Как найти погрешность измерения цены деления

Погрешности измерений, представление результатов эксперимента

  1. Шкала измерительного прибора
  2. Цена деления
  3. Виды измерений
  4. Погрешность измерений, абсолютная и относительная погрешность
  5. Абсолютная погрешность серии измерений
  6. Представление результатов эксперимента
  7. Задачи

п.1. Шкала измерительного прибора

Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.

Примеры шкал различных приборов:

п.2. Цена деления

Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.

Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.

Пример определения цены деления:

Пример определения цены деления Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале:a = 5 c
b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*}

п.3. Виды измерений

Вид измерений

Определение

Пример

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.

Составляющие погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$

Если величина (a_0) – это истинное значение, а (triangle a) – погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$

Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$

Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.

Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Пример получения результатов прямых измерений с помощью линейки Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см})
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$
Пример получения результатов прямых измерений с помощью линейки Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см})
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}

п.6. Представление результатов эксперимента

Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то

  • абсолютная погрешность их суммы равна сумме абсолютных погрешностей

$$ triangle (a+b)=triangle a+triangle b $$

  • абсолютная погрешность их разности также равна сумме абсолютных погрешностей

$$ triangle (a-b)=triangle a+triangle b $$

Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:

  • относительная погрешность их произведения равна сумме относительных погрешностей

$$ delta_{acdot b}=delta_a+delta_b $$

  • относительная погрешность их частного также равна сумме относительных погрешностей

$$ delta_{a/b}=delta_a+delta_b $$

Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:

  • относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности

$$ delta_{a^2}=2delta_a $$

  • относительная погрешность куба (a^3) равна утроенной относительной погрешности

$$ delta_{a^3}=3delta_a $$

  • относительная погрешность произвольной натуральной степени (a^n) равна

$$ delta_{a^n}=ndelta_a $$

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Задача 1

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac{b-a}{n+1}), мл
1 20 40 4 (frac{40-20}{4+1}=4)
2 100 200 4 (frac{200-100}{4+1}=20)
3 15 30 4 (frac{30-15}{4+1}=3)
4 200 400 4 (frac{400-200}{4+1}=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac{triangle}{2}), мл
Относительная погрешность
(delta_V=frac{triangle V}{V_0}cdot 100text{%})
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})

Цена деления – это расстояние между двумя ближайшими делениями на нём (в термометре обычно градус) , а погрешность – это половина цены деления (т. е. полградуса)
чтобы определить цену деления, нужно взять 2 деления шкалы, возле которых стоят цифры, из большего числа вычесть меньшее и разделить на количество делений между этими цифрами.
Погре́шность измер́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Погрешность измерения равна половине цены деления прибора

ПРЯМОЕ ИЗМЕРЕНИЕ- определение значения физ. величины непосредственно средствами измерения. Косвенное измерение-определение значения физ. величины по формуле, связывающей её с другими физич. величинами, определяемыми прямыми измерениями.
Расчет, погрешностей по формулам см. http://ru.wikipedia.org/wiki/

Нам нужно на некоторое время оторваться от рассмотрения методов измерений и вернуться с погрешностям. Я знаю, погрешности любят не многие, но уметь работать с ними необходимо. Большинство современных измерительных приборов состоят из нескольких компонентов (узлов), которые объединены в единое целое. Мы не раз говорили, что итоговая погрешность измерения равна сумме погрешностей метода, методики, измерительных преобразователей, приборов, методов обработки результата. Но не разбирались, а как именно эта сумма вычисляется? Сегодня этим и займемся.

В статье не получится избежать математики, но она будет довольно простой.

Еще раз, кратко, о погрешностях

Давайте вспомним, что мы уже знаем о погрешностях из того, что нам сегодня потребуется. Прежде всего, погрешности можно разделить на абсолютную, относительную, приведенную

Нескучная метрология. Работа с погрешностями

Приведенная погрешность отличается от относительной тем, что знаменателем является не истинное, а нормирующее значение величины. Чаще всего, в качестве нормирующего значения выступает верхний предел соответствующего поддиапазона измерительного прибора.

