Как найти поглощенную дозу излучения

1. Как определяют дозу поглощенного излучения? В каких единицах она измеряется?

Доза поглощенного излучения – это отношение энергии излучения, которая была поглощена телом, к его массе. Она измеряется в грэях (1 Гр = 1 Дж / кг).

2. Что характеризует коэффициент относительной биологической активности (коэффициент качества)?

Он характеризует различия биологического действия различных видов излучения.

3. Дайте определение эквивалентной дозы поглощенного излучения. В каких единицах она измеряется?

Эквивалентная доза поглощенного излучения – это произведение коэффициента качества на дозу поглощенного излучения. Она измеряется в зивертах (1 Зв).

4. Какое ионизирующее излучение представляет естественный радиационный фон? Чему равно среднее значение эквивалентной дозы поглощенного излучения, обусловленной естественным радиационным фоном?

Радиоактивный радон и продукты его распада вносят большой вклад в естественный радиационный фон. Среднее значение эквивалентной дозы поглощенного излучения , которое обусловлено естественным радиационным фоном, составляет около 2 мЗв в год.

5. Охарактеризуйте процентный вклад различных источников ионизирующего излучения в естественный радиационный фон.

Вклад радона в естественный радиационный фон составляет около 55%, рентгена – 11%, пищи и дыхания – 11%, земной коры – 8%, космических лучей – 8%, мед. обследования – 4%, промтоваров -3%, других источников – менее 1%.

В данной теме рассмотрим способы решения задач, связанных с
основами дозиметрии и на определение поглощенной дозы радиоактивных излучений.

Задача 1. Мощность дозы гамма-излучения радиоактивных изотопов
в зоне заражения равна 200 мкГр/ч. В течение скольких часов человек может
работать в этой зоне без вреда для здоровья, если в аварийной обстановке в
качестве допустимой принята доза 25 мЗв?

ДАНО:

СИ

РЕШЕНИЕ

Мощность поглощенной дозы излучения — это величина,
численно равная поглощенной дозе излучения, отнесенной к единице времени

Поглощённая доза излучения

Эквивалентная доза излучения

Тогда безопасное время работы

Ответ: в зоне заражения человек может работать в
течение 125 часов.

Задача 2. Человек массой 60 кг подвергался облучению в
течение 12 ч. Какова мощность поглощенной дозы и энергия, поглощенная человеком
за это время, если поглощенная доза излучения 35 мГр?

ДАНО:

СИ

РЕШЕНИЕ

Мощность поглощенной дозы излучения равна поглощенной дозе
излучения, отнесенной к единице времени

Поглощенная доза излучения — это величина, равная отношению
энергии ионизирующего излучения, поглощенной облучаемым веществом, к массе
этого вещества

Тогда энергия ионизирующего излучения равна

Ответ: Р = 0,81 мкГр/с; W = 2,1 Дж.

Задача 3. Воздух при нормальных условиях облучается
γ-излучением. Определить энергию, поглощаемую воздухом массой 5 г при
экспозиционной дозе излучения 258 мкКл/кг.

ДАНО:

СИ

РЕШЕНИЕ

Запишем формулу для определения энергии, поглощаемой
воздухом

Количество пар ионов в единице массы

Тогда энергия поглощаемая воздухом

Энергия ионизации воздуха

Ответ: энергия, поглощенная воздухом
массой 5 г, равна 43,5 мкДж.

Задача 4. Мощность экспозиционной дозы на расстоянии
10 см от источника составляет 85 мР/ч. На каком расстоянии от источника можно
находиться без защиты, если допустимая мощность дозы равна 0,017 мР/ч?

ДАНО:

СИ

РЕШЕНИЕ

Мощность экспозиционной дозы излучения прямо
пропорциональна квадрату активности препарата и обратно пропорциональна
квадрату расстояния до источника

где ky – g-постоянная, которая характерна для данного радионуклида.

Применим записанную формулу для двух случаев

Тогда

Тогда безопасное расстояние

Ответ: без защиты можно находиться на
расстоянии 7,1 м от источника.

