Как найти по графику период колебаний равен

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_{0} ) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac{1}{c} right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^{-1} right) ), потому, что по свойствам степени ( large  displaystyle frac{1}{c} = c^{-1} ).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

[ large displaystyle boxed{ frac{ 1 text{колебание}}{1 text{секунда}} = 1 text{Гц} }]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

[ large boxed{ nu = frac{1}{T} }]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac{text{рад}}{c} right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

[ large boxed{ omega = 2pi cdot nu }]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac{1}{T} ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_{0}) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_{0}) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

[large boxed{ T cdot N = t }]

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text{шт} right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

[large boxed{ T = frac{1}{nu} }]

(large nu left( text{Гц} right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

[large boxed{ N = nu cdot t}]

  • Связь между частотой и циклической частотой колебаний:

[large boxed{ nu cdot 2pi = omega }]

(large displaystyle omega left( frac{text{рад}}{c} right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

(large varphi_{0} left( text{рад} right) ) — начальная фаза;

(large varphi left( text{рад} right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

[large boxed{ varphi = N cdot 2pi }]

  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Как правило, не всегда легко определить период отдельных колебаний маятника, так как он постоянно находится в движении. Однако, поскольку все колебания маятника одинаковы, для определения периода колебаний можно провести расчеты нескольких колебаний.

Механические колебания.

Проблемы с датчиками ЕГЭ: гармоническая вибрация — амплитуда, период, частота, фаза вибрации — свободная вибрация, вынужденная вибрация, настройка.

Вибрация — это изменение состояния системы, повторяющееся с течением времени. Понятие вибрации охватывает очень широкий спектр явлений.

Вибрация или механические колебания механической системы — это механическое движение тела или системы тел, которое повторяется во времени и происходит вблизи положения равновесия. Равновесное положение — это состояние системы, в котором она может находиться столько времени, сколько необходимо, без внешних воздействий.

Например, когда маятник отклоняют и отпускают, он начинает колебаться. Положение равновесия — это положение маятника, когда он не отклоняется. Маятник может оставаться в этом положении в любое время, пока его не трогают. Когда маятник колеблется, он часто находится вне равновесия.

Сразу же после отпускания отклоненного маятника маятник начинает двигаться, проходит через положение равновесия, достигает противоположного крайнего положения, останавливается в нем, движется в обратном направлении и снова возвращается через положение равновесия. Произошла полная осцилляция. Кроме того, этот процесс периодически повторяется.

Амплитуда колебаний объекта — это величина максимального отклонения от положения равновесия.

Период колебаний — это продолжительность полного колебания. Можно сказать, что за определенный период тело проходит через четыре пути, идущих друг за другом.

Частота колебаний равна обратной величине периода:. Частота измеряется в герцах (Гц) и указывает на количество полных колебаний, происходящих за одну секунду.

Гармонические колебания.

Можно считать, что положение вибрирующего объекта определяется одной координатой. Положение равновесия обозначается через. Основная инженерная задача в этом случае — найти функцию, которая дает координаты тела в любой заданный момент времени.

Естественно использовать периодические функции для математического описания колебаний. Существует множество таких функций, две из которых наиболее важны: полутон и синус. Они обладают многими замечательными свойствами и тесно связаны с широким спектром природных явлений.

Функции синуса и косинуса могут быть получены друг из друга путем сдвига аргументов в противоположные стороны, поэтому вы можете ограничиться одной или другой. Определенно используйте косинус.

Гармонические колебания — это колебания, координаты которых зависят от времени по гармоническим законам.

Давайте рассмотрим важность величин, входящих в это уравнение.

Положительное значение — это максимальное значение модуля координат (поскольку максимальное значение модуля косинуса в единицах), т.е. максимальное отклонение от положения равновесия. Следовательно, это амплитуда колебаний.

Аргумент синусоидальной волны называется фазой колебания. Его значение, которое равно значению фазы тела, называется начальной фазой. Начальная фаза соответствует начальным координатам тела.

Это значение называется частотой его периода. Найдите зависимость между периодом и частотой колебаний. Каждое полное колебание соответствует увеличению фазы в радианах.

