Как найти погрешность одного точного числа

Абсолютная и относительная погрешность


Абсолютная и относительная погрешность

4.2

Средняя оценка: 4.2

Всего получено оценок: 2180.

4.2

Средняя оценка: 4.2

Всего получено оценок: 2180.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Опыт работы учителем математики – более 33 лет.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.

Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Заключение

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Светлана Лобанова-Асямолова

    10/10

  • Валерий Соломин

    10/10

  • Анастасия Юшкова

    10/10

  • Ксюша Пономарева

    7/10

  • Паша Кривов

    10/10

  • Евгений Холопик

    9/10

  • Guzel Murtazina

    10/10

  • Максим Аполонов

    10/10

  • Olga Bimbirene

    9/10

  • Света Колодий

    10/10

Оценка статьи

4.2

Средняя оценка: 4.2

Всего получено оценок: 2180.


А какая ваша оценка?


Загрузить PDF


Загрузить PDF

При измерении чего-либо можно предположить, что есть некоторое «истинное значение», которое лежит в пределах диапазона значений, которые вы нашли. Для расчета более точной величины нужно взять результат измерения и оценить его при прибавлении или вычитании погрешности. Если вы хотите научиться находить такую погрешность, выполните следующие действия.

  1. Изображение с названием Calculate Uncertainty Step 1

    1

    Выражайте погрешность правильно. Допустим, при измерении палки ее длина равна 4,2 см плюс-минус один миллиметр. Это означает, что палка примерно равна 4,2 см, но на самом деле может быть немного меньше или больше этого значения — с погрешностью до одного миллиметра.

    • Запишите погрешность как: 4,2 см ± 0,1 см. Вы также можете переписать это как 4,2 см ± 1 мм, так как 0,1 см = 1 мм.
  2. Изображение с названием Calculate Uncertainty Step 2

    2

    Всегда округляйте значения измерений до того же знака после запятой, что и в погрешности. Результаты измерений, которые учитывают погрешность, как правило, округляются до одной или двух значащих цифр. Наиболее важным моментом является то, что нужно округлить результаты до того же знака после запятой, что и в погрешности, чтобы сохранить соответствие.

    • Если результат измерения 60 см, то и погрешность следует округлять до целого числа. Например, погрешность этого измерения может быть 60 см ± 2 см, но не 60 см ± 2,2 см.
    • Если результат измерения 3,4 см, то погрешность округляется до 0,1 см. Например, погрешность этого измерения может быть 3,4 см ± 0,7 см, но не 3,4 см ± 1 см.
  3. Изображение с названием Calculate Uncertainty Step 3

    3

    Найдите погрешность. Допустим, вы измеряете линейкой диаметр круглого шара. Это сложно, так как из-за кривизны шара будет трудно померить расстояние между двумя противоположными точками на его поверхности. Скажем, линейка может дать результат с точностью до 0,1 см, но это не значит, что вы можете измерить диаметр с той же точностью.[1]

    • Изучите шар и линейку, чтобы получить представление о том, с какой точностью вы можете измерить диаметр. У стандартной линейки четко видна разметка по 0,5 см, но, возможно, вы сможете измерить диаметр с большей точностью, чем эта. Если вы думаете, что сможете измерить диаметр с точностью до 0,3 см, то погрешность в этом случае равна 0,3 см.
    • Измерим диаметр шара. Допустим, вы получили результат около 7,6 см. Просто укажите результат измерения вместе с погрешностью. Диаметр шара составляет 7,6 см ± 0,3 см.
  4. Изображение с названием Calculate Uncertainty Step 4

    4

    Рассчитайте погрешность измерения одного предмета из нескольких. Скажем, вам даны 10 компакт-дисков (CD), при этом размеры каждого одинаковы. Допустим, вы хотите найти толщину всего одного CD. Эта величина настолько мала, что погрешность практически невозможно вычислить. Тем не менее, чтобы вычислить толщину (и ее погрешность) одного CD, вы можете просто разделить результат измерения (и его погрешность) толщины всех 10 CD, сложенных вместе (один на другого), на общее количество CD.[2]