Задача 5. Карманный дозиметр радиоактивного облучения,
представляющий собой миниатюрную ионизационную камеру емкостью 3 пФ, заряжен до
потенциала 180 В. Под влиянием облучения потенциал снизился до 160 В. Сколько
рентген покажет дозиметр, если до этого он был поставлен на ноль, а объем
воздуха в камере 1,8 см3?

ДАНО:

СИ

РЕШЕНИЕ

Величина нейтрализованного заряда прямо пропорциональна
емкости ионизационной камеры дозиметра и изменению ее потенциала

Количество образовавшихся пар ионов

Заряд одновалентного иона

Зарегистрированная дозиметром доза облучения

Ответ: зарегистрированная дозиметром
доза облучения составляет 0,1 Р.

Поглощенной
дозой излучения

называется количество энергии любого
вида ионизирующего излучения, поглощенное
единицей массы любого вещества:

,
(40)

где

поглощенная энергия излучения; dm
– масса вещества.

Поглощенная доза является количественной
мерой воздействия ионизирующего
излучения на вещество. За единицу
измерения поглощенной дозы принят грей
(Гр).

Грей
– поглощенная доза излучения,
соответствующая энергии 1 Дж
ионизирующего излучения любого вида,
переданной облученному веществу массой
1 кг:

1 Гр = 1 Дж/кг.

На
практике применяется внесистемная
единица – рад
(Rad – по первым буквам английского
словосочетания «radiation absorbet dose»). Доза в
1 рад означает, что в каждом грамме
вещества, подвергшегося облучению,
поглощено 100 эрг энергии:

1 рад = 100 эрг/г = 0,01 Дж/кг = 0,01 Гр,

т.
е. 1 Гр = 100 рад (1 эрг = 10 Дж).

3.2. Экспозиционная доза излучения

Для характеристики рентгеновского и
-излучений по эффекту
ионизации используют экспозиционную
дозу. Эта доза выражает энергию фотонного
излучения, преобразованную в кинетическую
энергию вторичных электронов, производящих
ионизацию в единице массы атмосферного
воздуха. В качестве характеристики
воздействия фотонного излучения с
энергией от 5 кэВ до 3 МэВ на окружающую
среду используют экспозиционную дозуХ.

Экспозиционная
доза
фотонного
излучения – это отношение суммарного
заряда dQ
всех ионов одного знака, образованных
в сухом атмосферном воздухе (при полном
торможении вторичных электронов и
позитронов) в элементарном объеме dV,
к массе воздуха dm
в этом объеме:

.

(41)

В СИ экспозиционная доза измеряется в
кулонах на килограмм(Кл/кг), а
внесистемной единицей является рентген
(Р).

Рентген это доза фотонного
излучения, при какой в 1 см3сухого атмосферного воздуха в результате
ионизации при нормальных условиях
(температура 0С,
давление 101,3 кПа или 760 мм рт. ст.)
образуется зарядq, равный
3,34  1010Кл
каждого знака, что соответствует
образованию 2,08  109пар ионов. Поскольку 1 см3воздуха
имеет массу 1,29  106кг, то

1 Р =
=
2,58  104Кл/кг.

Таким образом,

1 Р = 2,58  104Кл/кг;

1
Кл/кг = 3,88  103
Р.

Дольные
единицы: 1 мкР = 106
Р и 1 мР = 103
Р.

В условиях лучевого
равновесия заряженных частиц
экс-позиционной дозе 1 Кл/кг соответствует
поглощенная доза 33,8 Гр в воздухе и
36,9 Гр в биологической ткани.

Дозе
в 1 Р соответствует поглощенная доза
0,87 рад в воздухе или 0,96 рад в
биологической ткани. Поэтому в тканях
с погрешностью до 5% экспозиционную дозу
в рентгенах
и поглощенную дозу в
радах
можно
считать одинаковыми.

3.3. Эквивалентная доза излучения

Из-за
разной ионизирующей способности -,
-
и -излучения
даже при одной и той же поглощенной дозе
оказывают разное поражающее биологическое
действие.

Для оценки степени радиационной опасности
воздействия ионизирующего излучения,
когда облучение равномерно по всем
тканям организма, применяют понятие
эквивалентной дозы.

