Основные свойства логарифмов
2 февраля 2017
- Скачать все формулы
Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.
Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.
Сложение и вычитание логарифмов
Рассмотрим два логарифма с одинаковыми основаниями: loga x и loga y. Тогда их можно складывать и вычитать, причем:
- loga x + loga y = loga (x · y);
- loga x − loga y = loga (x : y).
Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают!
Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:
Задача. Найдите значение выражения: log6 4 + log6 9.
Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.
Задача. Найдите значение выражения: log2 48 − log2 3.
Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.
Задача. Найдите значение выражения: log3 135 − log3 5.
Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.
Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.
Вынесение показателя степени из логарифма
Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:
- loga xn = n · loga x;
Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.
Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.
Задача. Найдите значение выражения: log7 496.
Избавимся от степени в аргументе по первой формуле:
log7 496 = 6 · log7 49 = 6 · 2 = 12
Задача. Найдите значение выражения:
[Подпись к рисунку]
Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 24; 49 = 72. Имеем:
Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.
Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.
Переход к новому основанию
Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?
На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:
Пусть дан логарифм loga x. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:
[Подпись к рисунку] В частности, если положить c = x, получим:
[Подпись к рисунку]
Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.
Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.
Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:
Задача. Найдите значение выражения: log5 16 · log2 25.
Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;
А теперь «перевернем» второй логарифм:
Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.
Задача. Найдите значение выражения: log9 100 · lg 3.
Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:
Теперь избавимся от десятичного логарифма, перейдя к новому основанию:
Основное логарифмическое тождество
Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:
- n = loga an
В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.
Вторая формула — это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество.
В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».
Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.
Задача. Найдите значение выражения:
[Подпись к рисунку]
Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:
Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂
Логарифмическая единица и логарифмический ноль
В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.
- loga a = 1 — это логарифмическая единица. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
- loga 1 = 0 — это логарифмический ноль. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a0 = 1 — это прямое следствие из определения.
Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.
Смотрите также:
- Тест к уроку «Что такое логарифм» (тяжелый)
- Как решать простейшие логарифмические уравнения
- Не пишите единицы измерения в задаче B12
- Что такое логарифм
- Сложные задачи на проценты
- Задача B4: экономика
Логарифмы степени числа — свойства с примерами, как решать задачи
Содержание:
- Что такое логарифм степени числа и как его посчитать
- Основные свойства логарифмов
- Примеры логарифмов с решением, пояснения
- Задачи для самостоятельной работы
Что такое логарифм степени числа и как его посчитать
Логарифм по основанию а от b представляет собой число t, демонстрирующее степень, в которую требуется возвести а для получения в результате b:
(Large{{log_a{b}=tquadLeftrightarrowquad a^t=b }})
Здесь a>0, b отлично от нуля и является положительным.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
По той причине, что степень может иметь любое значение без какого-либо предела, имеем:
(tin mathbb{R})
В результате получается вывести главное логарифмическое тождество.
