Как найти подстроечный резистор

Чтобы понять, что такое подстроечный резистор, и зачем он нужен, предлагаем ознакомиться с подробной статьей. Из нее вы узнаете все об области применения и тонкостях работы с данной деталью. А тех, кто дочитает интересный материал до конца, в конце статьи ждет небольшой бонус – документ с ГОСТ 24237-84 (Общие технические условия по резисторам).

В статье разобраны главные принципы работы подстроечных резисторов, характеристики и различия в этих деталях. В качестве бонуса в статье читатель найдет видео c наглядным разбором устройства. Интересующие подробности можно уточнить в комментариях, эксперты ответят на любые ваши вопросы.

Что такое подстроечный резистор: описание устройства и область его применения

В электронике применяют самые разнообразные резисторы.

Что это за резистор

Подстроечный резистор — это миниатюрная версия стандартного переменного резистора. Они разработаны для установки непосредственно на печатную плату и регулируются только при настройке схемы. Например, для настройки чувствительности какого-нибудь датчика или установки усиления усилителя мощности.

[stextbox id=’info’]В литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.[/stextbox]

Для управления подстроечным резистором нужна маленькая отвертка или что-то другое, похожее на нее. Так же, как и подстроечные конденсаторы, подстроечные резисторы бывают однооборотные и многооборотный, сделанные по принципу червячной передачи.

Но в отличие от них, для работы с подстроечным резистором не нужна специальная настроечная отвертка. Близкое нахождение вблизи резистора руки или стальной отвертки никак не влияет на его сопротивление. Подстроечный резистор регулируется обычной отверткой, которая вставляется в специальный паз регулировочного механизма, связанного с круговым ползунком.

Многооборотные подстроечные резисторы используются в тех участках схемы, где нужна прецизионная точность в установке нужного сопротивления. Однооборотными подстроечными резисторами большой точности настройки добиться невозможно.

Подстроечные резисторы служат для одноразовой настройки сопротивления, например в качестве потенциометров на схемах обратной связи импульсных источников питания всегда можно встретить подстроечные резисторы. Существуют также многооборотные подстроечные резисторы.
Что такое подстроечный резистор: описание устройства и область его применения

[stextbox id=’alert’]Подстроечные резисторы имеют небольшие габаритные размеры, и рассчитаны всего на несколько циклов регулировки с целью предварительной или профилактической настройки оборудования, и больше их, как правило, не трогают.[/stextbox]

Поэтому подстроечные резисторы не являются очень стойкими и прочными, по сравнению с переменными резисторами, и рассчитаны максимум на несколько десятков циклов регулировки. Очевидно, что подстроечный резистор никогда не заменит переменный, и если этот принцип нарушить, то можно поплатиться низкой надежностью конструируемого устройства.

Где применяют подстроечные резисторы

Области применения подстроечных резисторов.

Как проверить исправность мультиметром

Для измерения сопротивления понадобится цифровой мультиметр.  Для того, чтобы замерять сопротивление, нам нужно повернуть крутилку на “измерение сопротивления”. С помощью палочки мы можем крутить резистор по часовой стрелке, либо против часовой стрелки, тем самым меняя сопротивление между средним контактом и двумя крайними контактами. Правила при измерении сопротивления:

  1. Прижимайте щупы с некоторой силой к выводам резистора. Тем самым вы исключите появление контактного сопротивления, которое при слабом нажатии будет суммироваться с измеряемым сопротивлением.
  2. При измерении сопротивления резистора на печатной плате, еще раз убедитесь, что плата обесточена. Потом отпаяйте один конец резистора и уже тогда замеряйте его сопротивление.
  3. Не касайтесь выводов резистора при измерении его сопротивления! Тело человека в среднем обладает сопротивлением около 1 КилоОма и зависит от многих факторов. Поэтому, касаясь выводов резистора при измерении сопротивления вы вносите погрешность в измерения.
  4. Если вы хотите, как можно точнее измерить сопротивления резистора, зачистите его выводы либо с помощью ножа, либо с помощью самой нежной наждачной бумаги. В этом случае вы уберете слой окисла, который в некоторых случаях вносит ощутимую погрешность в измерение сопротивления.

[stextbox id=’alert’]Не измеряйте сопротивление под напряжением! Тем самым вы можете повредить мультиметр или получить удар электрическим током![/stextbox]

Ставим щупы по крайним контактам. Замеряем полное сопротивление переменного резистора. Для того, чтобы проверить рабочий ли он, крутим ручку переменного резистора до упора против часовой стрелки и замеряем сопротивление между левым и средним контактом. Должно получиться близко к нулю.

Проверка резистора

Проверка подстроечного резистора мультищупом.

Далее крутим ручку по часовой стрелке, но не до конца. Замеряем снова сопротивление между средним и левым контактом, далее между средним и правым. В сумме должен получиться результат сопротивления двух крайних контактов.

Предлагаем также почитать интересный материал про малоизвестные факты о двигателях постоянного тока в другой нашей статье.

Типы и виды устройства

Типов подстроечных резисторов на современном рынке множество. Это и неразборные подстроечные резисторы типа СП4-1, залитые эпоксидным компаундом, и предназначенные для аппаратуры оборонного назначения и подстроечные типа СП3-16б для вертикального монтажа на плату.

При изготовлении бытовой аппаратуры, на платы впаивают маленькие подстроечные резисторы, которые, кстати, могут по мощности достигать 0,5 ватт. В некоторых из них, например в СП3-19а, в качестве резистивного слоя применяется металлокерамика.

Есть и совсем простые подстроечные резисторы на основе лаковой пленки, такие как СП3-38 с открытым корпусом, уязвимые для влаги и пыли, и мощностью не более 0,25 ватт. Такие резисторы регулируются диэлектрической отверткой, дабы избежать случайного короткого замыкания. Такие простые резисторы часто встречаются в бытовой электронике, например в блоках питания мониторов.

Некоторые подстроечные резисторы имеют герметичный корпус, например R-16N2, они регулируются специальной отверткой, и являются более надежными, поскольку на резистивную дорожку не попадает пыль и не конденсируется влага.