Различие
в величине радиационного воздействия
можно учесть, приписав каждому виду
излучения свой
взвешивающий
коэффициент излучения
WR
(табл. 22).

Таким
образом, взвешивающий
коэффициент (коэффициент качества)

излучения
характеризует степень разрушительного
воздействия на биологический объект и
показывает, во сколько раз данный вид
излучения более опасен, чем фотонное
излучение при одинаковой поглощенной
дозе
D
.

Таблица 22

До́за излуче́ния — в радиационной безопасности, физике и радиобиологии — величина, используемая для оценки степени воздействия ионизирующего излучения на любые вещества, живые организмы и их ткани.

Экспозиционная доза[править | править код]

Основная характеристика взаимодействия ионизирующего излучения со средой — это ионизационный эффект. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза — это отношение суммарного электрического заряда ионов одного знака, образованных после полного торможения в воздухе электронов и позитронов, освобождённых или порождённых фотонами в элементарном объёме воздуха, к массе воздуха в этом объёме.

В международной системе единиц (СИ) единицей измерения экспозиционной дозы является кулон, делённый на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

Поглощённая доза[править | править код]

При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддаётся простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определённому радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощённая доза. Она показывает, какое количество энергии излучения поглощено в единице массы облучаемого вещества и определяется отношением поглощённой энергии ионизирующего излучения к массе поглощающего вещества.

За единицу измерения поглощённой дозы в системе СИ принят грей (Гр). 1 Гр — это такая доза, при которой массе 1 кг передаётся энергия ионизирующего излучения в 1 джоуль. Внесистемной единицей поглощённой дозы является рад. 1 Гр = 100 рад.

Эквивалентная доза (биологическая доза)[править | править код]

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощённых дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжёлая частица (например протон) производит на единице длины пути в ткани больше ионов, чем лёгкая (например электрон). При одной и той же поглощённой дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путём умножения значения поглощённой дозы на специальный коэффициент — взвешивающий коэффициент излучения, учитывающий относительную биологическую эффективность различных видов радиации.

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощённой в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощённая доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1954 года — биологический эквивалент рентгена, после 1954 года — биологический эквивалент рада[1]). 1 Зв = 100 бэр.

Эффективная доза[править | править код]

Эффективная доза (E) — величина, используемая как мера риска возникновения отдалённых последствий облучения всего тела человека и отдельных его органов и тканей с учётом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в лёгких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется взвешивающим коэффициентом ткани. Умножив значение эквивалентной дозы на соответствующий взвешивающий коэффициент и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешивающие коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу.

Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Ожидаемая эффективная доза E(τ) — доза внутреннего облучения от поступивших в организм человека радионуклидов[2][3]. Время облучения человека такими радионуклидами определяется периодами их полураспада и биологического удержания в организме и может составлять многие месяцы и даже годы[4]. Для целей регулирования полный период накопления дозы устанавливается равным 50 лет для взрослого человека или, если оценивается доза для детей, до достижения 70 лет. При оценке годовой дозы ожидаемая эффективная доза суммируется с эффективной дозой от внешнего облучения за этот же период[5].

Эффективная и эквивалентная дозы — это нормируемые величины, то есть, величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым.
Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).

Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, то есть амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение.
Единица амбиентного эквивалента дозы — зиверт (Зв).

Групповые дозы[править | править код]

Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе — сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т. д. Её получают путём умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица — человеко-бэр (чел.-бэр). Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.

Кроме того, выделяют следующие дозы:

  • пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
  • предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
  • удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску.
  • минимально летальная — минимальная доза излучения, вызывающая гибель всех облучённых объектов.

Допустимые и смертельные дозы для человека[править | править код]

Миллизиверт (мЗв) часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).

Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апреля 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».

Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв[6].

Облучение от других техногенных источников значительно меньше:

  • 0,005 мЗв от радионуклидов, оставшихся от атмосферных ядерных испытаний,
  • 0,002 мЗв от аварии на Чернобыльской АЭС,
  • 0,001 мЗв от аварии на АЭС Фукусима
  • 0,0002 мЗв от ядерной энергетики.