Периодическая частота измеряется в радианах в секунду (радиан/сек).

Согласно уравнениям (2) и (3), гармонический закон (1) имеет еще две формы.

График функции (1), представляющей зависимость времени, настроенного на гармонические колебания, показан на рисунке 1.

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) имеет более общий характер. Например, это соответствует ситуации, когда один маятник одновременно подвергается двум начальным воздействиям, обходится одним размером и получает начальную скорость. Есть два важных особых случая, когда одно из этих действий не было выполнено.

Мы пытаемся отклонить маятник, но начальная скорость не была задана (он отпускается без начальной скорости). В этом случае ясно, что мы можем поставить. Мы принимаем коварный закон:.

График гармонического колебания в этом случае показан на рисунке 2.

Рис. 2. Закон косинуса

Предположим, что маятник не отклоняется, а получает начальную скорость из положения равновесия от удара. В этом случае его можно носить. Возьмем закон знаков:.

График колебаний показан на рис. 3.

Рис. 3. Закон синуса

Уравнение гармонических колебаний.

Вернемся к общему закону гармонии (1). Давайте разграничим это равенство.

Далее, различают равенство исходов (4):.

Сравните уравнение (1) относительно координат и уравнение (5) относительно ускорения. Мы видим, что проекция ускорения отличается только от одной факторной координаты.

Эта зависимость называется уравнением гармонического колебания. Его также можно переписать в таком виде.

С точки зрения математики, уравнение (7) является дифференциальным уравнением. Решением дифференциального уравнения является функция (а не число, как в обычной алгебре). Таким образом, можно доказать, что:.

— Слагаемые уравнения (7) являются произвольными функциями произвольной формы (1).

— Другая функция не является решением уравнения.

Другими словами, соотношения (6) и (7) описывают гармонические колебания только с круговыми частотами. Эти две константы определяются начальными условиями, начальными значениями координат и скорости.

Звуковые волны — это упругие волны, которые вызывают ощущение звука у человека и представляют собой зоны сжатия и разбавления, передающиеся в течение длительного времени.

Период колебаний

Вибрации — это движения или процессы, которые повторяются в течение определенного периода времени.

Система, осуществляющая вибрацию, называется колебательной системой или осциллятором.

В зависимости от природы, процесс вибрации может быть механическим, электромагнитным и т.д.

Внимание. Если врач обнаружит, что у вас есть проблема, которая вас беспокоит, у вас может быть серьезная проблема (даже выкидыш). Если вы не можете написать свой собственный, вы можете заказать его здесь.

Свободные или естественные вибрации — это вибрации, наблюдаемые в системе, предоставленной самой себе после нарушения равновесия.

Вынужденные колебания — это колебания под воздействием внешних сил, которые регулярно меняются.

Механическая вибрация относится к категории принудительной вибрации.

Гармонизированные вибрации — это вибрации, определяемые естественными размерами, которые изменяются в соответствии со знаком или косметическим законом.

Различные периодические процессы, повторяющиеся через равные промежутки времени, могут быть записаны как суммы или суперфронты гармонических колебаний.

Определение периода колебаний, формула

Колебательные процессы могут быть выражены в виде уравнения. Гармонические колебания цены X могут быть выражены в следующем виде

(x(t))= a times cos left ( omega _t+ phi _ right))

где ⌘(x(t)⌘) — отклонение натуральной величины качелей от равновесного значения.

A представляет собой ширину гармонического колебания.

(ߡ омега _ справа) — круговая или кольцевая частота колебаний.

(Lo_CP_t) = (co_t + cp _)) — это начальная фаза характеристического колебания в момент времени t = 0, которая может быть определена путем выбора начальной точки.

(cp(t) = (co_t + cp _)) — это фаза колебания в момент времени t, определяемая радиусом и соответствующая значению количества колебаний в конкретный момент времени.