Мощные трехваттные резисторы типа СП5-50МА в корпусе имеют отверстия для вентиляции, в них проводник намотан в форме тороида, а контактный ползунок скользит по нему при повороте ручки отверткой.

В некоторых телевизорах с ЭЛТ до сих пор можно встретить высоковольтные подстроечные резисторы, такие как НР1-9А, сопротивлением 68 МОм и номинальной мощностью 4 ватта. По сути, это набор металлокерамических резисторов в одном корпусе, а типичное рабочее напряжение для данного резистора составляет 8,5 кВ, при максимуме в 15 кВ. Сегодня подобные резисторы встроены в ТДКС.

В аналоговой аудиоаппаратуре можно встретить ползунковые или движковые переменные резисторы, типа СП3-23а, которые отвечают за регулировку громкости, тембра, баланса и т. д. Это линейные резисторы, которые бывают и сдвоенными, как например СП3-23б.

Линейные резисторы

Как выглядят на схеме линейные резисторы.

Подстроечные многооборотные резисторы часто встречаются в электронной аппаратуре, в измерительных приборах и т. д. Их механизм позволяет точно регулировать сопротивление, и количество оборотов измеряется несколькими десятками.

Червячная передача делает возможным медленный поворот и плавное перемещение скользящего контакта по резистивной дорожке, благодаря чему схемы настраиваются очень и очень точно.

Например, подстроечный многооборотный резистор СП5-2ВБ настраивается именно посредством червячной передачи внутри корпуса, и для полного прохода всей резистивной дорожки нужно совершить 40 оборотов отверткой. Резисторы данного типа в разных модификациях имеют мощность от 0,125 до 1 ватта, и рассчитаны на 100 — 200 циклов регулировки.

Это далеко не полный обзор типов и видов детали. Как мы видим из предыдущего описания, подстроечные резисторы по своей сути близки к переменным, но строго говоря, ими не являются. В данном видеоролике кратко, но доходчиво рассказано о том, как переделать подстроечный резистор в переменный.

Получение значения с устройства при помощи ардуино

То, что ножка резистора подключена к аналоговому пину ардуино, позволяет отловить 1024 положения потенциометра, это даст возможность довольно точно производить подстройку.

Ниже приведен код с подробными комментариями. Чтобы посмотреть значения с подстроечного резистора можно выводить информацию на дисплей или индикатор, но в примере все проще – результат можно посмотреть в мониторе порта.

// пин для получения данных

int pin_rezistor = A0;

// переменная для хранения значения

int value = 0;

void setup() {

// порт работает на чтение

pinMode(pin_rezistor, INPUT);

// соединение с компьютером для дебага

Serial.begin(9600);

}

void loop() {

// получаем значение с пина

value = analogRead(pin_rezistor);

// вывод данных

Serial.println(value);

// ждем

delay(500);

}

У резистора есть три ножки: первая, отставленная отдельно, будет использоваться для считывания значения, а к двум другим будут подключены плюс и минус. Для считывания данных необходимо использовать аналоговый пин arduino, например, pin A0.

Чистка подстроечника обычным спиртом

Резистор в схемах может стать грязным, его ползунковая дорожка со временем покрывается слоем пыли. И чтобы вернуть электрическому сопротивлению прежнюю работоспособность его нужно просто почистить.

Делается чистка подстроечных резисторов достаточно просто и быстро. Лучше всего для этих целей использовать чистый спирт. Различные средства типа для снятия лака, самогон, очистители лучше не применять, так как в них могут содержаться примеси, отрицательно влияющие на чистоту резистора.

Чтобы лучше овладеть материалом, рекомендуем также прочитать следующий материал: все что нужно знать о шаговых электродвигателях.

Итак, разбираем резистор (если на нем имеется защитный кожух), для этого обычно достаточно разогнуть небольшие металлические зажимчики на самом корпусе резистора после чего нужно снять эту крышку. Внутри резистора мы увидим дорожку, по которой двигается ползунок среднего вывода резистора. Именно эту дорожку и нужно почистить спиртом от грязи.

Удобно делать так: взять шприц (допустим на 2 куба), набрать в него спирта, и аккуратно через иголку шприца нанести несколько капель прямо на дорожку резистора. После этого мы начинаем в разные стороны вращать это сопротивление, чтобы спирт разошелся по всей дорожке и тем самым расчистил путь для ползунка.

Как чистить резистор

Как почистить резистор в домашних условиях.

В принципе и этого достаточно, чтобы после сборки и установки подстроечного резистора на свое рабочее место схемы мы наслаждались нормальной его работой без прежних неполадок. Хотя если позволяет место на самом резисторе, можно еще аккуратно пройтись и ваткой, что полностью уберет всю грязь с ползунковой дорожки.

Ну, а далее нам нужно обратно собрать наш обновленный резистор и поставить его на свое рабочее место. В большинстве случаев после такой чистки электрическое сопротивление полностью восстанавливается, пропадает прерывистость его работы.

Сложные случаи очистки

В очень редких случаях дело не в грязи, а например разрушении этой дорожки в результате чрезмерного перегрева. Это может произойти в случае, когда случайно на этот резистор было подано слишком большое напряжение, а мощность этого сопротивления недостаточно большая, чтобы быстро рассеять выделяемое тепло от большого тока. Вот и происходит сильный нагрев дорожки переменного резистора с последующим ее разрушением. Тут уж чистка спиртом не поможет.

Нужна полная замена этого резистора на новый, заведомо рабочий. И, естественно, перед установкой нового резистора на старую схему проверьте ее, чтобы не повторился процесс разрушения дорожки уже с новым сопротивлением.

[stextbox id=’warning’]К сожалению, не все типы переменных и подстроечных резисторов можно почистить вышеперечисленным способом. Иногда встречаются сопротивления в цельном корпусе, что не дает возможности добраться до ползунковой дорожки.[/stextbox]

Тут можно пойти на крайние меры. Сделать в корпусе небольшое отверстие (сверлом 0,8-1 мм). Ну и через него уже шприцом через иглу влить спирт. Далее опять крутим в разные стороны ручку резистора и потом нужно подождать пока спирт полностью испарится.