Основное логарифмическое тождество является соотношением, записанным в виде:
(Large{a^{log_ab}=b})
Исходя из рассмотренных закономерностей, справедливы следующие соотношения:
({large{begin{array}{|ll|l|} hline qquad qquad qquad qquad {small{text{Формулы}}} && qquad qquad{small{text{Ограничения}}}\ &&\ hline textbf{(1)} log_a1=0&&a>0, ane 1\ &&\ textbf{(2)} log_aa=1 &&a>0, ane 1\ &&\ textbf{(3)} log_{a}{b^m}=mlog_a|b|&(m – {small{text{четн.}}})&a>0, ane 1, bne 0\ &&\ textbf{(4)}log_{a}{b^m}=mlog_ab& (m – {small{text{нечетн.}}})&a>0, ane 1, b>0\ &&\ textbf{(5)} log_{a^n}{b}=frac 1nlog_{|a|}b&(n – {small{text{четн.}}})&ane 0, ane 1, b>0\ &&\ textbf{(6)}log_{a^n}b=frac1nlog_ab&(n – {small{text{нечетн.}}})&a>0, ane 1, b>0\ &&\ textbf{(7)} log_a{bc}=log_a|b|+log_a|c|&&a>0, ane 1, bcne 0\ &&\ textbf{(8)} log_a{dfrac bc}=log_a|b|-log_a|c|&&a>0, ane 1,bcne 0 \ &&\ textbf{(9)} a^{log_ab}=b &&a>0, ane 1, b>0\ &&\ textbf{(10)}c^{log_ab}=b^{log_ac}&&a>0, ane 1, b>0, c>0\ &&\ textbf{(11)} log_abcdot log_bc=log_ac && a>0, ane 1,b>0, bne 1, c>0\ &&\ textbf{(11′}) log_bc=dfrac{log_ac}{log_ab}&&a>0, ane 1,b>0, bne 1, c>0\ &&\ &&\ {small{text{ЧАСТНЫЕ СЛУЧАИ:}}}&& \ textbf{(12)} log_abcdot log_ba=1 && a>0, ane 1, b>0, bne 1\ &&\ textbf{(12′}) log_ab=dfrac1{log_ba}&&a>0, ane 1, b>0, bne 1\ &&\ hline end{array}}})
Если все условия, связанные с ограничениями, выполняются, то эти формулы справедливы в прямом и обратном направлениях.
Логарифм степени какого-либо числа представляет собой результат умножения логарифма модуля основания данной степени и показателя этой степени:
(log_{a}x^r=r cdot log_{a}|x|)
В данном случае (x^r,a > 0), (a ne 1).
Разберем наглядный пример такой взаимосвязи. Предположим, что имеется некое выражение, значение которого требуется определить:
(log_{5}frac{1}{125}+log_{11}121)
Рассмотрим выражение, записанное под знаком логарифма, и решим, что с ним делать. Заметим, что его можно переписать как основание логарифма в степени. Воспользуемся свойством логарифма степени, изученным ранее, и выполним преобразования:
(log_{5}frac{1}{125}+log_{11}121=log_{5}5^{-3}+log_{11}11^2=-3log_{5}5+2log_{11}11)
Известно, что:
(log_{a}a=1)
Доведем вычисления до конца:
(log_{5}frac{1}{125}+log_{11}121=log_{5}5^{-3}+log_{11}11^2=-3log_{5}5+2log_{11}11=-3+2=-1)
Ответ: (log_{5} frac{1}{125}+log_{11}121=-1.)
В процессе решения задач в разных главах разделов тригонометрии может потребоваться обратный перевод определения логарифма степени числа. Заметим, что оно также является справедливым.
Коэффициент, записанный перед знаком логарифма, допустимо заносить в степень выражения, находящегося под знаком логарифма:
(s log_{a}x=log_{a}x^s)
Здесь a и b > 0, a≠1.
Рассмотрим наглядный пример. Пусть дано выражение, которое требуется упростить:
(6 log_{13}x^2-log_{13}x^7)
Воспользуемся логарифмическим свойством, чтобы записать степень за знаком логарифма:
(6 log_{13}x^2-log_{13}x^7=6 cdot 2 log_{13}x-7 log_{13}x=12 log_{13}x-7 log_{13}x=5 log_{13}x)
Если под логарифмический знак записать коэффициент в виде числа 5, то получим:
(6 log_{13}x^2-log_{13}x^7=6 cdot 2 log_{13}x-7 log_{13}x=12 log_{13}x-7 log_{13}x=5 log_{13}x=log_{13}x^5.)
Основные свойства логарифмов
При решении задач на логарифмы, в том числе, для вычисления логарифма степени числа и поиск натуральных корней, полезно знать несколько свойств. Благодаря несложным закономерностям, можно сделать проще даже самое сложное выражение.
1. Рассмотрим свойство степени аргумента, записанное в виде уравнения:
({{log }_{a}}{{a}^{x}}=x)
Докажем, что записанное соотношение справедливо. Предположим, что:
({{log }_{a}}b=x)
В таком случае:
({{a}^{x}}=b)
В результате получим:
(frac{{{log }_{c}}b}{{{log }_{c}}a}=frac{{{log }_{c}}{{a}^{x}}}{{{log }_{c}}a}=frac{x{{log }_{c}}a}{{{log }_{c}}a}=x={{log }_{a}}b)
Данное свойство доказано.