Для материальной точки массой m характеристика x соответствует смещению объекта из положения равновесия. Обратите внимание, что амплитуда и частота гармонических колебаний являются постоянными величинами. Исходя из того, что cos изменяет значение в диапазоне от +1 до -1, параметр x изменяется от +A до -A. С тех пор:.

cos слева (⌘ альфа +2 pi справа) = cos альфа, ⌘)

В этом случае x остается неизменным, а фаза колебаний увеличивается на $ 2 pi$.

Период колебаний T — это минимальное время возвращения колебательной системы в исходное состояние, которое определяется произвольно.

В этом случае фаза увеличивается на (2 pi:ߡ).

(섹 омега _(t + T) + фи _ = слева (섹 омега _t + фи _ справа) + 2 пи ).

Из этого уравнения можно рассчитать период колебаний.

Частота колебаний v является обратной величиной периода колебаний. Это количество полных колебаний, совершаемых в единицу времени.

249.png

График показывает гармоническое колебание. где α — зависимость перемещения x от времени /, β — зависимость скорости vx от времени C и γ — зависимость ускорения ax от времени t.

Единицей частоты в СИ является герц (Гц). Это частота периодического цикла полных колебаний, происходящих за одну секунду.

Можно представить, что материальная точка совершает линейное гармоническое колебание вокруг оси x вокруг положения равновесия, которое является начальной точкой координат. Движение частиц носит колебательный характер и характеризуется скоростью и ускорением. Особенности этого процесса можно описать следующим образом.

Shift (x = A times cos left (⌘ omega _t + phi _ right) ⌘)

Скорость 섹 (v _ = точка = -A omega _ times sin left (섹 omega _ t + phi_ right) = A omega _ times cos left (섹 omega _ t + phi_ + frac<pi > направо) направо)

a _ = точка= ddot = -A omega _ times cos left (찒 omega _ t + phi_ right) = A omega _ ^ times cos left (찒 omega _ t + phi_ + pi right) )

Как найти период для физического маятника

При малых углах отклонения 섹 (⌘ varphi ) естественный маятник совершает гармонические колебания. Его вес можно рассматривать как добавление к центру тяжести в точке C. Сила, которая возвращает маятник в положение равновесия, — это сила F, которая является компонентом силы тяжести.

Отрицательные значения в правой части уравнения означают, что сила F направлена в сторону уменьшения угла ⌘ (⌘ альфа ).

Для меньших углов ⌘ (⌘ varphi ) уравнение можно записать в следующем виде

Примеры решений

Шарик на нити колеблется 60 раз за 2 минуты. Найдите период и частоту колебаний шарика.

ОТВЕТ: период колебаний маятника равен 2 с, а частота — 0,5 Гц.

По графику зависимости координат от представленного времени необходимо рассчитать характеристики колебательного движения тела.

2018-12-06_22-10-02-300x283.jpg

x(t) = A sin 2 pi Vt = 0,2 sin 2 pi раз 1,25t = 0,2 sin 2,5 pi t )

ОТВЕТ: амплитуда колебаний маятника равна 0,2 м, период колебаний 0,8 с, частота колебаний 1,25 Гц, а выражение для координат записано в следующем виде(x(t) = 0,2 sin 2,5 pi t )

Определите длину математического маятника, гармонично колеблющегося с частотой 0,5 Гц на поверхности Луны. В этом случае ускорение свободного падения составляет 1,6 м/с2.

Период колебаний математического маятника рассчитывается по следующему уравнению

Чтобы выразить длину маятника, обе части уравнения нужно возвести в квадрат.

Математический маятник — это точка массы, подвешенная на невесомой, нерастяжимой нити, прикрепленной к подвесу и помещенной в гравитационное поле.

Колебательный процесс

Одним из наиболее распространенных процессов в природе являются колебания. Процесс вибрации обычно заключается в изменении значений параметров рассматриваемой системы, которые регулярно перемещаются вперед и назад за определенное положение равновесия.

Колебательные процессы в природе

Рисунок 1. Вибрационные процессы в природе.

Колебания маятника

Простейшим примером колебательного процесса является маятник, который представляет собой легкую нить с грузом на конце. Его перемещают из положения равновесия в крайнее положение, а затем отпускают (отклонение должно быть намного меньше длины струны, чтобы уменьшить влияние трения).