Можно этот переменный резистор немного подогреть (градусов так до 50), это ускорит испарение спирта. Хотя чистый спирт является диэлектриком, ток он через себя не проводит. Следовательно, и не будет отрицательно влиять на работу переменного резистора, если даже на нем и останется немного спирта, который все равно испарится.

Заключение

Всевозможные переменные резисторы находят широкое применение в роли потенциометров в различных приборах, начиная с бытовых, таких как обогреватели, водонагреватели, акустические системы, заканчивая музыкальными инструментами, такими как электрогитары и синтезаторы.

Подстроечные резисторы можно встретить практически на любых печатных платах, начиная с телевизоров, заканчивая цифровыми осциллографами и техникой оборонного значения. Подробно с устройством данного типа можно ознакомиться, скачав файл с ГОСТ 24237-84. Резисторы переменные непроволочные. Общие технические условия.

Надеемся, теперь вам полностью понятен принцип работы подстроечного резистора. Всю новую информацию по этой теме, а также по теме металлоискателей, вы сможете найти в группе. Подписывайтесь на нашу группу в социальной сети «Вконтакте».

Для этого вам необходимо будет перейти по следующей ссылке https://vk.com/electroinfonet. Также в группе можно задавать вопросы и получать на них подробные ответы от профи. В завершение объемной статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.katod-anod.ru

www.vk-book.ru

www.electricalschool.info

www.electrohobby.ru

Предыдущая

РадиодеталиВаристоры – что это такое, принцип действия, характеристики и параметры.

Следующая

РадиодеталиЧто такое катушка индуктивности и почему ее иногда называют дроссель

Какие бывают переменные резисторы?

Конструкция, обозначение и разновидности переменных и подстроечных резисторов

Переменные и подстроечные резисторы

Если посмотреть на всё изобилие радиокомпонентов, которые используются в промышленности и радиолюбителями, то нетрудно заметить, что некоторые радиодетали могут изменять величину своего основного параметра.

К таким элементам относятся переменные и подстроечные резисторы, сопротивление которых можно менять.

Переменных резисторов выпускается очень большой ассортимент, как для обычных электронных схем, так и для схем использующих микромонтаж.

Все переменные и подстроечные резисторы подразделяются на проволочные и тонкоплёночные.

В первом случае на керамический стержень наматывается константановая или манганиновая проволока. Вдоль проволочной обмотки перемещается ползунковый контакт. За счёт этого меняется сопротивление между подвижным контактом и одним из крайних выводов проволочной обмотки.

Во втором случае на подковообразную пластину из диэлектрика наносится резистивная плёнка с определённым сопротивлением, а ползунок перемещается вращением оси. Резистивная плёнка – это тонкий слой углерода (проще говоря, сажи) и лака. Поэтому в описании к конкретной модели резистора в пункте тип проводника обычно пишут “углеродистое” или “углерод”. Естественно, в качестве материала резистивного слоя могут применяться и другие материалы и вещества.

А чем подстроечные резисторы отличаются от переменных?

Подстроечные резисторы в отличие от переменных рассчитаны на гораздо меньшее число циклов перемещения подвижной системы (ползунка). Максимальное число для некоторых экземпляров, например, для высоковольтного резистора НР1-9А вообще ограничено 100.

Для переменных резисторов количество циклов может достигать 50 000 – 100 000. Этот параметр называют износоустойчивостью. При превышении этого количества надёжная работа не гарантируется. Поэтому применять подстроечные резисторы взамен переменных строго не рекомендуется – это сказывается на надёжности устройства.

Давайте взглянем на устройство тонкоплёночного переменного резистора марки СП1. На рисунке вы видите реальный переменный резистор, сопротивление которого 1 МОм (1 000 000 Ом).

Переменный резистор СП-1

А вот его внутреннее устройство (снята защитная крышка). Тут же на рисунке указаны основные конструктивные части.

Устройство переменного тонкоплёночного резистора СП-1

Четвёртый вывод, который виден на первом изображении – это вывод металлической крышки, который служит электрическим экраном и обычно присоединяется к общему проводу (GND).

Подстроечный резистор имеет схожее конструктивное исполнение. Вот взгляните. На фото подстроечный резистор СП3-27б (150 кОм).

Подстроечный резистор СП3-27б

Подстройка сопротивления осуществляется регулировочной отвёрткой. Для этого в конструкции резистора предусмотрен паз.

Теперь, когда мы разобрались с устройством переменных и подстроечных резисторов, давайте узнаем, как они обозначаются на принципиальной схеме.

Обозначение переменных и подстроечных резисторов на принципиальных схемах.

  • Обычное изображение переменного резистора на принципиальной схеме.

    Условное обозначение переменного резистора

    Как видим, оно состоит из обозначения обычного постоянного резистора и “отвода” – стрелочки. Стрелка с отводом символизирует средний контакт, который мы и перемещаем по поверхности из намотанного на каркас высокоомного провода или тонкоплёночному покрытию.

    Рядом с графическим изображением ставится буква R с порядковым номером в схеме. Также рядом указывается номинальное сопротивление (например, 100k – 100 кОм).

    Если переменный резистор включен в схему реостатом (подвижный средний вывод соединён с одним из крайних), то на схеме он может указываться с двумя выводами (на изображении это R2). На зарубежных схемах переменный резистор обозначается не прямоугольником, а зигзагообразной линией. На картинке это R3.

  • Переменный резистор, объединённый с выключателем питания.

    Обозначение резистора с выключателем

    Используется в недорогой переносной аппаратуре. Сам переменный резистор, как правило, используется в цепи регулирования громкости звука, а поскольку он физически (но не электрически!) совмещён с выключателем, то при повороте ручки можно включить прибор и тут же отрегулировать громкость звука. До широкого внедрения цифровой регулировки громкости, такие комбинированные резисторы активно применялись в переносных радиоприёмниках.

    На фото – регулировочный резистор с выключателем СП3-3бМ.

    Переменный резистор с выключателем СП3-3бМ

    На фотографии чётко видна конструкция выключателя, который замыкает свои контакты при повороте дискового регулятора. Часто использовался в аудиоаппаратуре советского производства (например, в переговорных устройствах, радиоприёмниках и пр.).