Среднемировая доза облучения от естественных источников, накопленная на душу населения за год, равна 2,4 мЗв, с разбросом от 1 до 10 мЗв[6]. Основные компоненты:

  • 0,4 мЗв от космических лучей (от 0,3 до 1,0 мЗв, в зависимости от высоты над уровнем моря);
  • 0,5 мЗв от внешнего гамма-излучения (от 0,3 до 0,6 мЗв, в зависимости от радионуклидного состава окружения — почвы, стройматериалов и т. п.);
  • 1,2 мЗв внутреннего облучения от ингалируемых атмосферных радионуклидов, главным образом радона (от 0,2 до 10 мЗв, в зависимости от местной концентрации радона в воздухе);
  • 0,3 мЗв внутреннего облучения от инкорпорированных радионуклидов (от 0,2 до 0,8 мЗв, в зависимости от радионуклидного состава пищевых продуктов и воды).

Дозы получаемые персоналом в промышленности[править | править код]

  • 5-10 мЗв/год — средняя доза, получаемая персоналом на АЭС с реакторами ВВЭР-1000, работающие с источниками ионизирующих излучений.
  • 20 мЗв/год — допустимая доза ежегодного облучения персонала российских АЭС, не нарушающая требования НРБ-99
  • 50 мЗв/ год — допустимая доза ежегодного облучения персонала АЭС в СССР, США и Японии.
  • 200 мЗв — разовая доза, которую можно получить при выполнении радиационноопасных работ с последующим отстранением работника от работы с ионизирующим излучениями.
  • 266 мЗв/год — доза, получаемая космонавтами на борту МКС.
  • 511 мЗв/год — доза, которую будут получать космонавты на поверхности Луны.

Смертельные и опасные дозы[править | править код]

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть в результате острой лучевой болезни наступает в 50 % случаев[7]:

  • при дозе порядка 3—5 Гр из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Гр из-за повреждения желудочно-кишечного тракта и лёгких в течение 10—20 суток;
  • > 15 Гр из-за повреждения нервной системы в течение 1—5 суток.

Мощность дозы[править | править код]

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощённой, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например: Зв/час, бэр/мин, мЗв/год и др.).

Сводная таблица единиц измерения[править | править код]

Физическая величина Внесистемная единица Единица СИ Переход от внесистемной единицы к единице СИ
Активность нуклида в радиоактивном источнике Кюри (Ки) Беккерель (Бк) 1 Ки = 3.7⋅1010 Бк
Экспозиционная доза Рентген (Р) Кулон/килограмм (Кл/кг) 1 Р = 2,58⋅10−4 Кл/кг
Поглощенная доза Рад (рад) Грей (Дж/кг) 1 рад = 0,01 Гр
Эквивалентная доза Бэр (бэр) Зиверт (Зв) 1 бэр = 0,01 Зв
Мощность экспозиционной дозы Рентген/секунда (Р/c) Кулон/килограмм (в) секунду (Кл/кг·с) 1 Р/c = 2.58⋅10−4 Кл/кг·с
Мощность поглощённой дозы Рад/секунда (Рад/с) Грей/секунда (Гр/с) 1 рад/с = 0.01 Гр/c
Мощность эквивалентной дозы Бэр/секунда (бэр/с) Зиверт/секунда (Зв/с) 1 бэр/c = 0.01 Зв/с
Интегральная доза Рад-грамм (Рад·г) Грей-килограмм (Гр·кг) 1 рад·г = 10−5 Гр·кг

См. также[править | править код]

  • Дозиметр
  • Малые дозы излучения
  • Радиоактивность
  • Порог дозы
  • Керма воздуха
  • Флюенс частиц

Примечания[править | править код]

Источники
  1. Кеирим-Маркус, 1980, с. 3,4.
  2. Санитарные правила и нормативы СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» — 2009. — С. 48. — 51 с.
  3. МКРЗ 103, 2009, с. 22.
  4. МКРЗ 103, 2009, с. 77.
  5. МКРЗ 103, 2009, с. 258.
  6. 1 2 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. Дата обращения: 8 января 2018. Архивировано из оригинала 5 февраля 2009 года.
  7. Кутьков В. А., Ткаченко В. В., Романцов В. П. Радиационная безопасность персонала атомных станций. — Москва—Обнинск: Атомтехэнерго, ИАТЭ, 2003. — С. 85. — 344 с.