Вес начинает двигаться в сторону противоположного крайнего значения. Здесь его скорость падает до нуля, и он колеблется в обратном направлении к исходному положению. (На самом деле маятник имеет потери на трение и немного отстает от начальной точки, но это небольшое отклонение пренебрежимо мало).

Рисунок 2. Колебания маятника.

Полное движение, начинающееся от начальной точки и продолжающееся до ближайшего возвращения к ней, называется колебанием.

Период колебаний

Сравнивая несколько последовательных колебаний, можно увидеть, что они очень похожи. При этом каждое колебание длится одинаковое время.

Время, необходимое для возникновения простого колебания, называется периодом колебания. Он обозначается заглавной латинской буквой $T$.

Рисунок 3: Период колебаний на графике.

Напомним, что в системе СИ время измеряется в секундах. Если период слишком мал, берутся дробные единицы миллисекунд (мс, $ 10 ^ $ секунд), микросекунд (мкс, $ 10 ^ $ секунд) и наносекунд (нс, $ 10 ^ $ секунд).

Как правило, не всегда легко определить период отдельных колебаний маятника, так как он постоянно находится в движении. Однако, поскольку все колебания маятника одинаковы, для определения периода колебаний можно провести расчеты нескольких колебаний.

Формула для периода колебаний выглядит следующим образом

Можно быстро различить периоды колебаний от 50 микросекунд (самый громкий) до десятилетий (например, 12 лет — один год для Юпитера). С помощью как экономики, так и технологии можно испытать периоды колебаний от $ 10 ($ нс (период рентгеновских лучей) до 250 миллионов лет (время вращения Солнечной системы вокруг центра нашей галактики).

Пружинный маятник — это груз, прикрепленный к пружине, который может колебаться как горизонтально, так и вертикально.

Частота колебаний — это количество полных колебаний в единицу времени. Символ обозначается в ᢙ (ᢙ ню ), а единица времени — с -1 или Гц (Герц).

1 Гц — это частота колебательного движения, при котором одно полное колебание происходит в секунду.

Период и частота колебаний взаимно обратны.

Частота периода — это число колебаний за 2π секунды. Название ᢙ (ᢙ омега ) и единица измерения — рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания — это колебания, совершаемые объектом под действием внутренних сил системы за счет первоначального запаса энергии после удаления от постоянного положения равновесия.

Условия, при которых возникает свободная вибрация:.

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

В присутствии сил трения свободная вибрация обесценивается. Амортизация — это колебание, ширина которого уменьшается со временем.

Математический маятник — это материальная точка, парящая над голой ненатянутой струной.

Период колебаний математического маятника:.

Частота колебаний математического маятника:.

Круговая частота колебаний математического маятника:.

Максимальная скорость колебаний математического маятника:.

Максимальное значение ускорения колебаний математического маятника:.

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением.

Период свободных колебаний математического маятника, движущегося вверх с ускорением или замедлением:.

Периоды свободных колебаний математического маятника, движущегося горизонтально с ускорением или замедлением:.

Мгновенное значение динамической энергии математического маятника, поднимающегося в процессе колебаний на высоту, ⌘(h ), определяется по формуле

где Į(l ) — длина струны, а Į(Į альфа ) — угол отклонения от вертикали.

Пружина на удержании — это тело, подвешенное на пружине и колеблющееся вдоль вертикальной или горизонтальной оси под действием упругости пружины.

Длительность колебания пружины:.

Частотная вибрация пружины при удержании:.

Частота круговых колебаний пружины на удержании:.

Максимальная скорость колебаний пружины при удержании:.

Максимальное ускорение качающейся пружины при удержании:.

Мгновенная динамическая энергия пружины, находящейся в состоянии покоя, может быть найдена по типу.

Ширина динамической энергии — это максимальное значение динамической энергии, до синуса или косинуса.

Важно! Если маятник является пружиной, но нет математического маятника (естественного маятника), то круговая частота, период и частота колебаний не могут быть рассчитаны по типу, применяемому к математической и ожидающей пружине. В этом случае эти размеры рассчитываются в зависимости от типа силы или действия, приложенного к маятнику.