Я уже рассказывал, зачем потребовалась приведенная погрешность. Дело в том, что мы не можем по результату измерения и параметрам погрешности прибора определить истинное значение величины. Не смотря на то, что приведенные выше формулы позволяют, на первый взгляд, усомниться в этом утверждении. Однако, погрешности это случайные величины, работать с которыми нужно по правилам математической статистики. И это очень важно.

Вы можете даже возмутиться “Как так, мы же знаем, что погрешность может быть систематической и случайной! Получается, что и систематическая погрешность случайна? Автор ничего не перепутал?”. Нет, автор ничего не перепутал. Давайте разберемся и вы сами все увидите.

Действительно, погрешность измерительного прибора, да и собственно измерения, можно представить как сумму систематической и случайной погрешностей. Причем для систематическая погрешность может быть как неизменной, так и изменяющейся. Примером неизменной систематической погрешности является “смещение нуля”, например, смещение начального положения стрелки прибора относительно нулевого деления. Примером изменяющейся систематической погрешности может быть “смещение нуля” в цифровом приборе, например, зависящее от температуры.

Систематическая погрешность конкретного экземпляра прибора прогнозируема в конкретных условиях измерения. И мы можем провести процедуру калибровки (не путать с регулировкой!) для определения систематической погрешности. Проблема в том, что это будет касаться лишь конкретного экземпляра прибора в условиях метрологической лаборатории. Для другого экземпляра прибора, других условий, или через некоторое время, погрешность может измениться. Причем не только по величине, но и по знаку. Но он останется прогнозируемой. В отличии от погрешности случайной.

То есть, для измерительных приборов в целом, а не конкретного экземпляра в конкретных условиях, даже систематическая погрешность будет величиной случайной, задающей границы возможных погрешностей для каждого конкретного экземпляра. И в паспортах измерительных приборов погрешность указывается именно как максимальная, определяющая границы, а не точное значение погрешности.

Систематическая погрешность может быть уменьшена с помощью различных ухищрений. Точно так же, как случайная погрешность может быть снижена с помощью вычисления среднего арифметического. Но сегодня мы этих вопросов касаться не будем.

Погрешности узлов измерительных приборов

Все сказанное выше применимо не только к измерительным приборам в целом, но и к отдельным компонентам приборов. За исключением приведенной погрешности, конечно. Давайте рассмотрим самый простой пример – постоянный резистор. Например, металлопленочный резистор MBB0207 сопротивлением 100 кОм. Вот документация на него

Эти резисторы обладают точностью сопротивления 1%. То есть, для нашего резистора реальное сопротивление будет лежать в диапазоне от 99 кОм до 101 кОм. Но это еще не все. Любой резистор имеет ненулевое значение ТКС (температурный коэффициент сопротивления). В данном случае – 5 Ом на каждый градус Цельсия (для сопротивления 100 кОм). Но и это еще не все. Резисторы подвержены старению, причем скорость старения зависит от рассеиваемой резистором мощности. Для нашего резистора сопротивление может измениться а пределах 0.25% за 1000 часов работы при рассеивании номинальной мощности. И на 0.5% за 8000 часов. В документации все указано.

Таким образом, не только реальное сопротивление может отличаться от номинала, но оно зависит и от температуры, и от времени наработки. Давайте посмотрим, что это для нас означает. Пусть рабочая температура резистора достигает 50 градусов. Номинальное сопротивление указывается для 25 градусов, так что при 50 градусах сопротивление изменится на

5 * 25 = 125 Ом

что составляет 0.125%. С одной стороны, это мало, по сравнению с точностью сопротивления. Но, с другой стороны, это может потребоваться учитывать. 1000 часов это примерно 1 квартал (3 месяца) ежедневной работы по 8 часов в день. Не много, но изменение сопротивления может достигать 0.25%. Итого, для заданных рабочих условий через примерно 3 месяца работы точность сопротивления резистора будет не 1%, а 1.375%!

Несколько неожиданный результат для части читателей. Но совершенно закономерный. Прецизионные резисторы не только имеют более высокую начальную точность, но и меньший ТКС. Например, С2-29В группы С имеет ТКС 10ppm, что в 5 раз ниже. Прецизионные резисторы и меньше изменяют сопротивление при старении. Но и это еще не все. На сопротивление влияет и атмосферное давление. И влажность воздуха, что наиболее значимо для высокоомных резисторов. Сопротивление резистора зависит и от приложения механической нагрузки.