    • Допустим, что точность измерения стопки CD с помощью линейки 0,2 см. Итак, ваша погрешность ± 0,2 см.
    • Допустим, толщина всех CD равна 22 см.
    • Теперь разделим результат измерения и погрешность на 10 (число всех CD). 22 см/10 = 2,2 см и 0,2 см/10 = 0,02 см. Это означает, что толщина одного компакт-диска 2,20 см ± 0,02 см.
  5. Изображение с названием Calculate Uncertainty Step 5

    5

    Измерьте несколько раз. Для повышения точности измерений, будь то измерение длины или времени, замерьте искомую величину несколько раз. Вычисление среднего значения из полученных значений увеличит точность измерения и расчета погрешности.

    Реклама

  1. Изображение с названием Calculate Uncertainty Step 6

    1

    Проведите несколько измерений. Допустим, вы хотите найти, сколько времени падает мяч с высоты стола. Чтобы получить наилучшие результаты, измерьте время падения насколько раз, например, пять. Потом нужно найти среднее значение из пяти полученных значений измерений времени, а затем для наилучшего результата добавить или вычесть среднеквадратичное отклонение.[3]

    • Допустим, в результате пяти измерений получены результаты: 0,43 с, 0,52 с, 0,35 с, 0,29 с и 0,49 с .
  2. Изображение с названием Calculate Uncertainty Step 7

    2

    Найдите среднее арифметическое. Теперь найдите среднее арифметическое путем суммирования пяти различных результатов измерений и разделив результат на 5 (количество измерений). 0,43 + 0,52 + 0,35 + 0,29 + 0,49 = 2,08 с. 2,08 / 5 = 0,42 с. Среднее время 0,42 с.

  3. Изображение с названием Calculate Uncertainty Step 8

    3

    Найдите дисперсию полученных значений. Для этого, во-первых, найдите разницу между каждой из пяти величин и средним арифметическим. Чтобы сделать это, вычтите из каждого результата 0,42 с.[4]

      • 0,43 с – 0,42 с = 0,01 с
      • 0,52 с – 0,42 с = 0,1 с
      • 0,35 с – 0,42 с = -0,07 с
      • 0,29 с – 0,42 с = -0,13 с
      • 0,49 с – 0,42 с = 0,07 с
      • Теперь сложите квадраты этих разниц: (0,01) 2 + (0,1) 2 + (-0,07) 2 + (-0,13) 2 + (0,07) 2 = 0,037 с.
      • Найти среднее арифметическое этой суммы можно, разделив ее на 5: 0,037 / 5 = 0,0074 с.
  4. Изображение с названием Calculate Uncertainty Step 9

    4

    Найдите среднеквадратичное отклонение. Чтобы найти среднеквадратичное отклонение, просто возьмите квадратный корень из среднего арифметического суммы квадратов. Квадратный корень из 0,0074 = 0,09 с, так что среднеквадратичное отклонение равно 0,09 с.[5]

  5. Изображение с названием Calculate Uncertainty Step 10

    5

    Запишите окончательный ответ. Чтобы сделать это, запишите среднее значение всех измерений плюс-минус среднеквадратичное отклонение. Поскольку среднее значение всех измерений равно 0,42 с, а среднеквадратичное отклонение 0,09 с, то окончательный ответ 0,42 с ± 0,09 с.

    Реклама

  1. Изображение с названием Calculate Uncertainty Step 11

    1

    Сложение. Чтобы сложить величины с погрешностями, сложите отдельно величины и отдельно погрешности.[6]

    • (5 см ± 0,2 см) + (3 см ± 0,1 см) =
    • (5 см + 3 см) ± (0,2 см + 0,1 см) =
    • 8 см ± 0,3 см
  2. Изображение с названием Calculate Uncertainty Step 12

    2

    Вычитание. Чтобы вычесть величины с погрешностями, вычтите величины и сложите погрешности.[7]

    • (10 см ± 0,4 см) – (3 см ± 0,2 см) =
    • (10 см – 3 см) ± (0,4 см + 0,2 см) =
    • 7 см ± 0,6 см
  3. Изображение с названием Calculate Uncertainty Step 13