2. Следующее свойство суммы логарифмов состоит в том, что при сложении логарифмов, имеющих одинаковые основания, получается в результате логарифм произведения:
({{log }_{a}}b+{{log }_{a}}c={{log }_{a}}left( bcdot c right))
Начнем доказательство со следующего предположения:
({{log }_{a}}b=x)
В таком случае:
({{a}^{x}}=b)
Представим, что:
({{log }_{a}}c=y)
В таком случае:
({{a}^{y}}=c)
В результате получим, что:
({{log }_{a}}left( bcdot c right)={{log }_{a}}left( {{a}^{x}}cdot {{a}^{y}} right)={{log }_{a}}{{a}^{x+y}}underset{text{по правилу 1}}{mathop{=}},x+y={{log }_{a}}b+lo{{g}_{a}}c)
Свойство суммы логарифмов доказано.
3. Свойство разности логарифмов звучит так: разность двух логарифмов, имеющих идентичные основания, равна логарифму частного. Это утверждение можно выразить формулой:
(lo{{g}_{a}}b-{{log }_{a}}c={{log }_{a}}frac{b}{c})
Доказательство данного свойства аналогично сумме логарифмов. Предположим, что:
({{log }_{a}}b=x)
В таком случае:
({{a}^{x}}=b)
Представим, что:
({{log }_{a}}c=y)
В таком случае:
({{a}^{y}}=c)
В результате получим, что:
({{log }_{a}}left( frac{b}{c} right)={{log }_{a}}left( frac{{{a}^{x}}}{{{a}^{y}}} right)={{log }_{a}}{{a}^{x-y}}=x-y={{log }_{a}}b-{{log }_{a}}c)
({{log }_{a}}b-{{log }_{a}}c={{log }_{a}}left( frac{b}{c}cdot c right)-{{log }_{a}}c={{log }_{a}}frac{b}{c}+{{log }_{a}}c-{{log }_{a}}c={{log }_{a}}frac{b}{c}.)
4. Следующее свойство призвано упростить вынесение показателя степени из аргумента логарифма. Оно состоит в следующем: при наличии в аргументе логарифма степени ее показатель допустимо выносить за знак логарифма. Справедливым является следующее соотношение:
({{log }_{a}}{{b}^{n}}=ncdot {{log }_{a}}b)
Доказать данное утверждение можно с помощью определения логарифма. Представим, что:
({{log }_{a}}b=x)
В таком случае:
({{a}^{x}}=b)
Получим, что:
({{log }_{a}}{{b}^{n}}={{log }_{a}}{{left( {{a}^{x}} right)}^{n}}={{log }_{a}}{{a}^{nx}}=nx=ncdot {{log }_{a}}b)
Утверждение доказано. Также существует другой вариант записи свойства:
({{log }_{a}}{{b}^{n}}={{log }_{a}}left( underbrace{bcdot bcdot …cdot b}_{ntext{ раз}} right)text{ }underset{text{правило} text{2}}{mathop{=}},text{ }underbrace{{{log }_{a}}b+lo{{g}_{a}}b+…+{{log }_{a}}b}_{ntext{ раз}}=ncdot {{log }_{a}}b.)
Таким образом, степень аргумента допустимо записывать перед логарифмом в виде коэффициента.
5. Следующее свойство позволит выносить показатель степени из основания логарифма. Такое действие реализуемо, так как при наличии в основании логарифма степени ее показатель допустимо выносить за знак логарифма:
({{log }_{{{a}^{n}}}}b=frac{1}{n}cdot {{log }_{a}}b)
Докажем записанное соотношение, предположив, что:
({{log }_{a}}b=x), тогда (displaystyle {{a}^{x}}=b)
В таком случае:
({{log }_{{{a}^{n}}}}b={{log }_{{{a}^{n}}}}{{a}^{x}}={{log }_{{{a}^{n}}}}{{a}^{frac{xcdot n}{n}}}={{log }_{{{a}^{n}}}}{{left( {{a}^{n}} right)}^{frac{x}{n}}}=frac{x}{n}=frac{1}{n}cdot {{log }_{a}}b.)