Но давайте не будем слишком углубляться. Все эти тонкости нужны профессионалам, которые разрабатывают высокоточные устройства. Большинству читателей достаточно иметь представление, что оказывает влияние на сопротивление резистора, которое указано его маркировкой.

Давайте теперь рассмотрим простейший делитель напряжения, например, 1:10. Верхнее плечо будет иметь сопротивление 900 кОм, а нижнее 100 кОм. Да, я знаю, что 900 кОм не входит в стандартный ряд, нам сейчас это не важно. Точность 1%, резисторы новые, температура 25 градусов. То есть, сопротивление резистора верхнего плеча будет лежать в диапазоне от 891 кОм до 909 кОм. А нижнего плеча, как мы уже считали, в диапазоне от 99 кОм до 101 кОм.

Пусть на делитель подано напряжение 10 В, какое напряжение мы можем получить на выходе? Расчетное, исходя из номинальных сопротивлений резисторов, 1 В. А с учетом погрешностей? Мы не можем точно сказать. Мы можем лишь определить границы диапазона, когда отклонения сопротивлений резисторов максимальны и имеют разные знаки. Выходное напряжение будет лежать в диапазоне от 0.98 В до 1.02 В.

Давайте оценим относительную погрешность выходного напряжения. В обоих случаях отклонение составляет 0.02 В. То есть, относительная погрешность (модуль относительной погрешности) 2%. Все точно так, как и говорил в статье про учет тепла про расходомеры. И все верно, но с одним небольшим нюансом – это предельные границы, максимальная погрешность, самый плохой случай.

Суммирование арифметическое и геометрическое

Приведенный выше пример определения погрешности делителя напряжения является пессимистичным. Такой пессимизм действительно бывает нужен для задач требующих максимальной точности. Но во многих случаях достаточной будет оценка “типового случая”. Что же это за случай такой?

Давайте вспомним, что даже систематическая погрешность для каждого отдельного экземпляра будет случайной величиной для большой выборки (например, партии измерительных приборов или резисторов)

Плотность вероятности отклонения сопротивлений резисторов в большой партии. Иллюстрация моя
Плотность вероятности отклонения сопротивлений резисторов в большой партии. Иллюстрация моя

Если измерить сопротивления резисторов в большой партии и построить график плотности вероятности (гистограмму), то мы увидим хорошо знакомое нам нормальное распределение. Часть резисторов будет иметь сопротивление выше номинала (отклонение положительное), часть ниже (отклонение отрицательное). Для большинства резисторов отклонения будут малы, значительно меньше предельно допустимой погрешности. Резисторы, отклонение сопротивления которых превышает установленные границы (в нашем примере 1%) являются браком.

Эти границы, которые заданы как предельная величина отклонения, являются одновременно и доверительным интервалом. Мы видим, что вероятность рассмотренных ранее предельных случаев меньше, чем вероятность малых отклонений. Поэтому и отклонение выходного напряжения, ожидаемое, вероятно будет меньше, чем предельные случаи. И это действительно так.

Давайте вспомним, что в теории вероятности суммирование статистически независимых (некоррелированных) случайных величин осуществляется путем сложения их дисперсий. Отклонения сопротивлений наших резисторов действительно независимы и, как мы уже видели, являются случайными в большой партии. А значит, мы можем выполнять суммирование отклонений, погрешностей, как суммирование дисперсий.

На практике более привычным является среднеквадратичное отклонение, которое равняется квадратному корню из дисперсии. И мы получаем классическую формулу геометрической суммы. Поскольку для резисторов погрешность указана как относительная, то как сумму относительных погрешностей. Вот так это выглядит в общем виде

Суммарная относительная погрешность определяется как геометрическая, а не как арифметическая, сумма
Суммарная относительная погрешность определяется как геометрическая, а не как арифметическая, сумма

Да, корень квадратный из суммы квадратов. И мы можем сказать, для нашего делителя напряжения итоговая погрешность равна 1.41%, а не 2%. Это более оптимистичный вариант оценки погрешности, который можно назвать тем самым “типовым случаем”. Повторю, что такое определение суммарной погрешности возможно только для независимых погрешностей, причем с нормальным законом распределения плотности вероятности. Иначе формула будет иной. Кроме того, вспомним, что доверительный интервал суммы не равен сумме доверительных интервалов.