  • Также в электронике применяются сдвоенные или объединённые переменные резисторы. У них подвижный контакт конструктивно объединён, и его перемещением можно менять сопротивление у двух или нескольких переменных резисторов одновременно.

    Такие резисторы частенько применялись в аналоговой аудиоаппаратуре как регулятор стерео баланса или один из резисторов многополосного эквалайзера. Число сдвоенных резисторов в эквалайзере высокого класса может достигать 20.

    В первом квадрате показано обозначение сдвоенного переменного резистора (R1.1; R1.2), который частенько используется в стереофонической аппаратуре. Во втором показано условное изображение на схеме счетверённого переменного резистора. Обратите внимание на буквенную маркировку (R1.1; R1.2; R1.3; R1.4).

    Условное обозначение сдвоенного и счетверенного переменного резистора

    На принципиальных схемах объединённые резисторы обозначаются с использованием соединяющей пунктирной линии. Этим указывается то, что их подвижные контакты механически объединены на валу одной ручки-регулятора.

  • Обозначение подстроечного резистора.

    Условное обозначение подстроечного резистора

    Подстроечный резистор на схеме обозначается аналогично переменному за одним исключением – у него нет стрелочки. Это говорит нам о том, что регулировка сопротивления производится либо единоразово при настройке электронной схемы, либо очень редко при профилактических работах.

Типы переменных и подстроечных резисторов.

Для того чтобы иметь представление обо всём многообразии переменных и подстроечных резисторов ознакомимся с фотографиями.

Неразборный переменный резистор.

Обычный переменный резистор широкого применения. Хорошо заметен тип: СП4 – 1, мощность 0,25 Ватт, сопротивление 100 кОм.

Неразборный подстроечный резистор СП4-1

Резистор снизу залит эпоксидным  компаундом, то есть он неразборный и ремонту не подлежит. Этот тип очень надёжный, так как он выпускался для оборонной аппаратуры.

А это подстроечные резисторы СП3-16б. Резисторы СП3-16б предназначены для перпендикулярной установки на печатную плату, а мощность их составляет 0,125 Вт. Имеют линейную (А) функциональную характеристику. Как видим, их конструкция весьма добротна и надёжна.

Однооборотные регулировочные резисторы СП3-16б

Однооборотные непроволочные подстроечные резисторы.

Малогабаритный подстроечный резистор, который впаивается непосредственно в печатную плату бытовой аппаратуры. Он имеет очень маленькие размеры и на некоторых платах распаивается до десятка ему подобных.

На фото ниже показаны подстроечные резисторы СП3-19а (справа) мощностью 0,5 Вт. Материал резистивного слоя – металлокерамика.

Подстроечный однооборотный резистор СП3-19а

Лакоплёночные резисторы СП3-38. Устройство их весьма примитивно.

Резистор СП3-38

Так как его корпус является открытым, то на поверхность оседает пыль, конденсируется влага, что и сказывается на надёжности такого изделия. Материал проводника – металлокерамика, а мощность невысока – около 0,125 Вт.

Подстройка таких резисторов осуществляется отверткой из диэлектрика во избежание короткого замыкания. В бытовой электронной аппаратуре найти их довольно легко.

Резисторы РП1-302 (на фото справа) и РП1-63 (слева).

Резисторы РП1-302 и РП1-63

Для подстройки сопротивления резисторов РП1-63 может потребоваться специальная отвёртка. Если приглядется, то паз под отвёртку имеет шестигранную форму. В отличие от СП3-38 такие резисторы имеют защищённый корпус. Это положительно сказывается на их надёжности.

Мощные проволочные подстроечные резисторы.

Здесь показан мощный 3-ёх ваттный проволочный резистор СП5-50МА.

Мощный проволочный подстроечный резистор СП5-50МА (3 Вт)

Его корпус сделан просторным, чтобы к проводящему проволочному слою был приток воздуха для охлаждения. Если перевернуть резистор, то можно детально разглядеть его устройство в том числе и изоляционную планку на которой намотан высокоомный проводник.

Внутреннее устройство проволочного переменного резистора СП5-50МА на 3 Вт

Высоковольтные регулировочные резисторы.

Достаточно редкий экземпляр подстроечного резистора (НР1-9А). Ещё не так давно они стояли во всех кинескопных телевизорах и были завязаны в цепи регулировки высокого напряжения. Его сопротивление 68 МОм.  (Из телевизора я его, собственно, и вытащил, чтобы сфоткать и показать вам).

Высоковольтный регулировочный резистор НР1-9А

Сам по себе НР1-9А является набором керметных резисторов. Его рабочее напряжение 8500 В (это 8,5 киловольт!!!), а предельное рабочее напряжение составляет аж 15 кВ! Номинальная мощность – 4 Вт. Почему регулировочный резистор НР1-9А называют набором резисторов? Да потому, что он состоит из нескольких. Его внутренняя структура соответствует схеме из 3-ёх отдельных резисторов.

В современных кинескопных телевизорах они встраиваются прямо в ТДКС (Трансформатор диодно-каскадный строчный).

Ползунковые переменные резисторы.

В аудиоаппаратуре с аналоговым управлением часто применяются движковые регулировочные резисторы. Их ещё называют ползунковыми. Они широко использовались в электронных приборах для регулировки яркости, контрастности, громкости, тембра и др. Вот взгляните на их конструкцию.

Ползунковые переменные резисторы

Далее на фото показан ползунковый переменный резистор СП3-23а. Из маркировки следует, что мощность его составляет 0,5 Вт, а функциональная характеристика соответствует линейной зависимости (буква А). Сопротивление – 1кОм.

Ползунковый резистор СП3-23а

Также как и переменные резисторы с круговой движковой системой, ползунковые могут быть сдвоенные, например резистор СП3-23б (самый нижний на первом фото). В его составе два переменных резистора с общим подвижным контактом.

Подстроечные многооборотные резисторы.

Очень часто, особенно в специальной аппаратуре, применялись очень удобные и одно время совершенно дефицитные проволочные многооборотные подстроечные резисторы.