    3

    Умножение. Чтобы умножить величины с погрешностями, перемножьте величины и сложите ОТНОСИТЕЛЬНЫЕ погрешности (в процентах).[8]
    Рассчитать можно только относительную погрешность, а не абсолютную, как и в случае со сложением и вычитанием. Чтобы узнать относительную погрешность, разделите абсолютную погрешность на измеренное значение, затем умножьте на 100, чтобы выразить результат в процентах. Например:

    • (6 см ± 0,2 см) = (0,2 / 6) x 100 — добавив знак процента, получаем 3,3 %.
      Следовательно:
    • (6 см ± 0,2 см) х (4 см ± 0,3 см) = (6 см ± 3,3 % ) x (4 см ± 7,5 %)
    • (6 см x 4 см) ± (3,3 + 7,5) =
    • 24 см ± 10,8 % = 24 см ± 2,6 см
  4. Изображение с названием Calculate Uncertainty Step 14

    4

    Деление. Чтобы разделить величины с погрешностями, разделите величины и сложите ОТНОСИТЕЛЬНЫЕ погрешности.[9]

    • (10 см ± 0,6 см) ÷ (5 см ± 0,2 см) = (10 см ± 6 %) ÷ (5 см ± 4 %)
    • (10 см ÷ 5 см) ± (6 % + 4 %) =
    • 2 см ± 10 % = 2 см ± 0,2 см
  5. Изображение с названием Calculate Uncertainty Step 15

    5

    Возведение в степень. Для того, чтобы возвести в степень величину с погрешностью, возведите величину в степень, а относительную погрешность умножьте на степень.[10]

    • (2,0 см ± 1,0 см)3 =
    • (2,0 см)3 ± (50 %) x 3 =
    • 8,0 см3 ± 150 % или 8,0 см3 ±12 см3

    Реклама

Советы

  • Вы можете дать погрешность как для общего результата всех измерений, так и для каждого результата одного измерения в отдельности. Как правило, данные, полученные из нескольких измерений, менее достоверны, чем данные, полученные непосредственно из отдельных измерений.

Реклама

Предупреждения

  • Точные науки никогда не работают с «истинными» величинами. Хотя правильное измерение, скорее всего, даст величину в пределах погрешности, нет никакой гарантии, что это будет так. Научные измерения допускают возможность ошибок.
  • Погрешности, описанные здесь, применимы только для случаев нормального распределения (распределения Гаусса). Другие распределения вероятностей требуют других решений.

Реклама

Об этой статье

Эту страницу просматривали 104 812 раз.

Была ли эта статья полезной?

Лабораторная работа №1

Методы оценки погрешностей

  I.  Описание работы

Тема: Методы оценки погрешностей приближенных величин.

Задание 1. Округляя точные числа до трех значащих цифр, определить абсолютную и относительную погрешности полученных приближенных чисел.

Дано:

Найти:

Решение:

– приближенное значение числа A

Абсолютная погрешность:

Относительная погрешность:

Ответ: ;

Задание 2. Определить абсолютную погрешность приближенных чисел по их относительной погрешности .

Дано:

Найти:

Решение:

Абсолютная погрешность:

Ответ:

Задание 3. Решить задачу.

При измерении длины с точностью до 5 м получено км, а при определении другой длины с точностью до 0.5 см, получено метров. Какое измерение по своему качеству лучше?

Дано: Км, М, М, См

Сравнить: и

Решение: Итак, по 1-му измерению, результат Км = М с точностью до М ( – абсолютная погрешность величины ).

Тогда относительная погрешность: %

По 2-му измерению, результат Км с точностью до См =М ( – абсолютная погрешность величины ).

Тогда относительная погрешность: %

Так как , то измерение можно считать по качеству лучше, чем .

Ответ: измерение по качеству лучше, чем .

Задание 4. а) Определить количество верных знаков в числе , если известна его предельная абсолютная погрешность

Дано:

Найти:

Решение:

По определению, n первые значащие цифры являются верными в узком смысле, если абсолютная погрешность этого числа не превышает половины единицы разряда младшей цифры, считая слева направо.