Резонанс

Регулировка — это явление внезапного увеличения ширины колебаний, которое происходит при совпадении частоты налагаемой силы и частоты колеблющегося тела.

(v_0 ) — собственная частота маятника.

На этой диаграмме показаны кривые координации для среднего значения различных ограничений. Чем ниже трение, тем выше и круче кривая координации.

Явление координации учитывается при регулярном изменении нагрузок на машины и различные конструкции. Координата также используется в акустике, радиальной динамике и т.д.

Задачи на Механические колебания с решениями

Формулы, используемые на уроках «Задачи на Механические колебания».

Название величины

Обозначение

Единица измерения

Формула

Амплитуда колебаний

A

м

Период колебаний

T

с

T = 1 / v ;

T = t / N

Частота колебаний

v

Гц

v = 1 / T ;

v = N / t

Число колебаний за какое-то время

N

N = t /T ;

N = vt

Время

t

с

t = NT ;

t = N / v

Циклическая частота колебаний

 ω

Гц

Период колебаний пружинного маятника

T

c

Период колебаний математического маятника

T

c

Уравнение гармонических колебаний

x(t) = Asin(ωt+φ0)


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 Шарик на нити совершил 60 колебаний за 2 мин. Определите период и частоту колебаний шарика.


Задача № 2.
 На рисунке изображен график зависимости координаты от времени колеблющегося тела.

По графику определите: 1) амплитуду колебаний; 2) период колебаний; 3) частоту колебаний; 4) запишите уравнение координаты.


Задача № 3.
 Амплитуда незатухающих колебаний точки струны 2 мм, частота колебаний 1 кГц. Какой путь пройдет точка струны за 0,4 с? Какое перемещение совершит эта точка за один период колебаний?


Задача № 4.
 Пользуясь графиком изменения координаты колеблющегося тела от времени, определить амплитуду, период и частоту колебаний. Записать уравнение зависимости x(t) и найти координату тела через 0,1 и 0,2 с после начала отсчета времени.


Задача № 5.
 Какова длина математического маятника, совершающего гармонические колебания с частотой 0,5 Гц на поверхности Луны? Ускорение свободного падения на поверхности Луны 1,6 м/с2.


Задача № 6.
 Груз массой 400 г совершает колебания на пружине с жесткостью 250 Н/м. Амплитуда колебаний 15 см. Найти полную механическую энергию колебаний и наибольшую скорость движения груза.


Задача № 7.
 Частота колебаний крыльев вороны в полете равна в среднем 3 Гц. Сколько взмахов крыльями сделает ворона, пролетев путь 650 м со скоростью 13 м/с?


Задача № 8.
 Гармоническое колебание описывается уравнением 
 Чему равны циклическая частота колебаний, линейная частота колебаний, начальная фаза колебаний?


Задача № 9.
 Математический маятник длиной 0,99 м совершает 50 полных колебаний за 1 мин 40 с. Чему равно ускорение свободного падения в данном месте на поверхности Земли? (Можно принять π2 = 9,87.)


Задача № 10.
  ОГЭ
 Как и во сколько раз изменится период колебаний пружинного маятника, если шарик на пружине заменить другим шариком, радиус которого вдвое меньше, а плотность — в два раза больше?


Задача № 11.
   ЕГЭ
 Два математических маятника за одно и то же время совершают — первый N1 = 30, а второй — N2 = 40 колебаний. Какова длина каждого из них, если разность их длин Δl = 7 см?


Краткая теория для решения Задачи на Механические колебания.

ЗАДАЧИ на Механические колебания


Это конспект по теме «ЗАДАЧИ на Механические колебания». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на 
  • Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

  • Как найти период и частоту колебаний
  • Как найти резонансную частоту
  • Как измерить частоту

При решении задач на нахождение периода и частоты колебаний, а также длины волны используйте следующие физические и математические константы: – скорость света в вакууме: c=299792458 м/с (некоторые исследователи, в частности, креационисты, считают, что в прошлом данная физическая константа могла иметь другую величину);

– скорость звука в воздухе при атмосферном давлении и нуле градусов по Цельсию: Fзв=331 м/с;

– число «пи» (до пятидесятого знака): π=3,14159265358979323846264338327950288419716939937510 (безразмерная величина).

