Tm2O3 YbO
Yb2O3
Lu2O2S
Lu2O3
LuO(OH)
Ac2O3 UO2
UO3
U3O8
PaO
PaO2
Pa2O5
PaOS
ThO2 NpO
NpO2
Np2O5
Np3O8
NpO3
PuO
Pu2O3
PuO2
PuO3
PuO2F2
AmO2 Cm2O3
CmO2
Bk2O3 Cf2O3 Es Fm Md No Lr

Добавить комментарий