Свойство доказано. Здесь следует отметить, что степень можно вынести из основания в виде обратного числа.
6. Существует свойство, позволяющее выносить показатель степени из основания и аргумента логарифма. Свойство заключается в следующем: при наличии степеней в основании и аргументе логарифма их показатели допустимо выносить за знак логарифма, то есть:
({{log }_{{{a}^{n}}}}{{b}^{m}}=frac{m}{n}cdot {{log }_{a}}b)
В том случае, когда степени не отличаются друг от друга, применимо следующее правило:
({{log }_{{{a}^{n}}}}{{b}^{n}}={{log }_{a}}b.)
7. Другое свойство логарифма оговаривает процесс перехода к новому основанию. В том случае, когда логарифмы обладают разными основаниями, целесообразно при решении задачи перейти к логарифмам, имеющим одинаковое основание:
({{log }_{a}}b=frac{{{log }_{c}}b}{{{log }_{c}}a}text{ }left( c>0;text{ }ne text{1} right))
Здесь доказательство свойства построено на следующем предположении:
({{log }_{a}}b=x,) тогда (displaystyle {{a}^{x}}=b)
В таком случае:
(frac{{{log }_{c}}b}{{{log }_{c}}a}=frac{{{log }_{c}}{{a}^{x}}}{{{log }_{c}}a}=frac{x{{log }_{c}}a}{{{log }_{c}}a}=x={{log }_{a}}b.)
8. В большинстве случаев при решении заданий на логарифмы используют свойство смены мест основания и аргумента логарифма. Допустимо переставлять основание и аргумент логарифма. При этом следует «перевернуть» все выражение, то есть записать логарифм в знаменатель:
({{log }_{a}}b=frac{1}{{{log }_{b}}a},text{ }left( bne 1 right))
Данное свойство является частным случаем записанного ранее правила. При подстановке c=b получается, что:
({{log }_{a}}b=frac{{{log }_{b}}b}{{{log }_{b}}a}=frac{1}{{{log }_{b}}a}.)
Примеры логарифмов с решением, пояснения
Задача 1
Дано выражение, значение которого требуется определить:
(log _{2} frac{1}{8}+log _{5} 25)
Решение
Данное выражение можно преобразовать. Для этого следует вспомнить свойство логарифма степени. С его помощью нужно вынести имеющиеся степени за знак логарифма. Далее пригодится следующее соотношение:
(log _{a} a=1.)
Выполним вычисления:
(log _{2} frac{1}{8}+log _{5} 25=log _{2} 2^{-3}+log _{5} 5^{2}=-3 cdot log _{2} 2+2 cdot log _{5} 5=-3+2=-1)
Ответ: ( log _{2} frac{1}{8}+log _{5} 25=-1)
Требуется упростить следующее выражение:
(2 log _{7} 4-log _{7} 8)
Решение
Данное выражение можно упростить. Перепишем его с помощью свойства логарифма степени. В процессе следует записать число 2 под знак логарифма. Затем удобно применить свойство разности логарифмов. Выполним вычисления:
(2 log _{7} 4-log _{7} 8=log _{7} 4^{2}-log _{7} 8=log _{7} 16-log _{7} 8=log _{7} frac{16}{8}=log _{7} 2)
Ответ: (2 log _{7} 4-log _{7} 8=log _{7} 2)Задача 2
Задача 3
Дано выражение, значение которого необходимо вычислить:
(lo{{g}_{5}}250-{{log }_{5}}2)
Решение
Воспользуемся свойствами логарифма и выполним вычисления:
({{log }_{5}}250={{log }_{5}}left( 125cdot 2 right)={{log }_{5}}left( {{5}^{3}}cdot 2 right)={{log }_{5}}{{5}^{3}}+{{log }_{5}}2=3+{{log }_{5}}2)
Заметим, что:
({{log }_{5}}250-{{log }_{5}}2=3+{{log }_{5}}2-{{log }_{5}}2=3)
Ответ: 3.