Абсолютная погрешность: , поэтому значащие цифры 8 и 4 числа 0,00842 верны в узком смысле.

Ответ: число X имеет две верных цифры в узком смысле (8 и 4), то есть

Б) Определить количество верных знаков в числе , если известна его предельная относительная погрешность .

Дано: %

Найти:

Решение:

Предельная абсолютная погрешность:

Только первая значащая цифра 1 числа A верна в узком смысле.

Ответ: число A имеет одну верную цифру в узком смысле (1), то есть

Задание 5. Найти предельные относительные погрешности, допускаемые при взятии вместо чисел 3.1, 3.14, 3.1416:

А) считая, что у них все записанные знаки являются верными;

Б) зная, что

Провести сравнения погрешностей и сделать необходимые выводы.

Дано: , ,

Найти:

Решение:

А) :

Если считать, что все записанные знаки являются верными в узком смысле, то абсолютная погрешность:

Предельная абсолютная погрешность:

Тогда предельная относительная погрешность:

%

:

Если считать, что все записанные знаки являются верными в узком смысле, то абсолютная погрешность:

Предельная абсолютная погрешность:

Тогда предельная относительная погрешность:

%

:

Если считать, что все записанные знаки являются верными в узком смысле, то абсолютная погрешность:

Предельная абсолютная погрешность:

Тогда предельная относительная погрешность:

%

Б) Пусть (прервем запись числа на 7-м знаке после запятой и считаем полученное число точным значением числа ).

Тогда абсолютная погрешность первого представления числа : .

Относительная погрешность: %

Абсолютная погрешность второго представления числа : .

Относительная погрешность: %

Абсолютная погрешность третьего представления числа : %.

Относительная погрешность: %

Выводы:

1) Можно заметить, что , то есть ;

, то есть ;

, то есть

Иными словами, для трех чисел их «истинная» относительная погрешность ограничена предельной относительной погрешностью, определенной из условия верности знаков чисел. Причем, для каждого числа две оценки отличаются меньше, чем на порядок. Значит, предположение о верности всех знаков чисел Обосновано.

2) Сравнение относительных погрешностей чисел :

показывает,

Что числа Перечислены

В порядке увеличения точности представления числа ,

То есть точнее , точнее .

Ответ: а)

б)

Задание 6. Найти сумму приближенных чисел , , считая в них все знаки верными, т. е. что абсолютная погрешность каждого слагаемого не превосходит половины единицы младшего разряда этого слагаемого. Определить абсолютную и относительную погрешности суммы.

Дано: , ,

Найти:

Решение:

1) Считаем, что в числах , , все знаки верны в узком смысле, то есть

Число с наибольшей абсолютной погрешностью .

2) Остальные числа округлим, сохраняя один запасный десятичный знак по сравнению с ранее выделенным наименее точным слагаемым :

, абсолютная погрешность округления

, абсолютная погрешность округления

3) Сложим все эти числа, учитывая все сохраненные знаки:

4) Полученный результат округлим на один знак (формально):

, абсолютная погрешность округления

5) Полную абсолютную погрешность суммы будем складывать из трех компонентов:

A)  суммы предельных абсолютных погрешностей исходных чисел;

B)  абсолютной величины суммы ошибок округления слагаемых;

C)  заключительной погрешности округления результата.

– абсолютная погрешность суммы.

% – относительная погрешность суммы.

Ответ: ; %.

Задание 7. Найти предельную абсолютную и относительную погрешности при вычислении объема прямого кругового цилиндра, если значения его высоты и радиуса основания имеют все верные знаки.

Дано: ,

Найти:

Решение:

,

Примем

1) Так как в числах и все числа верны, то их абсолютные погрешности:

Число с наибольшей абсолютной погрешностью .