Выводы так же были жёсткие для впайки в уже готовые гнёзда, или выполненные из гибкого провода МГТФ, чтобы их можно было распаять в любые точки платы. От нуля до максимального сопротивления регулировочный винт под отвёртку нужно было повернуть ровно 40 раз. Этим достигалась очень высокая точность установки параметров схемы.

Многооборотный подстроечный резистор СП5-2А

На фото показан многооборотный подстроечный резистор СП5-2А. Изменение сопротивления производится круговым перемещением подвижной контактной системы через червячную пару. За 40 полных оборотов можно изменить его сопротивление от минимального до максимального значения. Применяются резисторы СП5-2А в цепях постоянного и переменного тока, и рассчитаны на мощность 0,5 – 1 Вт (зависит от модификации). Износоустойчивость – от 100 до 200 циклов. Функциональная характеристика – линейная (А).

Более полную информацию по резисторам отечественного производства можно получить из справочника “Резисторы” под редакцией И.И. Четверткова и В.М. Терехова. В нём приведены данные практически по всем резисторам. Справочник вы найдёте здесь.

Ремонт переменного резистора.

Так как переменные резисторы – это электромеханическое изделие, то со временем они начинают портиться. Из-за износа проводящего слоя и ослабления прижима скользящего контакта они начинают плохо работать, появляется так называемый “шорох”.

В большинстве случаев восстанавливать неисправный переменный резистор нет смысла, но бывают и исключения. Например, нужного для замены может просто не оказаться под рукой или же он может быть очень редкий. Так в некоторых микшерских пультах используются достаточно редкие и уникальные образцы. Найти замену им сложно.

В таком случае восстановить правильную работу переменного резистора можно с помощью обычного карандаша. Грифель карандаша состоит из графита – твёрдого углерода. Поэтому можно аккуратно разобрать переменный резистор, подогнуть ослабший скользящий контакт, а по проводящему слою несколько раз провести грифелем карандаша. Этим мы восстановим проводящий слой. Также не помешает смазать покрытие силиконовой смазкой. Затем резистор собираем обратно. Естественно, такой метод подходит лишь для резисторов с тонкоплёночным покрытием.

Честно говоря, простейший переменный резистор можно смастерить из простого карандаша, ведь грифель его сделан из углерода! А напоследок, давайте прикинем в уме, как это можно сделать.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Покупаем радиодетали в интернет.

  • Как устроено электромагнитное реле?

  • Маркировка конденсаторов буквенно-числовым и числовым кодом.

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. В первой части статьи мы познакомились с резисторами постоянного сопротивления (постоянными резисторами), а в этой части статьи поговорим о резисторах переменного сопротивления, или переменных резисторах.

Переменные резисторы

Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

1. Потенциометры.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометры

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

Устройство переменного резистора

Устройство переменного резистора-2

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

Схема потенциометра

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Внешний вид непроволочного потенциометра

Устройство непроволочного потенциометра

Контактная щетка непроволочного потенциометра

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

Потенциометры типа СПО

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство проволочного потенциометра

Витки проволоки на резистивном элементе

Вариант намотки резистивного элемента

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

Обозначение номинального сопротивления на корпусе переменных резисторов

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

График функциональных характеристик потенциометров

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

Вариант конструкции резистивного элемента

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Обозначение потенциометров на электрических схемах

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.

Обозначение ступенчатого регулирования

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Обозначение сдвоенных переменных резисторов

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Обозначение механической связи сдвоенных резисторов

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Обозначение переменных резисторов со встроенным выключателем

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

Подстроечный резистор

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.

Подстроечные резисторы специальной конструкции

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

Мощный подстроечный резистор типа ПЭВР

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

Обозначение подстроечного резистора на электрических схемах

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Включение переменного резистора реостатом

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

Включение переменного резистора реостатом вариант 2

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

Включение потенциометра делителем напряжения

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Схема делителя напряжения

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.
Удачи!

Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.

В аппаратуре часто присутствуют подстраиваемые параметры. Для реализации используют переменный резистор. В зависимости от подключения они позволяют менять ток или напряжение в цепи. 

Содержание статьи

  • 1 Что такое резистор с изменяемым (переменным) сопротивлением
  • 2 Способы производства
  • 3 Схематическое обозначение  и цоколевка
  • 4 Виды и особенности применения
    • 4.1 Характер изменения сопротивления
    • 4.2 Сдвоенные, тройные, счетверенные
    • 4.3 Дискретный переменный резистор
    • 4.4 С выключателем
  • 5 Способы подключения: реостат и потенциометр
  • 6 Основные параметры
  • 7 Как проверить переменный резистор при помощи тестера

Что такое резистор с изменяемым (переменным) сопротивлением

Среди радиоэлементов существуют детали, которые могут изменять свой основной параметр. Именно такими являются переменные или регулируемые резисторы. Они отличаются от постоянных тем, что их сопротивление можно плавно менять практически от нуля до определенного значения. Изменение происходит путем механического перемещения ползунка.

Регулируемые или переменные резисторы - виды и размеры разные

Регулируемые или переменные резисторы — виды и размеры разные

Есть у переменных резисторов разновидности — подстроечные и регулировочные. Чем отличаются переменные резисторы от подстроечных? Тем что подстроечные рассчитаны на небольшое количество регулировок. У некоторых моделей их количество может исчисляться сотнями или десятками (например, у НР1-9А перемещать ползунок можно не более 100 раз). Если посмотреть на таблицу ниже, можно увидеть что у некоторых подстроечных SMD резисторов циклов регулировки всего 10.

Пример характеристик подстроечных резисторов SMD

Пример характеристик подстроечных резисторов SMD

У переменных резисторов этот показатель значительно выше. Количество перемещений регулятора может исчисляться десятками и даже сотнями тысяч. Так что использовать подстроечные резисторы вместо переменных явно не стоит.

Основной недостаток переменных резисторов — их недолговечность. Контакт между резистивным слоем и щеткой постепенно ухудшается. Для акустической аппаратуры это может выражаться во все усиливающихся шумах, при подстройке частоты в радиоприемниках все тяжелее «поймать»  нужную длину волны и т.д.