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей­ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес­ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю­щихся величин, например, для затухающих колебаний.

Формулы для вычисления периода простейших колебательных систем

Период колебаний пружинного маятника определим как:

[T=2pi sqrt{frac{m}{k}} left(3right),]

на упругой пружине, жесткость которой равна $k,$ подвешен груз массой $m$.

Период колебаний математического маятника зависит от ускорения свободного падения ($g$) и длины подвеса ($l$)

[T=2pi sqrt{frac{l}{g}}left(4right).]

Формула для вычисления периода колебаний физического маятника представляет собой выражение:

[T=2pi sqrt{frac{J}{mga}left(5right),}]

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние от центра масс тела до оси вращения.

Единицами измерения периода служат единицы времени, например секунды.

[left[Tright]=c.]

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за 2π секунд.

Частота гармонических колебаний

При работе с колебательными процессами нередки случаи, когда для характеристики «скорости» удобнее рассматривать не период одного колебания, а количество колебаний за единицу времени. Такая величина называется частотой колебаний, и обозначается греческой буквой $nu$ («ню»). Она равна отношению числа колебаний ко времени, за которое они происходят:

$$nu={Nover t},$$

где:

  • N – число колебаний;
  • t – время, за которое колебания произошли (сек).

Поскольку единицей времени в системе СИ является секунда, то единицей частоты является «колебание в секунду», или Герц (Гц).

Период и частота колебаний – формула зависимости

Рис. 3. Частота колебаний.

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Период гармонических колебаний

Особенностью гармонических колебаний является их большая схожесть. Каждое колебание маятника почти полностью повторяет предыдущее и последующее.

В первую очередь это относится к «скорости качания». Если измерить время, за которое совершаются колебания маятника, можно убедиться, что оно для разных колебаний остается одинаковым. Взяв много маятников разных длин, можно получить различные колебания, однако, для каждого маятника время, за которое совершается любое колебание, будет постоянным.

Это время – важнейшая характеристика колебательного процесса. Оно называется периодом колебаний, обозначается латинской буквой $T$ и измеряется в секундах. Чем быстрее происходят колебания (чем короче нить маятника), тем меньше времени длится каждое колебание, и тем меньше период колебаний.

Период и частота колебаний – формула зависимости

Рис. 2. Период колебаний.

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A — это наибольшее смещение из положения равновесия

Период T — это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний — это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Связь периода и частоты колебаний

Из формулы частоты колебаний можно получить зависимость периода колебаний от частоты. Если колебания происходят с периодом $T$, то $N$ колебаний произойдут за время $TN$. Подставив это время в формулу, получим:

$$nu={Nover t}={Nover TN}={1over T}$$

Таким образом, частота и период колебаний взаимнообратны. Зная частоту – легко найти период, а зная период – легко найти частоту.

Из математики известно, что на нуль делить нельзя. То есть, в формулу связи периода и частоты колебаний нельзя подставлять нулевой период или частоту – в обоих случаях такие колебания невозможны.

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными. Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические, затухающие, нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Математический маятник

Обычный нитяной маятник представляет собой груз, подвешенный на нити, способный совершать колебательные движения после выведения его из состояния равновесия. Для описания движения такого маятника удобно использовать модель, называемую математическим маятником. Математический маятник имеет следующие отличия от реального маятника.

  • Математический маятник, в отличие от реального маятника, не получает и не теряет энергию, трение в математическом маятнике принимается равным нулю.
  • Масса математического маятника представляет собой материальную точку, закрепленную на конце нити. Другой конец неподвижен в принятой Системе Отсчета.
  • Гравитационное поле, в котором маятник совершает колебания, однородно и направлено в сторону от точки закрепления нити к точке равновесия маятника.
  • Нить не имеет веса, и не изменяет свою длину.

Период колебаний математического маятника – формула определения

Рис. 1. Математический маятник.