Задача 4
Нужно упростить следующее выражение:
(log _{2}^{2}2sqrt{3}-log _{2}^{2}sqrt{3}-{{log }_{2}}3)
Решение
Воспользуемся формулами сокращенного умножения, а именно — разностью квадратов:
(log _{2}^{2}2sqrt{3}-log _{2}^{2}sqrt{3}=left( {{log }_{2}}2sqrt{3}-{{log }_{2}}sqrt{3} right)left( {{log }_{2}}2sqrt{3}+{{log }_{2}}sqrt{3} right).)
Тогда, согласно свойствам логарифма:
(log _{2}^{2}2sqrt{3}-log _{2}^{2}sqrt{3}-{{log }_{2}}3= left( {{log }_{2}}2sqrt{3}-{{log }_{2}}sqrt{3} right)left( {{log }_{2}}2sqrt{3}+{{log }_{2}}sqrt{3} right)-{{log }_{2}}3={{log }_{2}}frac{2sqrt{3}}{sqrt{3}}cdot {{log }_{2}}left( 2sqrt{3}cdot sqrt{3} right)-{{log }_{2}}3={{log }_{2}}2cdot {{log }_{2}}left( 2cdot 3 right)-{{log }_{2}}3=1cdot left( 1+{{log }_{2}}3 right)-{{log }_{2}}3=1)
Ответ: 1.
Задача 5
Необходимо определить значение следующего выражения:
(frac{{{log }_{2}}25}{{{log }_{2}}5})
Решение
Воспользуемся свойствами логарифма и запишем вычисления:
(frac{{{log }_{2}}25}{{{log }_{2}}5}=frac{{{log }_{2}}{{5}^{2}}}{{{log }_{2}}5}=frac{2{{log }_{2}}5}{{{log }_{2}}5}=2)
Ответ: 2.
Задачи для самостоятельной работы
Задача 6
Даны выражения, которые нужно упростить, используя свойства логарифма:
({{log }_{3}}4-{{log }_{3}}12)
({{log }_{0,3}}3-{{log }_{0,3}}10)
({{log }_{1,75}}28+{{log }_{1,75}}2-{{log }_{1,75}}32)
(lg sqrt{0,05}-lg sqrt{5})
({{lg }^{2}}2sqrt{5}-{{lg }^{2}}5sqrt{2}-frac{3}{2}lg sqrt{frac{2}{5}})
Задача 7
Требуется найти значения для следующих выражений:
(displaystyle frac{{{log }_{2}}81}{{{log }_{2}}3})
(displaystyle frac{{{log }_{3}}125}{{{log }_{3}}625})
(displaystyle frac{log _{5}^{2}25sqrt{10}-log _{5}^{2}sqrt{10}}{{{log }_{5}}250})
Задача 8
Нужно определить значения записанных ниже выражений:
({{log }_{5}}75+{{log }_{5}}frac{1}{3})
({{log }_{3}}36-2{{log }_{3}}2)
({{log }_{8sqrt[5]{4}}}left( 32sqrt[5]{2} right))
(frac{log _{5}^{2}25sqrt{10}-log _{5}^{2}sqrt{10}}{{{log }_{5}}250})
Логари́фм числа по основанию (от др.-греч. λόγος, «отношение» + ἀριθμός «число»[1]) определяется[2] как показатель степени, в которую надо возвести основание , чтобы получить число . Обозначение: , произносится: «логарифм по основанию ».
Из определения следует, что нахождение равносильно решению уравнения . Например, , потому что .
Вычисление логарифма называется логарифми́рованием. Числа и чаще всего вещественные, но существует также теория комплексных логарифмов.
Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений[3]. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление — на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь»[4].
Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры.
Со временем выяснилось, что логарифмическая функция незаменима и во многих других областях человеческой деятельности: решение дифференциальных уравнений, классификация значений величин (например, частота и интенсивность звука), аппроксимация различных зависимостей, теория информации, теория вероятностей и т. д. Эта функция относится к числу элементарных, она обратна по отношению к показательной функции. Чаще всего используются вещественные логарифмы с основаниями (двоичный), число Эйлера e (натуральный) и (десятичный логарифм).