Литература[править | править код]

  • Публикация 103 Международной комиссии по радиационной защите (МКРЗ): Рекомендации Международной комиссии по радиационной защите от 2007 года = ICRP publication 103 : The 2007 Recommendations of the International Commission on Radiological Protection / Под ред. Л.-Э. Холма. Пер. с англ. под общей ред. М. Ф. Киселёва и Н. К. Шандалы. — М.: Изд. ООО ПКФ «Алана», 2009. — 344 с. — 1000 экз. — ISBN 978-5-9900350-6-5.
  • И.Б. Кеирим-Маркус. Эквидозиметрия. — М. : Атомиздат, 1980. — 191 с.

From Wikipedia, the free encyclopedia

Absorbed dose of ionizing radiation

Common symbols

D
SI unit Gray

Other units

Rad
In SI base units J⋅kg−1

Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmful effects), and radiology (potential beneficial effects, for example in cancer treatment). It is also used to directly compare the effect of radiation on inanimate matter such as in radiation hardening.

The SI unit of measure is the gray (Gy), which is defined as one Joule of energy absorbed per kilogram of matter.[1] The older, non-SI CGS unit rad, is sometimes also used, predominantly in the USA.

Deterministic effects[edit]

Conventionally, in radiation protection, unmodified absorbed dose is only used for indicating the immediate health effects due to high levels of acute dose. These are tissue effects, such as in acute radiation syndrome, which are also known as deterministic effects. These are effects which are certain to happen in a short time.[citation needed] The time between exposure and vomiting may be used as a heuristic for quantifying a dose when more precise means of testing are unavailable. [2]

Effects of acute radiation exposure[edit]

Phase Symptom Whole-body absorbed dose (Gy)
1–2 Gy 2–6 Gy 6–8 Gy 8–30 Gy > 30 Gy
Immediate Nausea and vomiting 5–50% 50–100% 75–100% 90–100% 100%
Time of onset 2–6 h 1–2 h 10–60 min < 10 min Minutes
Duration < 24 h 24–48 h < 48 h < 48 h — (patients die in < 48 h)
Diarrhea None None to mild (< 10%) Heavy (> 10%) Heavy (> 95%) Heavy (100%)
Time of onset 3–8 h 1–3 h < 1 h < 1 h
Headache Slight Mild to moderate (50%) Moderate (80%) Severe (80–90%) Severe (100%)
Time of onset 4–24 h 3–4 h 1–2 h < 1 h
Fever None Moderate increase (10–100%) Moderate to severe (100%) Severe (100%) Severe (100%)
Time of onset 1–3 h < 1 h < 1 h < 1 h
CNS function No impairment Cognitive impairment 6–20 h Cognitive impairment > 24 h Rapid incapacitation Seizures, tremor, ataxia, lethargy
Latent period 28–31 days 7–28 days < 7 days None None
Illness Mild to moderate Leukopenia
Fatigue
Weakness
Moderate to severe Leukopenia
Purpura
Hemorrhage
Infections
Alopecia after 3 Gy
Severe leukopenia
High fever
Diarrhea
Vomiting
Dizziness and disorientation
Hypotension
Electrolyte disturbance
Nausea
Vomiting
Severe diarrhea
High fever
Electrolyte disturbance
Shock
— (patients die in < 48h)
Mortality Without care 0–5% 5–95% 95–100% 100% 100%
With care 0–5% 5–50% 50–100% 99–100% 100%
Death 6–8 weeks 4–6 weeks 2–4 weeks 2 days – 2 weeks 1–2 days
Table source[3]

Radiation therapy[edit]

The measurement of absorbed dose in tissue is of fundamental importance in radiobiology as it is the measure of the amount of energy the incident radiation is imparting to the target tissue.[citation needed]

Dose computation[edit]

The absorbed dose is equal to the radiation exposure (ions or C/kg) of the radiation beam multiplied by the ionization energy of the medium to be ionized.