Для того, чтобы обычный нитяной маятник хорошо описывался формулами математического маятника, необходимо, чтобы его груз имел малый размер, нить была бы нерастяжимой, и максимальное отклонение маятника было бы намного меньше (более, чем в 10 раз) его длины.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом.

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.

Формула периода колебаний

Для определения формулы периода колебаний математического маятника учтем, что колебания совершаются по некоторой дуге. Радиус этой дуги равен длине нити $l$, угол, на который происходит отклонение, обозначим $α$. Мгновенная скорость материальной точки всегда направлена по касательной к траектории, а значит, для математического маятника мгновенная скорость направлена по касательной к этой дуге. Проекция силы тяжести на нее будет равна:

$$F=-mgsinalpha$$

Ускорение движения материальной точки находится по второму закону Ньютона. После проецирования получаем:

$$a_т={Fover m}$$

После подстановки можно сократить массу, получаем:

$$a_т=-gsinalpha$$

Для малых углов дуги $sinalpha=alpha$ и $s=alpha l$, поэтому:

$$a_т=-{gover {l}}s$$

Ускорение – это вторая производная перемещения. Единственная функция, производная которой пропорциональна самой себе со знаком минус – это круговая функция (синусоида). То есть, решение полученного уравнения:

$$s(t)=S_{max} cos sqrt{gover l}t$$

Период колебаний математического маятника – формула определения

Рис. 2. График колебаний математического маятника.

Периодом этой функции (а, значит, и периодом колебаний математического маятника) будет величина:

$$T=2pisqrt {lover g}$$

Данная формула была установлена Х. Гюйгенсом.

Отметим, что формула периода колебаний математического маятника очень похожа на формулу колебаний пружинного маятника. Ускорение свободного падения в математическом маятнике соответствует жесткости пружины в пружинном маятнике. Длина маятника соответствует массе груза. Это объясняется тем, что в обоих случаях причиной колебаний является сила, зависящая от отклонения, направленная против него.

Период колебаний математического маятника – формула определения

Рис. 3. Нитяной и пружинный маятники.

Примеры резонанса

Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор — это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других — вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 — разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Колебания и их амплитуда

Повторяющиеся движения или процессы называют колебаниями

.

В зависимости от природы колебания могут быть механическими, электромагнитными, звуковыми и др. Разные виды колебаний описывают с помощью одинаковых уравнений и при этом используют одинаковые характеристики.

Колебания называют свободными

(иди собственными), если они происходят за счет энергии, которая получена колебательной системой один раз и в дальнейшем внешних воздействий на эту систему нет.

Самым простым видом колебаний являются гармонические колебания.

Гармоническими колебаниями

называют такие колебания, при которых колеблющаяся величина изменяется во времени по закону синуса или косинуса..

Пусть происходят гармонические колебания некоторого параметра $s$, тогда эти колебания можно описать при помощи следующего уравнения:

где $A=s_ $ — амплитуда колебаний; $ _0$ — циклическая (круговая) частота колебаний; $varphi $ — начальная фаза колебаний (фаза при $t=0$); $( _0t+varphi )$ — фаза колебаний.

Амплитудой называют максимальной значение величины, колебания которой рассматривают. Так как косинус (как и синус) изменяется в пределах от единицы до минус единицы, то величина $s$ находится в пределах $-Ale sle $+A.

Колебательные процессы

Колебательным процессом называется периодическое изменение одного или нескольких параметров системы около некоторого значения. Например, колебательным процессом является флаг, развевающийся на ветру. Полотнище флага совершает хаотичные движения вокруг некоторого среднего положения, задаваемого ветром. Другим примером колебательного процесса является движение нитяного маятника – если груз, подвешенный на нити, отклонить от положения равновесия и отпустить, то он начинает колебаться вокруг положения равновесия.

В первом приведенном примере колебания являются хаотичными. Во втором примере – колебания подчиняются простому закону круговых функций (синусоиды), и называются гармоническими. В высшей математике доказывается, что любые сложные колебания могут быть описаны суммой гармонических колебаний. Поэтому в первую очередь изучаются именно они.