Число R округлим, сохраняя один запасный десятичный знак по сравнению с ранее выделенным наименее точным слагаемым :

, абсолютная погрешность округления (округления не требуется)

2) перемножим числа, учитывая все сохраненные знаки:

3) Полученный результат округляем, сохраняя столько значащих цифр, сколько верных цифр имеется в числе H, то есть 2 значащих цифры:

;

Абсолютная погрешность округления

4) Полную абсолютную погрешность произведения будем складывать из двух слагаемых:

A) предельной абсолютной погрешности произведения до его округления;

B) заключительной погрешности округления произведения.

Абсолютную погрешность произведения до округления вычислим на основе предварительно найденной относительной погрешности произведения округленных сомножителей:

%.

Полная абсолютная погрешность

Теперь перейдем к искомому объему.

(Здесь полученный результат округляем до трех значащих цифр).

– предельная абсолютная погрешность объема.

% – предельная относительная погрешность объема.

Ответ: , , %

Задание 8. Привести пример потери точности при вычитании двух близких чисел.

Решение:

Пусть и – два близких числа; примем, что у них одинаковое число знаков после запятой.

Считаем, что все знаки в числах и верны в узком смысле. Тогда абсолютные погрешности:

Относительные погрешности:

%

%

Так как , то

Абсолютная погрешность результата:

Относительная погрешность результата: %

При вычитании двух близких чисел и относительная погрешность возросла на 3 порядка!

Лабораторная работа №2

Метод Гаусса

  I.  Описание работы

Тема: Решение системы линейных неоднородных алгебраических уравнений методом Гаусса (схема единственного деления).

Задание. Решить систему трех уравнений с тремя неизвестными с точностью искомых неизвестных до .

Промежуточные вычисления вести с двумя запасными знаками.

,

Решение:

Исходные данные и все результаты вычислений запишем в таблицу 1.

Прямой ход

1.  Записываем коэффициенты данной системы в трех строках и четырех столбцах раздела 1 таблицы 1.

2.  Суммируем все коэффициенты по строке и записываем сумму в столбце (столбец контроля), например .

3.  Делим все числа, стоящие в первой строке, на и результаты записываем в 4-й строке раздела 1.

4.  Вычисляем и делаем проверку, если вычисления ведутся с 6 и более знаками после запятой, то числа и не должны отличаться более, чем на единицу последнего разряда:

5.  По формулам вычисляем коэффициенты :

Результаты записываем в первые две строки раздела:

6.  Делаем проверку. Сумма элементов каждой строки не должна отличаться от более, чем на 1-2 единицы последнего разряда. Заметим, что ,

,

,

7.  Делим все элементы 1 строки раздела 2 на и результаты записываем в 3 строке раздела 2.

8.  Делаем проверку:

9.  По формулам вычисляем :

Результаты записываем в 1 строку раздела 3.

10. Делаем проверку:

,

11. Делим все элементы 1 строки раздела 3 на и результаты записываем в следующей (второй) строке этого раздела.

12.  Делаем проверку:

Обратный ход

1.  В разделе 4 записываем единицы

2.  Записываем .

3.  Для вычисления и используем лишь строки разделов, содержащие 1.

4.  Вычислим по формуле: .

5.  Вычислим по формуле:

.

6.  Аналогично проводим обратный ход в контрольной системе. Записываем ,

вычисляем и с заменой и на и соответственно:

Делаем обычную проверку по строкам – должно быть , с точностью до 1-2 единиц последнего разряда.

Действительно:

Заполним таблицу 1 результатами вычислений:

Таблица 1

Раз

Дел

1

1

2

3

2

2

3

3

3

4

1

1

1

1

1

Округлим полученное решение до , по требованию задачи:

Окончательную проверку точности полученного решения системы выполним подстановкой этого решения в систему. Должно получиться приближенное тождество с точностью до .

Ответ:

< Предыдущая   Следующая >

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ И ЕЕ ГРАНИЦА.

ЗАПИСЬ ПРИБЛИЖЕННОГО ЧИСЛА.

ВЕРНЫЕ И ЗНАЧАЩИЕ ЦИФРЫ ЧИСЛА

х – точное число

а – приближенное число

Разность   х – а    между точным числом х и приближенным числом а называется погрешностью приближения.