Анимация дает понять, как работает переменный резистор и почему выходит из строя

Анимация дает понять, как работает переменный резистор и почему выходит из строя

Способы производства

Переменный резистор может быть двух типов: проволочным и пленочным. У проволочных на диэлектрическую трубку намотана проволока, вдоль нее перемещается металлический передвижной контакт — ползунок. Его местоположение и определяет сопротивление элемента. Витки проволоки уложены вплотную друг к другу, но они разделены слоем лака с высокими диэлектрическими свойствами.

Ползунковые переменные резисторы проволочного типа

Ползунковые переменные резисторы проволочного типа

Переменные проволочные резисторы — это необязательно трубка с намотанной на нее проволокой как на фото выше. Такие элементы выпускались в основном несколько десятков лет назад. Современные мало чем отличаются от пленочных, разве что корпус чуть выше, так как проволока все-таки занимает больше места, чем пленка.

Со снятой крышкой видна проволочная спираль и бегунок

Со снятой крышкой видна проволочная спираль и бегунок

У пленочных переменных резисторов на диэлектрическую пластину (обычно выполнена в виде подковы) нанесен слой токопроводящего углерода. В этом случае контакт тоже подвижный, но он закреплен на стержне в центре подковы и чтобы изменить сопротивление, надо повернуть стержень.

Пленочный регулируемый резистор

Пленочный регулируемый резистор

Регулировочное переменное сопротивление может быть и проволочным, и пленочным, а подстроечные, в основном, делают пленочными. Есть у них внешнее отличие: нет стержня с ручкой, а есть плоский диск с отверстием под отвертку. Сопротивления этого типа используются только для наладки параметров при пуске или техническом обслуживании аппаратуры.

Переменные резисторы SMD

Переменные резисторы SMD

Кроме способа производства есть еще две формы выпуска: для обычного навесного монтажа и SMD-элементы для поверхностного монтажа. SMD резисторы отличаются миниатюрными размерами, выполнены по пленочной технологии.

Схематическое обозначение  и цоколевка

В отличие от постоянных резисторов, у регулируемых не два вывода, а как минимум три.  Почему как минимум? Потому что есть модели с дополнительными выводами — их может быть несколько. На электрических схемах  переменные и подстроечные резисторы обозначаются прямоугольниками как постоянные, но имеют дополнительный вывод, который схематически представлен как ломанная линия, упирающаяся в середину изображения. Чтобы можно было отличить переменный от подстроечного, у переменного на конце третьего ввода рисуют стрелку, подстроечный изображается более длинной перпендикулярной линией без стрелки.

Обозначение на схемах переменных и подстроечных резисторов

Обозначение на схемах переменных и подстроечных резисторов

Если говорить о расположении выводов, то средний вывод подключен к ползунку, крайние — к началу и концу резистивного элемента.

Цоколевка переменного резистора

Цоколевка переменного резистора

Виды и особенности применения

Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.

Переменные резисторы бывают разных видов

Переменные резисторы бывают разных видов

Характер изменения сопротивления

Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:

  • сопротивление изменяется по логарифмическому закону;
  • по показательному типу (обратному логарифмическому).

    Характер изменения сопротивления в переменных резисторах

    Характер изменения сопротивления в переменных резисторах

В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.

Сдвоенные, тройные, счетверенные

В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:

  • С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
  • С раздельным изменением параметров. Называются еще соосными,  так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.

    Сдвоенный регулируемый резистор и его обозначение

    Сдвоенный регулируемый резистор и его обозначение

Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.

Так выглядят сдвоенные и строенные переменные сопротивления

Так выглядят сдвоенные и тройные переменные сопротивления

Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного —  R15.1 и R15.2.

Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.

Дискретный переменный резистор

Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Дискретный переменный резистор (со ступенчатой регулировкой) и его обозначение на схеме

Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.

С выключателем

Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.

Переменный резистор с выключателем в одном корпусе: как выглядит, как обозначается на схеме

Переменный резистор с выключателем в одном корпусе: внешний вид и обозначение на схемах

На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.

Способы подключения: реостат и потенциометр

Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.

Переменный резистор может использоваться как реостат или потенциометр

Переменный резистор может использоваться как реостат или потенциометр

Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.

Основные параметры

Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности. Как вы уже, наверное, поняли, придется еще и другие принять во внимание:

  • Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
  • Рабочая температура.
  • Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
  • Эффективный угол поворота регулятора.

Параметры мощных переменных резисторов

Параметры мощных переменных резисторов

Конечно, основные параметр важны и именно они являются определяющими. Но стоит обращать внимание и на температурный режим. Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.

Как проверить переменный резистор при помощи тестера

Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра. Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики. При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.

Как проверить переменное сопротивление тестером

Как проверить переменное сопротивление тестером

Провести надо будет несколько несложных замеров:

  • Максимальное сопротивление измеряется между крайними выводами.
  • Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
  • Главная проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).

Изучаем переменный резистор

Содержание

  • 1 История изобретения
  • 2 Типы функциональных характеристик
  • 3 Виды потенциометров
  • 4 Специальные потенциометры и подстроечные
  • 5 Основные характеристики переменных резисторов
  • 6 Обозначение и маркировка
  • 7 Распиновка переменных резисторов и их проверка
  • 8 Включение в цепь переменного тока
  • 9 Выбор резистора на основе расчетов
  • 10 Видео по теме

Назначение обычных резисторов, которые ранее назывались сопротивлениями (что следует из значения слова resisto), — оказывать сопротивление протекающему через них электротоку. Отсюда и конструкция первых резисторов (если не считаться с низкоомными проволочными элементами) — проводящий материал (сажа или графит) смешивался с непроводящим органическим материалом, а дальше эта смесь оформлялась в виде объемной массы либо наносилась в виде пленки на изоляционное основание. Чем больше было в массе непроводящего материала и меньше проводящего, тем выше было сопротивление резистора электротоку.

Разнообразие переменных резисторов

История изобретения

Когда по ходу проведения опытов по электричеству или при эксплуатации электро- и радиоприборов возникла необходимость в резисторах, сопротивление которых электротоку требовалось оперативно менять, появился реостат. Данное устройство представляло собой обмотку из проволоки с высоким удельным сопротивлением, по которой двигался токопроводящий ползунок.

Сопротивление реостата зависело от положения ползунка и изменялось от нулевого до полного сопротивления обмотки. Изобретен реостат был в 1842 году немецким физиком Иоганном Христианом Поггендорфом.