А теперь подумаем, являются ли отклонения сопротивлений резисторов вызванные изменением температуры независимыми? Это не такой простой вопрос. Но во многих случаях их нельзя считать независимыми. А значит, для суммирования нам придется использовать обычное арифметическое суммирование. Другими словами, мы должны по разному учитывать влияние различных составляющих погрешности каждого компонента на итоговую погрешность. Неверно просто взять суммарную погрешность отдельного компонента и рассчитать итоговую погрешность прибора через геометрическую сумму.

Это верно не только для вычисления погрешности измерительного прибора, но и для оценки погрешности всего измерительного эксперимента. То есть, погрешность измерения некоторой величины (прямая или косвенная) будет вычисляться как сумма всех погрешностей. Причем сумма геометрическая. Но некоторые составляющие этой погрешности могут суммировать и арифметически.

Коротко о записи результатов измерений с погрешностью

Существует старый спор между сторонниками “много знаков лучше” и сторонниками “без лишних знаков”. Метрология на стороне последних.

Как вы помните, результат измерений может быть весьма “точным” по виду, но весьма посредственным по своему содержанию. Магия большого количества отображаемых на дисплее цифрового прибора цифр совратила не мало неокрепших умов. Разрешающая способность может быть большой, но вот точность не обязательно соответствует разрядности. А о том, что погрешность прибора определяется суммой погрешностей, забывают многие.

Запись результата измерения, если говорить строго, должна включать в себя и указание погрешности. Причем запись не должна вызывать ложного чувства повышенной точности. Например,

12.5 В ± 1 В

неправильно, так как десятые доли вольта указанная погрешность делает недостоверными. Правильно будет

12 В ± 1 В

Другой пример,

134 В ± 1%

правильный, так как 1% равняется 1.34 В, что делает последнюю цифру результата достоверной. Но

134 В ± 10%

будет неверно, так как абсолютное значение погрешности составит 13.4 В, а значит, последняя цифра результата недостоверна. Правильно будет

130 В ± 10%

Это кажется мелочами и излишним педантизмом, но это не так. При этом результаты измерений, которые используются в дальнейших расчетах для получения итогового результата, не должны округляться. Округляется только собственно итоговый результат. Дело в том, что округление промежуточных результатов вычислений и измерений вносит дополнительную погрешность. А ошибки имеют свойство накапливаться.

О погрешности равной половине цены деления шкалы

Весьма распространенным заблуждением является утверждение, что погрешность измерительного прибора всегда равна половине деления шкалы, половине цены деления. Это верно лишь для случаев, когда в паспорте прибора нет указания погрешности в явном виде. Если погрешность указана явно, следует руководствоваться именно ей, а не вглядываться деления шкалы!

Заключение

Да, как всегда кратко и довольно упрощенно. Но затронутые сегодня вопросы являются важными. Причем именно с практической точки зрения.

До новых встреч!

Содержание:

При измерении разных физических величин мы получаем их числовые значения с определенной точностью. Например, при определении размеров листа бумаги (длины, ширины) мы можем указать их с точностью до миллиметра; размеры стола – с  точностью до сантиметра, размеры дома, стадиона – с точностью до метра.

Нет необходимости указывать размеры стола с точностью до миллиметра, а размеры стадиона с точностью до сантиметра или миллиметра. Мы сами в каждой ситуации, опыте и эксперименте определяем, с какой точностью нам нужны данные физические величины. Однако очень важно оценивать, насколько точно мы определяем физическую величину, какую ошибку (погрешность) в ее измерении допускаем.

При измерении мы не можем определить истинное значение измеряемой величины, а только пределы, в которых она находится.

Пример:

Измерим ширину стола рулеткой с сантиметровыми и миллиметровыми делениями на ней (рис. 5.1). Значение наименьшего деления шкалы называют ценой деления и обозначают буквой С. Видно, что цена деления рулетки С = 1 мм (или 0,1 см).