For example, the ionization energy of dry air at 20 °C and 101.325 kPa of pressure is 33.97±0.05 J/C.[4] (33.97 eV per ion pair) Therefore, an exposure of 2.58×10−4 C/kg (1 roentgen) would deposit an absorbed dose of 8.76×10−3 J/kg (0.00876 Gy or 0.876 rad) in dry air at those conditions.

When the absorbed dose is not uniform, or when it is only applied to a portion of a body or object, an absorbed dose representative of the entire item can be calculated by taking a mass-weighted average of the absorbed doses at each point.

More precisely,[5]

{displaystyle {overline {D_{T}}}={frac {displaystyle int _{T}D(x,y,z),rho (x,y,z),dV}{displaystyle int _{T}rho (x,y,z),dV}}}

Where

Medical considerations[edit]

Non-uniform absorbed dose is common for soft radiations such as low energy x-rays or beta radiation. Self-shielding means that the absorbed dose will be higher in the tissues facing the source than deeper in the body.[citation needed]

The mass average can be important in evaluating the risks of radiotherapy treatments, since they are designed to target very specific volumes in the body, typically a tumour. For example, if 10% of a patient’s bone marrow mass is irradiated with 10 Gy of radiation locally, then the absorbed dose in bone marrow overall would be 1 Gy. Bone marrow makes up 4% of the body mass, so the whole-body absorbed dose would be 0.04 Gy. The first figure (10 Gy) is indicative of the local effects on the tumour, while the second and third figure (1 Gy and 0.04 Gy) are better indicators of the overall health effects on the whole organism. Additional dosimetry calculations would have to be performed on these figures to arrive at a meaningful effective dose, which is needed to estimate the risk of cancer or other stochastic effects.

When ionizing radiation is used to treat cancer, the doctor will usually prescribe the radiotherapy treatment in units of gray. Medical imaging doses may be described in units of coulomb per kilogram, but when radiopharmaceuticals are used, they will usually be administered in units of becquerel.

Stochastic risk – conversion to equivalent dose[edit]

External dose quantities used in radiation protection and dosimetry

Graphic showing relationship of “protection dose” quantities in SI units

For stochastic radiation risk, defined as the probability of cancer induction and genetic effects occurring over a long time scale, consideration must be given to the type of radiation and the sensitivity of the irradiated tissues, which requires the use of modifying factors to produce a risk factor in sieverts. One sievert carries with it a 5.5% chance of eventually developing cancer based on the linear no-threshold model.[6][7] This calculation starts with the absorbed dose.

To represent stochastic risk the dose quantities equivalent dose H T and effective dose E are used, and appropriate dose factors and coefficients are used to calculate these from the absorbed dose.[8] Equivalent and effective dose quantities are expressed in units of the sievert or rem which implies that biological effects have been taken into account. The derivation of stochastic risk is in accordance with the recommendations of the International Committee on Radiation Protection (ICRP) and International Commission on Radiation Units and Measurements (ICRU). The coherent system of radiological protection quantities developed by them is shown in the accompanying diagram.

For whole body radiation, with Gamma rays or x-rays the modifying factors are numerically equal to 1, which means that in that case the dose in grays equals the dose in sieverts.

Development of the absorbed dose concept and the gray[edit]

Using early Crookes tube X-Ray apparatus in 1896. One man is viewing his hand with a fluoroscope to optimise tube emissions, the other has his head close to the tube. No precautions are being taken.

The Radiology Martyrs monument, erected 1936 at St. Georg hospital in Hamburg, more names added in 1959.

Wilhelm Röntgen first discovered X-rays on November 8, 1895, and their use spread very quickly for medical diagnostics, particularly broken bones and embedded foreign objects where they were a revolutionary improvement over previous techniques.