Проволочный реостат

В эпоху первых ламповых радиоприемников и радиостанций реостатами поддерживалось постоянным напряжение накала электронных ламп по мере разряда батарей накала. Радиолюбители изготавливали их самостоятельно.

Для регулировки громкости в радиоприемниках требовались высокоомные переменные резисторы. Их изготавливали по принципу композиционных радиоэлементов — проводящий материал наносился на изолирующую подложку в форме вытянутого прямоугольника или подковообразной диэлектрической пластины, по которому скользила пружинистая дужка из проводящего материала (токоотвод), связанная с механизмом регулировки. Введенное в схему сопротивление зависело от положения дужки и также изменялось от близкого к 0 до максимального.

Точный смысл наименования «переменный резистор» предполагает, что элемент имеет 2 вывода (один от проводящего материала, другой от ползунка), но ничто не мешало снабдить переменный резистор 3 выводами — от обоих концов проводящего материала и ползунка. Сопротивление между концами проводящего материала оставалось неизменным, а в схему можно было вводить сопротивление между ползунком и любым из концов проводящего материала, что расширяло возможности регулировки.

Устройство переменного сопротивления

Переменный резистор с 3 выводами получил название «потенциометр». Изобретен он в 1843 году британским физиком Чарльзом Уитстоном (для применения в известном мосту Уитстона). Название «потенциометр» достаточно неудачное. Как правило, в словах окончание «метр» (амперметр, вольтметр, спидометр, термометр) означает «измеряю». Но потенциометр не измеряет потенциал (или разность потенциалов — электронапряжение). Данный элемент делит электронапряжение в отношении, задаваемом положением движка.

Именно это свойство потенциометра позволяет пользоваться им для регулирования громкости звуковоспроизводящего устройства, изменяя напряжение звукового сигнала на входе усилителя. Два крайних вывода потенциометра подключаются к источнику электротока, а регулируемое электронапряжение снимается с движка.

Регулировка напряжения 12 Вольт

Типы функциональных характеристик

Что такое функциональная характеристика потенциометров или переменных резисторов — это зависимость присутствующего в схеме сопротивления от положения движка линейного потенциометра или угла поворота кругового. При равномерной плотности токопроводящего материала на подложке потенциометра данная зависимость будет линейной. Это удобно для регулировки напряжения источника питания или генератора, но оказывается совершенно непригодным при регулировке громкости, что определяется физиологией слухового аппарата человека.

Согласно психофизиологическому закону Вебера-Фехнера, субъективное ощущение громкости прямо пропорционально связано с логарифмом интенсивности звука. Оттого при использовании в радиоприемнике регулятора громкости с линейной характеристикой наблюдается противоречие: громкость при первых оборотах регулятора резко возрастает, но при его дальнейших вращениях изменения громкости становятся неощутимыми.

Для компенсации логарифмической зависимости изменения громкости относительно интенсивности звука характеристика электронапряжения с потенциометра, используемого в регуляторе звука, должна быть обратно-логарифмической.

Все переменные резисторы, выпускаемые для регулировки громкости, обладают функциональной зависимостью под названием тип В. Потенциметры с линейным графиком введенного сопротивления от угла поворота — это устройства типа А. Третий тип зависимости (логарифмический) обозначается, как Б.

Графики функциональных характеристик потенциометров

Если подключить потенциометры с разными функциональными характеристиками к источнику напряжения 12 Вольт, при среднем положении движка регулятор типа А выдаст электронапряжение 6 В, регулятор типа В — всего около 1 В, а типа Б — все 11 В. При крайних положениях движка все 3 потенциометра выдадут 0 В и 12 В.

Виды потенциометров

На данный момент выпускается огромное разнообразие переменных резисторов. По своему устройству они делятся на проволочные и пленочные, а по функциональному назначению — переменные и подстроечные.

Пленочный потенциометр

Существуют потенциометры с промежуточными ответвлениями — одним, двумя или тремя. Они применяются в схемах тонкомпенсированной регулировки громкости, что связано с частотной зависимостью чувствительности слуха. Другое назначение отводов — создание регуляторов с отличными от стандартных А, Б, В функциональными характеристиками.

Для особых целей, когда требуется согласованное изменение электрического сопротивления в 2 цепях, выпускаются сдвоенные потенциометры, снабженные единой осью, но двумя резистивными дорожками с собственными выводами и ползунками. Необходимы такие типы переменных резисторов, например, для одновременной регулировки громкости двух каналов стереофонического усилителя и в полосовых фильтрах либо частотно-задающих цепях генераторов частоты на основе моста Вина.

Сдвоенный потенциометр и его схематическое обозначение

К разновидности сдвоенных потенциометров относятся и те элементы, которые имеют раздельную регулировку параметров.  Их называют соосными. У них тонкий вал одного потенциометра проходит через полый вал другого, каждый вал снабжен своей ручкой.

Существуют поворотные переменные резисторы с переключателем, служащим для включения и выключения устройства, что позволяет уменьшить количество органов управления на его панели.

Внешний вид и обозначение на схемах потенциометра с выключателем

Специальные потенциометры и подстроечные

Для целей дистанционной регулировки выпускаются резисторы, управляемые не механическим действием, а электронным способом. Их называют цифровыми потенциометрами. Более современными типами являются интегральные схемы, объединяющие до 100 соединенных последовательно постоянных резисторов, переключаемых полевыми транзисторами.

Угол поворота оси потенциометра обычно находится в пределах 270 или 320 градусов. Элементы с малым углом поворота используются в джойстиках.

Особым типом являются многооборотные или спиральные потенциометры, в которых проводящий элемент имеет вид спирали на изоляционном корпусе. Эти резисторы применяются для подстройки частоты в приемниках или передатчиках. Настройка осуществляется при повороте ручки на 5, 10 или даже 40 оборотов.

Многооборотный резистор

Существуют еще подстроечные переменные резисторы (триммеры), впаиваемые в печатную плату. Как правило, приборы, снабженные таким переменным сопротивлением, настраиваются под требуемые характеристики на заводе-изготовителе. Триммеры обычно выпускаются типа А, снабжены шлицом и регулируются посредством отвертки, после чего положение фиксируется лаком.