Совместим нулевое деление рулетки с краем стола и посмотрим, с каким значением 
шкалы линейки совпадает второй край стола  (рис. 5.1). Видно, что ширина стола составляет чуть больше 70 см и 6 мм, или 706 мм. Но результат наших измерений мы запишем с точностью до 1 мм, то есть L = 706 мм.

Точность измерений и погрешности в физике - определение и формулы с примерами

Абсолютная погрешность измерения ∆ (ДЕЛЬТА)

Из рис. 5.1 видно, что мы допускаем определенную погрешность и определить ее «на глаз» достаточно трудно. Эта погрешность составляет не более половины цены деления шкалы рулетки. Эту погрешность называют погрешностью измерения и помечают ∆L («дельта эль»). В данном эксперименте ее можно записать
Точность измерений и погрешности в физике - определение и формулы с примерами

Сам результат измерения принято записывать таким образом: ширина стола L = (706,0 ± 0,5) мм, читают: 706 плюс-минус 0,5 мм. Эти 0,5 мм в нашем примере называют абсолютной погрешностью. Значения измеряемой величины (706,0 мм) и абсолютной погрешности (0,5 мм) должны иметь одинаковое количество цифр после запятой, то есть нельзя записывать 706 мм ± 0,5 мм.  

Такая запись результата измерения означает, что истинное значение измеряемой величины находится между 705,5 мм и 706,5 мм, то есть 705,5 мм ≤ L ≤ 706,5 мм.

Относительная погрешность измерения ε (ЭПСИЛОН)

Иногда важно знать, какую часть составляет наша погрешность от значения 
измеряемой величины. Для этого разделим 0,5 мм на 706 мм. В результате получим: Точность измерений и погрешности в физике - определение и формулы с примерами.  То есть наша ошибка составляет 0,0007 долю ширины стола, или 0,0007 · 100% = 0,07%. Это свидетельствует о достаточно высокой точности измерения. Эту погрешность называют относительной и обозначают греческой буквой  (эпсилон): 

Точность измерений и погрешности в физике - определение и формулы с примерами     (5.1)

Относительная погрешность измерения свидетельствует о качестве измерения. Если длина какогото предмета равна 5 мм, а точность измерения –  плюс-минус 0,5 мм, то относительная погрешность будет составлять уже 10%.

Стандартная запись результата измерений и выводы

Таким образом, абсолютная погрешность в примере 5.1. составляет ∆L = 0,5 мм, а результат измерений следует записать в стандартном виде: L = (706,0 Точность измерений и погрешности в физике - определение и формулы с примерами 0,5) мм – Опыт выполнен с относительной погрешностью 0,0007 или 0,07%.

На точность измерения влияет много факторов, в частности:

  1. При совмещении края стола с делением шкалы рулетки мы неминуемо допускаем погрешность, поскольку делаем это «на глаз» – смотреть можно под разными углами.
  2. Не вполне ровно установили рулетку.
  3. Наша рулетка является копией эталона и может несколько отличаться от оригинала.

Все это необходимо учитывать при проведении измерений.

Итоги:

  • Измерения в физике всегда неточны, и надо знать пределы погрешности измерений, чтобы понимать, насколько можно доверять результатам.
  • Абсолютную погрешность измерения можно определить как половину цены деления шкалы измерительного прибора. 
  • Относительная погрешность есть частное от деления абсолютной погрешности на значение измеряемой величины:  Точность измерений и погрешности в физике - определение и формулы с примерами и указывает на качество измерения. Ее можно выразить в процентах.

Измерительные приборы

Устройства, с помощью которых измеряют физические величины, называют измерительными приборами.

Простейший и хорошо известный вам измерительный прибор — линейка с делениями. На ее примере вы видите, что у измерительного прибора есть шкала, на которой нанесены деления, причем возле некоторых делений написано соответствующее значение физической величины. Так, значения длины в сантиметрах нанесены на линейке возле каждого десятого деления (рис. 3.11). Значения же, соответствующие «промежуточным» делениям шкалы, можно найти с помощью простого подсчета.

Точность измерений и погрешности в физике - определение и формулы с примерами

Разность значений физической величины, которые соответствуютближайшим делениям шкалы, называют ценой деления прибора. Ёе находят так: берут ближайшие деления, возле которых написаны значения величины, и делят разность этих значений на количество промежутков между делениями, расположенными между ними.