Модуль погрешности называется абсолютной погрешностью и обозначается ∆:

| х – а | = ∆

Погрешность и абсолютная погрешность имеют ту же размерность, что и рассматриваемая величина

Граница абсолютной погрешности ∆а – положительное число, которое больше или равно абсолютной погрешности или:

| х – а | ≤ ∆а

Если задана граница абсолютной погрешности ∆а, то число а есть приближенное значение числа х с точностью до ∆а и записывают

х = а ± ∆а, например: 94,5 ± 0,3

В отличие от абсолютной погрешности, граница абсолютной погрешности не определяется однозначно, поэтому на практике выбирается такое значение границы абсолютной погрешности, которое удобно для вычислений и обеспечивает максимальную точность.

Цифра приближенного числа а, записанного в виде десятичной дроби, называется верной (точной), если граница абсолютной погрешности числа не превышает (меньше или равно) единицы того разряда, в котором стоит эта цифра. В противном случае она называется сомнительной, например:

25,63 ± 0,2

Граница погрешности 0,2 , поэтому рассмотрим

цифру 5, разряд единицы, единица разряда 1 и 0,2 < 1 (граница погрешности не превышает единицу разряда), значит цифра 5 – верная, тогда цифра десятков – 2  данного числа тоже верная.

Цифра 6, разряд десятые, единица разряда 0,1 и 0,2 > 0,1  (граница погрешности превышает единицу разряда), значит цифра 6 – сомнительная. Значит и цифра 3 (сотые) будет также сомнительной

2 и 5 – верные цифры, 6 и 3 – сомнительные цифры числа

Запись чисел с сохранением только верных цифр широко используется во всех математических таблицах, в справочниках (физика, астрономия, техника). При этом, по записи приближенного числа можно оценить погрешность приближения, например:

табличные данные: температура кипения золота – 2700 ºС, значит граница абсолютной погрешности 1 ºС, температура кипения йода – 182,8 ºС, значит граница абсолютной погрешности 0,1 ºС.

Записи приближенных чисел 0,3; 0,30; 0,300 – неравносильны, т.к. приближенное число 0,3 имеет погрешность не более 0,1;

приближенное число 0,30 имеет погрешность не более 0,01;

приближенное число 0,300 имеет погрешность не более 0,001.

Если целое число содержит в конце нули, не являющиеся верными цифрами, то их заменяют множителем 10р, где р – число таких нулей.

В записи приближенных чисел принято соблюдать следующие правила:

  • Оставлять в записи приближенного числа только верные цифры;
  • Если в десятичной дроби последние верные цифры нули, то их надо выписать;
  • Если число содержит в конце нули, не являющиеся верными цифрами, то они должны быть заменены на 10р , где р – число нулей, которые надо заменить

Например,

Записать правильно следующие приближенные числа:  

  1. а = 0,075 ± 0,000005 – здесь погрешность меньше, чем 0,00001 (0,000005<0,00001), значит а = 0,07500 (последние верные цифры нули и их надо выписать, см. правило)
  2. а = 746000000 ± 5000 здесь погрешность меньше, чем 10000 (5000<10000), значит последние четыре нуля не являются верными цифрами и их надо заменить на  10р  а = 74600·104
  3. а = 0,35  ∆а = 0,00005 – здесь погрешность меньше, чем 0,0001 значит

а = 0,3500 (последние верные цифры нули)

  1. а = 765000  ∆а = 5 – здесь погрешность  5<10  значит а = 76500·10, т.к. последний нуль не является верной цифрой
  2. а = 0,3700  ∆а = 0,05 – здесь погрешность 0,05<0,1 и цифра 7 не является верной, она отбрасывается, значит а = 0,4

В некоторых заданиях необходимо наоборот определить абсолютную погрешность по записи приближенного числа, например,

Указать абсолютную погрешность приближенных чисел:

  1. а = 14,5 ·10, значит ∆а = 10
  2. а = 34,20 т.к. последний нуль является верной цифрой, то ∆а = 0,01
  3. а = 263·104 , значит ∆а = 10000

Число в стандартном виде записывают так:

а = а0, а1 а2 … а·10m , где 1 ≤ а0 ≤ 10,

а0, а1 а2 … аk  –  все верные цифры числа,

показатель m – называется порядком числа.