Подстроечный резистор

Основные характеристики переменных резисторов

Потенциометры, как и любые другие радиотехнические элементы, имеют собственные электрические и физические характеристики. К основным относят:

Основные характеристики потенциометров

Номинальное сопротивление переменных резисторов выбирается из шести стандартных рядов — Е3, Е6, Е12, Е24, Е48, Е96, Е192.

Стандартные ряды номиналов

Указывается номинальное сопротивление на корпусе с помощью буквенно-числового кода. Например, М15 означает 0.15 МОм, а 15k — 15 кОм и т. п.

Сопротивление переменного резистора зависит от температуры, поэтому учитывается ТКС — температурный коэффициент сопротивления. Данная характеристика отображает относительное изменение сопротивления на каждый градус изменения температуры. Обычно ТКС составляет величину порядка ±1000×10-6 1/°C, а при особых требованиях от ±1×10-6 1/°C до ±100×10-6 1/°C.

Чтобы избежать перегрева переменного резистора в силовых электроцепях, рассеиваемая на нем мощность не должна превышать номинальную мощность.

Все характеристики потенциометров приводятся в соответствующих справочниках.

Обозначение и маркировка

На схеме переменные резисторы обозначаются таким же прямоугольником, как и постоянные, но с указанием дополнительного вывода. Данный вывод может изображаться двумя взаимоперпендикулярными линиями или линией со стрелкой. Последний вариант — это обозначение для регулируемого переменного резистора.

Обозначение потенциометров на схемах

По ГОСТ 11.074.009-78 принята маркировка для переменных резисторов буквами РП. За ними идут цифры 1 или 2. Этими цифрами обозначается вариант конструктивного исполнения: 1 — непроволочный резистор, 2 — проволочный. Через тире указывается регистрационный номер разработки. Расшифровка остальных буквенно-цифровых меток представлена на рисунке ниже.

Маркировка переменных сопротивлений

Многие зарубежные производители используют кодовую маркировку резисторов. В этом случае номинал зашифровывается первыми двумя цифрами, а множитель, определяющий положение запятой десятичного знака, — буквой. Чтобы определить номинал радиоэлемента с кодовой маркировкой понадобится справочник, в частности таблица с расшифровкой кода по цифрам и буквам.

Таблица кодов

Распиновка переменных резисторов и их проверка

Распиновка (расположение выводов), а также схема подключения переменного резистора отображены на рисунке ниже.

Расположение выводов и схемы подключения

Проверка резисторов переменного сопротивления осуществляется по такому же принципу, что и постоянного. Обычно она выполняется мультиметром. Положение его щупов произвольное, поскольку полярность подаваемого тестового электронапряжения не имеет значения.

Перед тем как проверить резистор, следует выбрать диапазон измерений. Поскольку основной проблемой потенциометров является ухудшение со временем контакта между движком и токопроводящим элементом, то необходимо проверить работоспособность элемента. Установив мультиметр в режим омметра, его щупами следует прикоснуться к центральному выводу потенциометра и к одному из крайних. Далее медленно вращая ось резистора, надо наблюдать за показаниями прибора. Если деталь исправна, то показания будут изменяться без скачков, то есть, плавно. Проверку следует повторить для второго крайнего вывода.

Чтобы узнать значение минимального сопротивления, бегунок потенциометра надо выставить в нулевое положение. Щупы мультиметра необходимо подсоединить к крайнему левому и среднему выводам. Полученные значения сравниваются с заявленным диапазоном номиналов. Они могут отклоняться в меньшую или большую сторону, но должны находиться в рамках допуска. При измерении максимального сопротивления щупы следует подключить к крайним выводам.

Проверка мультиметром

Включение в цепь переменного тока

Обычный реостат, представляющий собой обмотку из высокоомного провода, по определению обладает активным сопротивлением, обусловленным омическим сопротивлением, а также реактивным, связанным с индуктивностью обмотки. При постоянном электротоке и низких частотах индуктивность никакого влияния на сопротивление не оказывает, но с ростом частоты переменного электротока это влияние возрастает.

Обычный потенциометр имеет некоторую емкость (паразитную) между выводами, что также меняет характер его полного сопротивления на высоких частотах. Как правило, частотные свойства переменных резисторов в их характеристиках не приводятся. Большинство из них рассчитаны на работу в низкочастотных цепях. Поэтому резистор в цепи переменного тока ведет себя согласно своим паразитным емкости и индуктивности.

В зависимости от того как подключить переменный резистор к цепи, он будет играть роль реостата или потенциометра. В первом варианте устройство изменяет силу электротока, во втором — электронапряжение. Чтобы получить реостат, задействуют один из крайних выводов и подвижный контакт. Как потенциометр резистор работает при подключении всех контактов, представляя собой делитель электронапряжения.

Варианты подключения переменного резистора

Выбор резистора на основе расчетов

Выстраивая цепь переменного тока с регулируемым резистором, необходимо учитывать его основные характеристики, а именно — сопротивление и мощность рассеивания. Сначала, подбирая резистор, надо узнать величину переменного сопротивления. Для этого используем закон Ома: I = U/R. Далее следует рассчитать мощность по формуле P = UI.

Как пример рассмотрим такую задачу: подобрать резистор для регулировки электронапряжения от 0 до 30 В в цепи с силой электротока 50 мА:

  1. Находим сопротивление — 30/0.05 = 600 Ом.
  2. Значение мощности — 30×0.05 = 1.5 Вт.

Следовательно, нам нужен потенциометр 600 Ом, мощность которого 1.5 Вт, но так мы получим оптимальные значения, на практике нужно выбирать потенциометр с запасом по некоторым характеристикам.

Подключение к электроцепи переменного резистора позволяет изменять ее параметры непосредственно в ходе работы. Поэтому он применяется в электроприборах разного назначения. С помощью переменного сопротивления можно регулировать звук, частоту, яркость света. Одним словом, принцип работы этого радиоэлемента используют в тех устройствах, которые позволяют изменять настройки с помощью бегунков или вращения рукояток.

Видео по теме

Добавить комментарий