Вещественный логарифм[править | править код]
Логарифм вещественного числа по определению есть решение уравнения . Случай интереса не представляет, поскольку тогда при это уравнение не имеет решения, а при любое число является решением; в обоих случаях логарифм не определён. Аналогично заключаем, что логарифм не существует при нулевом или отрицательном ; кроме того, значение показательной функции всегда положительно, поэтому следует исключить также случай отрицательного . Окончательно получаем[5]:
Вещественный логарифм имеет смысл при
Как известно, показательная функция (при выполнении указанных условий для ) существует, монотонна и каждое значение принимает только один раз, причём диапазон её значений содержит все положительные вещественные числа[6]. Отсюда следует, что значение вещественного логарифма положительного числа всегда существует и определено однозначно.
Наиболее широкое применение нашли следующие виды логарифмов:
Свойства[править | править код]
Основное логарифмическое тождество[править | править код]
Из определения логарифма следует основное логарифмическое тождество[7]:
Следствие: из равенства двух вещественных логарифмов следует равенство логарифмируемых выражений. В самом деле, если , то , откуда, согласно основному тождеству: .
Логарифмы единицы и числа, равного основанию[править | править код]
Два равенства, очевидных из определения логарифма:
Логарифм произведения, частного от деления, степени и корня[править | править код]
Приведём сводку формул в предположении, что все значения положительны[8]:
Формула | Пример | Доказательство | |
---|---|---|---|
Произведение | |||
Частное от деления | |||
Степень |
Доказательство
|
||
Степень в основании |
Доказательство
|
||
Корень |
Доказательство
|
||
Корень в основании |
Доказательство
|
Существует очевидное обобщение приведённых формул на случай, когда допускаются отрицательные значения переменных, например:
Формулы для логарифма произведения без труда обобщаются на произвольное количество сомножителей:
Вышеописанные свойства объясняют, почему применение логарифмов (до изобретения калькуляторов) существенно облегчало вычисления. Например, умножение многозначных чисел с помощью логарифмических таблиц[⇨] производилось по следующему алгоритму:
- найти в таблицах логарифмы чисел ;
- сложить эти логарифмы, получая (согласно первому свойству) логарифм произведения ;
- по логарифму произведения найти в таблицах само произведение.
Деление, которое без помощи логарифмов намного более трудоёмко, чем умножение, выполнялось по тому же алгоритму, лишь с заменой сложения логарифмов на вычитание. Аналогично упрощались возведение в степень и извлечение корня.
Замена основания логарифма[править | править код]
Логарифм по основанию можно преобразовать[5] в логарифм по другому основанию :
Следствие (при ) — перестановка основания и логарифмируемого выражения:
См. пример такой перестановки в разделе десятичный логарифм.
Коэффициент в формуле замены основания называется модулем перехода от одного основания к другому[9].
Неравенства[править | править код]
Значение логарифма положительно тогда и только тогда, когда числа лежат по одну сторону от единицы (то есть либо оба больше единицы, либо оба меньше). Если же лежат по разные стороны от единицы, то логарифм отрицателен[10].
Любое неравенство для положительных чисел можно логарифмировать. При этом, если основание логарифма больше единицы, то знак неравенства сохраняется, а если основание меньше единицы, знак неравенства меняется на противоположный[10].
Другие тождества и свойства[править | править код]
Если выражения для основания логарифма и для логарифмируемого выражения содержат возведение в степень, для упрощения можно применить следующее тождество:
- где — вещественные числа,
Это тождество сразу получается, если в логарифме слева заменить основание на по вышеприведённой формуле замены основания. Следствия:
Ещё одно полезное тождество:
Для его доказательства заметим, что логарифмы левой и правой частей по основанию совпадают (равны ), а тогда, согласно следствию из основного логарифмического тождества, левая и правая части тождественно равны. Прологарифмировав предыдущее тождество по произвольному основанию , получаем ещё одно тождество «обмена основаниями»:
Логарифмическая функция[править | править код]
Основные характеристики[править | править код]
Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию . Она определена при . Область значений: . Эта кривая часто называется логарифмикой[11]. Из формулы замены основания логарифма видно, что графики логарифмических функций с разными основаниями, бо́льшими единицы, отличаются один от другого только масштабом по оси ; графики для оснований, меньших единицы, являются их зеркальным отражением относительно горизонтальной оси.