Период и частота колебаний – формула зависимости

Рис. 1. Колебания в природе.

Амплитуда колебаний – это максимальное значение отклонения от нулевой точки. В физике данный процесс анализируется в разных разделах. 

Он изучается при механических, звуковых и электромагнитных колебаниях. В перечисленных случаях амплитуда измеряется по-разному и по своим законам.

Амплитуда колебаний

Амплитудой колебания называют максимальную отдаленную точку нахождения тела от положения равновесия. В физике она обозначается буквой А и измеряется в метрах. 

За амплитудой можно наблюдать на простом примере пружинного маятника.

Пружинный маятник

 

В идеальном случае, когда игнорируется сопротивление воздушного пространства и трение пружинного устройства, устройство будет колебаться бесконечно. Описание движения выполняется с помощью функций cos и sin:

x(t) = A * cos(ωt + φ0) или x(t) = A * sin(ωt + φ0),

где 

  • величина А – это амплитуда свободных движений груза на пружине;

  • (ωt + φ0) – это фаза свободных колебаний, где ω – это циклическая частота, а φ0 – это начальная фаза, когда t = 0. 

002

В физике указанную формулу называют уравнением гармонических колебаний. Данное уравнение полностью раскрывает процесс, где маятник движется с определенной амплитудой, периодом и частотой. 

Период колебаний

Результаты лабораторных опытов показывают, что циклический период движения груза на пружине напрямую зависит от массы маятника и жесткости пружины, но не зависит от амплитуды движения. 

В физике период обозначают буквой Т и описывают формулами:

Период колебаний

Исходя из формул, период колебаний – это механические движения, повторяющиеся через определенный промежуток времени. Простыми словами периодом называют одно полное движение груза.

Частота колебаний

Под частотой колебаний следует понимать количество повторений движения маятника или прохождения волны. В разных разделах физики частота обозначается буквами ν, f или F. 

Данная величина описывается выражением:

v = n/t – количество колебаний за промежуток времени,

где 

  • n – это единица колебаний;

  • t – отрезок времени.

В Международной системе измерений частоту измеряют в Гц (Герцах). Она относится к точным измеряемым составляющим колебательного процесса. 

Например, наукой установлена частота вращения Солнца вокруг центра Вселенной. Она равна -1035 Гц при одинаковой скорости.

Циклическая частота

В физике циклическая и круговая частота имеют одинаковое значение. Данная величина еще называется угловой частотой. 

Циклическая частота

Обозначают ее буквой омега. Она равна числу собственных колебательных движений тела за 2π секунд времени:

ω = 2π/T = 2πν.

Данная величина нашла свое применение в радиотехнике и, исходя из математического расчета, имеет скалярную характеристику. Ее измерения проводят в радианах на секунду. С ее помощью значительно упрощаются расчеты процессов в радиотехнике. 

Например, резонансное значение угловой частоты колебательного контура рассчитывают по формуле:

WLC = 1/LC.

Тогда как обычная циклическая резонансная частота выражается:

VLC = 1/2π*√ LC.

В электрике под угловой частотой следует понимать число полных трансформаций ЭДС или число оборотов радиуса – вектора. Здесь ее обозначают буквой f.

Как определить амплитуду, период и частоту колебаний по графику

Для определения на графике составляющих колебательного механического процесса или, например, колебания температуры, нужно разобраться в терминах этого процесса. 

К ним относят:

  • расстояние испытываемого объекта от исходной точки – называют смещением и обозначают х;

  • наибольшее отклонение – амплитуда смещения А;

  • фаза колебания – определяет состояние колебательной системы в любой момент времени;

  • начальная фаза колебательного процесса – когда t = 0, то φ = φ0.

402

Из графика видно, что значение синуса и косинуса может меняться от -1 до +1. Значит, смещение х может быть равно –А и +А. Движение от –А до +А называют полным колебанием.

Построенный график четко показывает период и частоту колебаний. Стоить отметить, что фаза не воздействует на форму кривой, а только влияет на ее положение в заданный промежуток времени.

Добавить комментарий