Due to the wide use of X-rays and the growing realisation of the dangers of ionizing radiation, measurement standards became necessary for radiation intensity and various countries developed their own, but using differing definitions and methods. Eventually, in order to promote international standardisation, the first International Congress of Radiology (ICR) meeting in London in 1925, proposed a separate body to consider units of measure. This was called the International Commission on Radiation Units and Measurements, or ICRU,[a] and came into being at the Second ICR in Stockholm in 1928, under the chairmanship of Manne Siegbahn.[9][10][b]

One of the earliest techniques of measuring the intensity of X-rays was to measure their ionising effect in air by means of an air-filled ion chamber. At the first ICRU meeting it was proposed that one unit of X-ray dose should be defined as the quantity of X-rays that would produce one esu of charge in one cubic centimetre of dry air at 0 °C and 1 standard atmosphere of pressure. This unit of radiation exposure was named the roentgen in honour of Wilhelm Röntgen, who had died five years previously. At the 1937 meeting of the ICRU, this definition was extended to apply to gamma radiation.[11] This approach, although a great step forward in standardisation, had the disadvantage of not being a direct measure of the absorption of radiation, and thereby the ionisation effect, in various types of matter including human tissue, and was a measurement only of the effect of the X-rays in a specific circumstance; the ionisation effect in dry air.[12]

In 1940, Louis Harold Gray, who had been studying the effect of neutron damage on human tissue, together with William Valentine Mayneord and the radiobiologist John Read, published a paper in which a new unit of measure, dubbed the “gram roentgen” (symbol: gr) was proposed, and defined as “that amount of neutron radiation which produces an increment in energy in unit volume of tissue equal to the increment of energy produced in unit volume of water by one roentgen of radiation”.[13] This unit was found to be equivalent to 88 ergs in air, and made the absorbed dose, as it subsequently became known, dependent on the interaction of the radiation with the irradiated material, not just an expression of radiation exposure or intensity, which the roentgen represented. In 1953 the ICRU recommended the rad, equal to 100 erg/g, as the new unit of measure of absorbed radiation. The rad was expressed in coherent cgs units.[11]

In the late 1950s, the CGPM invited the ICRU to join other scientific bodies to work on the development of the International System of Units, or SI.[14] It was decided to define the SI unit of absorbed radiation as energy deposited per unit mass which is how the rad had been defined, but in MKS units it would be J/kg. This was confirmed in 1975 by the 15th CGPM, and the unit was named the “gray” in honour of Louis Harold Gray, who had died in 1965. The gray was equal to 100 rad, the cgs unit.

Other uses[edit]

Absorbed dose is also used to manage the irradiation and measure the effects of ionising radiation on inanimate matter in a number of fields.

Component survivability[edit]

Absorbed dose is used to rate the survivability of devices such as electronic components in ionizing radiation environments.

Radiation hardening[edit]

The measurement of absorbed dose absorbed by inanimate matter is vital in the process of radiation hardening which improves the resistance of electronic devices to radiation effects.

Food irradiation[edit]

Absorbed dose is the physical dose quantity used to ensure irradiated food has received the correct dose to ensure effectiveness. Variable doses are used depending on the application and can be as high as 70 kGy.

[edit]

The following table shows radiation quantities in SI and non-SI units:

Ionizing radiation related quantities view  talk  edit

Quantity Unit Symbol Derivation Year SI equivalent
Activity (A) becquerel Bq s−1 1974 SI unit
curie Ci 3.7 × 1010 s−1 1953 3.7×1010 Bq
rutherford Rd 106 s−1 1946 1,000,000 Bq
Exposure (X) coulomb per kilogram C/kg C⋅kg−1 of air 1974 SI unit
röntgen R esu / 0.001293 g of air 1928 2.58 × 10−4 C/kg
Absorbed dose (D) gray Gy J⋅kg−1 1974 SI unit
erg per gram erg/g erg⋅g−1 1950 1.0 × 10−4 Gy
rad rad 100 erg⋅g−1 1953 0.010 Gy
Equivalent dose (H) sievert Sv J⋅kg−1 × WR 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 × WR 1971 0.010 Sv
Effective dose (E) sievert Sv J⋅kg−1 × WR × WT 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 × WR × WT 1971 0.010 Sv

Although the United States Nuclear Regulatory Commission permits the use of the units curie, rad, and rem alongside SI units,[15] the European Union European units of measurement directives required that their use for “public health … purposes” be phased out by 31 December 1985.[16]

See also[edit]

  • Kerma (physics)
  • Mean glandular dose
  • Category:Units of radiation dose

Notes[edit]

  1. ^ Originally known as the International X-ray Unit Committee
  2. ^ The host country nominated the chairman of the early ICRU meetings.