Например, ближайшие сантиметровые деления на линейке разделены на десять промежутков. Значит, цена деления линейки равна 0,1 см = 1 мм.

Как определяют единицы длины и времени

В старину мерами длины служили большей частью размеры человеческого тела и его частей. Дело в том, что собственное тело очень удобно как «измерительный прибор», так как оно всегда «рядом». И вдобавок «человек есть мера всех вещей»: мы считаем предмет большим или малым, сравнивая его с собой.

Так, длину куска ткани измеряли «локтями», а мелкие предметы — «дюймами» (это слово происходит от голландского слова, которое означает «большой палец»).

Однако человеческое тело в качестве измерительного прибора имеет существенный недостаток: размеры тела и его частей у разных людей заметно отличаются. Поэтому ученые решили определить единицу длины однозначно и точно. Международным соглашением было принято, что один метр равен пути, который проходит свет в вакууме за 1/299792458 с. А секунду определяют с помощью атомных часов, которые сегодня являются самыми точными.

Можно ли расстояние измерять годами

Именно так и измеряют очень большие расстояния — например, расстояния между звездами! Но при этом речь идет не о годах как промежутках времени, а о «световых годах». А один световой год — это расстояние, которое проходит свет за один земной год. По нашим земным меркам это очень большое расстояние — чтобы убедиться в этом, попробуйте выразить его в километрах! А теперь вообразите себе, что расстояние от Солнца до ближайшей к нему звезды составляет больше четырех световых лет! И по астрономическим масштабам это совсем небольшое расстояние: ведь с помощью современных телескопов астрономы тщательно изучают звезды, расстояние до которых составляет много тысяч световых лет!

Что надо знать об измерительных приборах

Приступая к измерениям, необходимо, прежде всего, подобрать приборы. Что надо знать об измерительных приборах?

Минимальное (нижний предел) и максимальное (верхний предел) значения шкалы прибора — это пределы измерения. Чаще всего предел измерения один, но может быть и два. Например, линейка имеет один предел — верхний. У линейки на рисунке 32 он равен 25 см. У термометра на рисунке 33 два предела: верхний предел измерения температуры равен +50 °С; нижний -40 °С.

Точность измерений и погрешности в физике - определение и формулы с примерами

На рисунке 34 изображены три линейки с одинаковыми верхними пределами (25 см). По эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 7, наименее точные — линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала понятие цена деления шкалы прибора.

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления — это значение наименьшего деления шкалы прибора.

Как определить цену деления шкалы? Для этого необходимо:

  1. выбрать на шкале линейки два соседних значения, например 3 см и 4 см;
  2. подсчитать число делений (не штрихов!) между этими значениями; например, на линейке 1 (см. рис. 34) число делений между значениями 3 см и 4 см равно 10;
  3. вычесть из большего значения меньшее (4 см – 3 см = 1 см) и результат разделить на число делений.

Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.

  • Для линейки 1: Точность измерений и погрешности в физике - определение и формулы с примерами
  • Для линейки 2: Точность измерений и погрешности в физике - определение и формулы с примерами
  • Для линейки 3: Точность измерений и погрешности в физике - определение и формулы с примерами

Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 35). Цена деления шкалы мензурки 1:

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления шкалы мензурки 2: 

Точность измерений и погрешности в физике - определение и формулы с примерами

Точность измерений и погрешности в физике - определение и формулы с примерами

А какими линейкой и мензуркой можно измерить точнее?

Измерим один и тот же объем мензуркой 1 и мензуркой 2. Но показаниям шкал в мензурке 1 объем воды V = 35 мл; в мензурке 2 — V = 37 мл.

Понятно, что точнее измерен объем воды мензуркой 2, цена деления которой меньше Точность измерений и погрешности в физике - определение и формулы с примерами Значит, чем меньше цена деления шкалы, тем точнее можно измерить данным прибором. Говорят: мензуркой 1 мы измерили объем с точностью до 5 мл (сравните с ценой деления шкалы Точность измерений и погрешности в физике - определение и формулы с примерами), мензуркой 2 – с точностью до 1 мл (сравните с ценой деления Точность измерений и погрешности в физике - определение и формулы с примерами). Точность измерения температуры термометрами 1 и 2 (рис. 36) определите самостоятельно.