Если число, записанное в виде десятичной дроби содержит все верные цифры, то все его цифры, начиная с первой слева отличной от нуля, называют значащими, например:

7,03 – три значащие цифры

4400 – четыре значащие цифры

0,000270 – три значащие цифры (нули, расположенные левее первой, отличной   от нуля цифры, не считаются значащими  0,000270).

Округление числа – это замена его числом с меньшим количеством значащих цифр. При округлении числа до m значащих цифр отбрасывают все цифры, стоящие правее m-ой значащей цифры, заменяя их на нули (при сохранении разряда). При этом, если первая из отбрасываемых цифр ≥ 5, то последнюю оставшуюся цифру увеличивают на единицу,

например:

Округлить число с заданной точностью:

  • с точностью до 10-3   (10-3  = 0,001)

1,5783

Значащие цифры – 1, 5, 7  и 8, цифра 3 – сомнительная, т.к. 0,001 > 0,0001 (единицы разряда)

1,5783 ≈ 1,578 (последняя из отбрасываемых цифр 3<5, значит предыдущую оставляем без изменений)

23,4997

Значащие цифры – 2, 3, 4, 9 и 9, цифра 7 – сомнительная

7>5, значит предыдущую увеличиваем на 1, получим

23,4997 ≈ 23,500

  • с точностью до 10-2  (10-2  = 0,01)

4,761 ≈ 4,76

31,009 ≈ 31,01

  • с точностью до 103  (103 = 1000)

159734 ≈ 160000 = 160·103

28,34 ≈ 0 – ни одна из цифр не является значащей 1000 > 10, т.к. задана точность 1000, а заданное число меньше, чем погрешность.

Лисичкин В.Т., Соловейчик И.Л. Сборник задач по математике с решениями для техникумов (учебное пособие)

1.1.1.
Точные и приближенные числа

1.1.2.
Абсолютная и относительная погрешность

1.1.3.
Тестовые задания по теме «Элементы
теории погрешностей»

1.1.1. Точные и приближенные числа

Точность числа, как правило, не вызывает
сомнений, когда речь идет о целых
значениях данных (2 карандаша, 100
деревьев). Однако, в большинстве случаев,
когда точное значение числа указать
невозможно (например, при измерении
предмета линейкой, снятии результатов
с прибора и т.п.), мы имеем дело с
приближенными данными.

Приближенным значением
называется число, незначительно
отличающееся от точного значения
и заменяющее его в вычислениях.
Степень отличия приближенного значения
числа от его точного значения
характеризуетсяпогрешностью.

Различают следующие основные источники
погрешностей:

  1. Погрешности
    постановки задачи
    ,
    возникающие в результате приближенного
    описания реального явления в терминах
    математики.

  2. Погрешности метода, связанные с
    трудностью или невозможностью решения
    поставленной задачи и заменой ее
    подобной, такой, чтобы можно было
    применить известный и доступный метод
    решения и получить результат, близкий
    к искомому.

  3. Неустранимые погрешности, связанные
    с приближенными значениями исходных
    данных и обусловленные выполнением
    вычислений над приближенными числами.

  4. Погрешности округления, связанные
    с округлением значений исходных данных,
    промежуточных и конечных результатов,
    получаемых с применением вычислительных
    средств.

1.1.2. Абсолютная и относительная погрешность

Учет погрешностей является важным
аспектом применения численных методов,
поскольку погрешность конечного
результата решения всей задачи является
продуктом взаимодействия всех видов
погрешностей. Поэтому одной из основных
задач теории погрешностей является
оценка точности результата на основании
точности исходных данных.

Если
– точное число и– его приближенное значение, то
погрешностью (ошибкой) приближенного
значенияявляется степень близости его значения
к его точному значению.