References[edit]

  1. ^ ICRP 2007, glossary.
  2. ^ “Radiation Exposure and Contamination – Injuries; Poisoning”. Merck Manuals Professional Edition. Retrieved 2023-05-20.
  3. ^ “Radiation Exposure and Contamination – Injuries; Poisoning – Merck Manuals Professional Edition”. Merck Manuals Professional Edition. Retrieved 2017-09-06.
  4. ^ Boutillon, M; Perroche-Roux, A M (1987-02-01). “Re-evaluation of the W value for electrons in dry air”. Physics in Medicine and Biology. 32 (2): 213–219. doi:10.1088/0031-9155/32/2/005. ISSN 0031-9155. S2CID 250751778.
  5. ^ ICRP 2007, p. 1.
  6. ^ “The 2007 Recommendations of the International Commission on Radiological Protection”. Annals of the ICRP. ICRP publication 103. 37 (2–4). 2007. ISBN 978-0-7020-3048-2. Retrieved 17 May 2012.
  7. ^ The ICRP says, “In the low dose range, below about 100 mSv, it is scientifically plausible to assume that the incidence of cancer or heritable effects will rise in direct proportion to an increase in the equivalent dose in the relevant organs and tissues.” ICRP publication 103 paragraph 64
  8. ^ ICRP 2007, paragraphs 104 and 105.
  9. ^ Siegbahn, Manne; et al. (October 1929). “Recommendations of the International X-ray Unit Committee” (PDF). Radiology. 13 (4): 372–3. doi:10.1148/13.4.372. S2CID 74656044. Retrieved 2012-05-20.
  10. ^
    “About ICRU – History”. International Commission on Radiation Units & Measures. Retrieved 2012-05-20.
  11. ^ a b Guill, JH; Moteff, John (June 1960). “Dosimetry in Europe and the USSR”. Third Pacific Area Meeting Papers — Materials in Nuclear Applications. Symposium on Radiation Effects and Dosimetry – Third Pacific Area Meeting American Society for Testing Materials, October 1959, San Francisco, 12–16 October 1959. American Society Technical Publication. Vol. 276. ASTM International. p. 64. LCCN 60014734. Retrieved 2012-05-15.
  12. ^ Lovell, S (1979). “4: Dosimetric quantities and units”. An introduction to Radiation Dosimetry. Cambridge University Press. pp. 52–64. ISBN 0-521-22436-5. Retrieved 2012-05-15.
  13. ^ Gupta, S. V. (2009-11-19). “Louis Harold Gray”. Units of Measurement: Past, Present and Future : International System of Units. Springer. p. 144. ISBN 978-3-642-00737-8. Retrieved 2012-05-14.
  14. ^ “CCU: Consultative Committee for Units”. International Bureau of Weights and Measures (BIPM). Retrieved 2012-05-18.
  15. ^ 10 CFR 20.1004. US Nuclear Regulatory Commission. 2009.
  16. ^ The Council of the European Communities (1979-12-21). “Council Directive 80/181/EEC of 20 December 1979 on the approximation of the laws of the Member States relating to Unit of measurement and on the repeal of Directive 71/354/EEC”. Retrieved 19 May 2012.

Literature[edit]

  • ICRP (2007). “The 2007 Recommendations of the International Commission on Radiological Protection”. Annals of the ICRP. ICRP publication 103. 37 (2–4). ISBN 978-0-7020-3048-2. Retrieved 17 May 2012.

External links[edit]

  • Specific Gamma-Ray Dose Constants for Nuclides Important to Dosimetry and Radiological Assessment, Laurie M. Unger and D. K . Trubey, Oak Ridge National Laboratory, May 1982 – contains gamma-ray dose constants (in tissue) for approximately 500 radionuclides.

Добавить комментарий