Точность измерений и погрешности в физике - определение и формулы с примерами

Итак, любым прибором, имеющим шкалу, измерить физическую величину можно с точностью, не превышающей цены деления шкалы.

Линейкой 1 (см. рис. 34) можно измерить длину с точностью до 1 мм. Точность измерения длины линейками 2 и 3 определите самостоятельно.

Главные выводы:

  1. Верхний и нижний пределы измерения — это максимальное и минимальное значения шкалы прибора.
  2. Цена деления шкалы равна значению наименьшего деления шкалы.
  3. Чем меньше цена деления шкалы, тем точнее будут проведены измерения данным прибором.

Для любознательных:

В истории науки есть немало случаев, когда повышение точности измерений давало толчок к новым открытиям. Более точные измерения плотности азота, выделенного из воздуха, позволили в 1894 г. открыть новый инертный газ — аргон. Повышение точности измерений плотности воды привело к открытию в 1932 г. одной из разновидностей тяжелых атомов водорода — дейтерия. Позже дейтерий вошел в состав ядерного горючего. Оценить расстояния до звезд и создать их точные каталоги ученые смогли благодаря повышению точности при измерении положения ярких звезд на небе.

  • Заказать решение задач по физике

Пример решения задачи

Для измерения величины угла используют транспортир. Определите: 1) цену деления каждой шкалы транспортира, изображенного на рисунке 38; 2) значение угла BАС, используя каждую шкалу; укажите точность измерения угла ВАС в каждом случае.

Точность измерений и погрешности в физике - определение и формулы с примерами

Решение:

1) Цена деления нижней шкалы:

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления средней шкалы: 

Точность измерений и погрешности в физике - определение и формулы с примерами

Цена деления верхней шкалы:

2) Определенный но нижней шкале с точностью до 10° Точность измерений и погрешности в физике - определение и формулы с примерами определенный по средней шкале с точностью до 5° Точность измерений и погрешности в физике - определение и формулы с примерами определенный по верхней шкале с точностью до 1° Точность измерений и погрешности в физике - определение и формулы с примерами

  • Определение площади и объема
  • Связь физики с другими науками
  • Макромир, мегамир и микромир в физике
  • Пространство и время
  • Как зарождалась физика 
  • Единая физическая картина мира
  • Физика и научно-технический прогресс
  • Физические величины и их единицы измерения

Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе.

Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована (эталоны). 

Обрати внимание!

Процесс измерения физической величины состоит из:

1) поиска её значения с помощью опытов и средств измерения;

2) вычисления достоверности (точности измерений) полученного значения. 

Точность измерений зависит от многих причин:

  • расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;
  • деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;
  • несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;
  • физический износ шкалы измерений, что приводит к невозможности распознавания значений.

Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой.

линейка.svg

Рис. (1). Линейка и брусок

Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет (1) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между (9) и (10) метками.

У нас есть два варианта определения длины этого бруска.

(1). Если мы заявим, что длина бруска — (9) сантиметров, то недостаток длины от истинной составит более половины сантиметра ((0,5) см (= 5) мм).

(2). Если мы заявим, что длина бруска — (10) сантиметров, то избыток длины от истинной составит менее половины сантиметра ((0,5) см (= 5) мм).

Погрешность измерений — это отклонение полученного значения измерения от истинного.

Погрешность измерительного прибора равна цене деления прибора.

Для первой линейки цена деления составляет (1) сантиметр. Значит, погрешность этой линейки (1) см.

Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. В этом случае цена деления будет равна (1) мм, а длина бруска — (9,8) см.

images.jpg

Рис. (2). Деревянная линейка

Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления (0,1) мм и (0,05) мм.

lin.png

Рис. (3). Штангенциркуль

На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений.

Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.

Результаты измерения записывают в виде

A=a±Δa

, где (A) — измеряемая величина, (a) — средний результат полученных измерений,

Δa

  — абсолютная погрешность измерений.

Источники:

Рис. 1. Линейка и брусок. © ЯКласс.

Добавить комментарий