Простейшей количественной мерой
погрешности
является абсолютная погрешность, которая
определяется как

(1.1.2-1)

Как видно из формулы 1.1.2-1, абсолютная
погрешность имеет те же единицы измерения,
что и величина
.
Поэтому по величине абсолютной
погрешности далеко не всегда можно
сделать правильное заключение о качестве
приближения. Например, если,
а речь идет о детали станка, то измерения
являются очень грубыми, а если о размере
судна, то – очень точными. В связи с этим
введено понятие относительной погрешности,
в котором значение абсолютной погрешности
отнесено к модулю приближенного значения
().

(1.1.2-2)

Использование относительных погрешностей
удобно, в частности, тем, что они не
зависят от масштабов величин и единиц
измерений данных. Относительная
погрешность измеряется в долях или
процентах. Так, например, если

,
а,
то,а еслии,

то
тогда
.

Чтобы численно оценить погрешность
функции, требуется знать основные
правила подсчета погрешности действий:

  • при сложении и вычитании чиселабсолютные погрешности чисел складываются

  • при умножении и делении чиселдруг на друга складываются их относительные
    погрешности

  • при возведении в степень приближенного
    числа
    его относительная погрешность
    умножается на показатель степени

Пример
1.1.2-1.
Дана функция:.
Найти абсолютную и относительную
погрешности величины
(погрешность результата выполнения
арифметических операций), если значения

известны, а 1
– точное число и его погрешность равна
нулю.

Определив, таким образом, значение
относительной погрешности, можно найти
значение абсолютной погрешности, как
,где величинавычисляется по формуле при приближенных
значениях

Поскольку точное значение величины
обычно неизвестно, то вычислениеипо
приведенным выше формулам невозможно.
Поэтому на практике проводят оценку
предельных погрешностей вида:

(1.1.2-3)

где


и
– известные величины, которые
являются верхними границами абсолютной
и относительной погрешностей, иначе их
называют – предельная абсолютная и
предельная относительная погрешности.
Таким образом, точное значениележит в пределах:

или

Если величина
известна, то,
а если известна величина,
то

Предельная
абсолютная погрешность функции вида,
дифференцируемой в заданной области,
при известных значениях аргументов,
а также при известных предельных
абсолютных погрешностях аргументов,
вычисляется по формуле:

(1.1.2-4)

а,
соответственно, предельная относительная
погрешность функции

(1.1.2-5)

В частном случае для функции от одной
переменной (при m=1):

Пример
1.1
.2-2.
Оценить
абсолютную и относительную погрешности
приближенного   числа  
.

Число

трансцендентное число, представляется
бесконечной непериодической дробью
.

Приближенное
значение числа
.

Граница
абсолютной погрешности
,
относительная погрешность числа

Пример
1.1.2-3.
Определить
значащие цифры числа.

Значащими
цифрами

числа 
называют все цифры в его записи, начиная
с первой ненулевой слева. Значащую цифру
числаназываютверной,
если абсолютная погрешность числа не
превосходит единицы разряда,
соответствующего этой цифре.

Значащие
цифры чисел подчеркнуты:

Пример
1.1.2-4.
Определить верные цифры
числа

и подчеркнуть.

Если
,
то верных цифр в числе5:
  

Если
,
то верных цифр в числе4:
  

Если
,
то верных цифр в числе7:
  

Если
то верных цифр в числе8:
   

Пример
1
.1.2-5.
Вычислить погрешности
арифметических операций средствами
MathCad.

Для
оценки погрешностей арифметических
операций следует использовать следующие
утверждения: абсолютная погрешность
алгебраической суммы (суммы или разности
) не превосходит суммы абсолютных
погрешностей слагаемых. Пусть числа
изаданы с абсолютными погрешностями
и

.

Относительная
погрешность разности в 2000 раз больше
относительной погрешности суммы!

Возьмем
теперь другие значения x и y и вычислим
погрешности произведения и частного


Вычислим
погрешности произведения и частного:

Абсолютная
погрешность частного

в 20000 раз больше абсолютной
погрешности
произведения!

Пример
1.1.2-6
.Вычислить погрешности функции
средствами
MathCad.

 

Пусть

По
приведенным начальным условиям
считаем,что погрешности равны

Значение
функции равно

Добавить комментарий