Из определения следует, что логарифмическая зависимость есть обратная функция для показательной функции , поэтому их графики симметричны относительно биссектрисы первого и третьего квадрантов (см. рисунок). Как и показательная, логарифмическая функция относится к категории трансцендентных функций.
Функция является строго возрастающей при (см. далее графики) и строго убывающей при . График любой логарифмической функции проходит через точку . Функция непрерывна и неограниченно дифференцируема всюду в своей области определения.
Ось ординат () является вертикальной асимптотой, поскольку:
- при ;
- при .
Производная логарифмической функции равна:
С точки зрения алгебры, логарифмическая функция осуществляет (единственно возможный) изоморфизм мультипликативной группы положительных вещественных чисел и аддитивной группы всех вещественных чисел. Другими словами, логарифмическая функция есть единственное (определённое для всех положительных значений аргумента) непрерывное решение функционального уравнения[12]:
Натуральный логарифм[править | править код]
Из приведённой выше общей формулы производной для натурального логарифма получаем особенно простой результат:
По этой причине в математических исследованиях преимущественно используют именно натуральные логарифмы. Они нередко появляются при решении дифференциальных уравнений, исследовании статистических зависимостей (например, распределения простых чисел) и т. п.
Проинтегрировав формулу для производной в интервале от до , мы получаем:
Другими словами, натуральный логарифм равен площади под гиперболой для указанного интервала x.
Неопределённый интеграл от натурального логарифма легко найти интегрированием по частям:
В математическом анализе и теории дифференциальных уравнений большую роль играет понятие логарифмической производной функции :
Разложение в ряд и вычисление натурального логарифма[править | править код]
Разложим натуральный логарифм в ряд Тейлора вблизи единицы:
(Ряд 1) |
Этот ряд, называемый «рядом Меркатора», сходится при . В частности:
Формула ряда 1 непригодна для практического расчёта логарифмов из-за того, что ряд сходится очень медленно и только в узком интервале. Однако нетрудно получить из неё более удобную формулу:
(Ряд 2) |
Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа , ибо тогда по абсолютной величине меньше единицы. Данный алгоритм уже пригоден для реальных численных расчётов значений логарифмов, однако не является наилучшим с точки зрения трудоёмкости. Существуют более эффективные алгоритмы[13].
Десятичный логарифм[править | править код]
Логарифмы по основанию 10 (обозначение: ) до изобретения калькуляторов широко применялись для вычислений. Они обладают преимуществом перед логарифмами с иным основанием: целую часть логарифма числа легко определить[14]:
Кроме того, при переносе десятичной запятой в числе на разрядов значение десятичного логарифма этого числа изменяется на . Например, . Отсюда следует, что для вычисления десятичных логарифмов достаточно составить таблицу логарифмов для чисел в диапазоне от до [14].
Связь с натуральным логарифмом[15]:
Поскольку применение логарифмов для расчётов с появлением вычислительной техники почти прекратилось, в наши дни десятичный логарифм в значительной степени вытеснен натуральным[16]. Он сохраняется в основном в тех математических моделях, где исторически укоренился — например, при построении логарифмических шкал.
Предельные соотношения[править | править код]
Приведём несколько полезных пределов, связанных с логарифмами[17]:
Другие свойства[править | править код]
Комплексный логарифм[править | править код]
Определение и свойства[править | править код]
Для комплексных чисел логарифм определяется так же, как вещественный. На практике используется почти исключительно натуральный комплексный логарифм, который обозначается и определяется как решение уравнения (другие, эквивалентные данному, варианты определения приведены ниже).
В поле комплексных чисел решение этого уравнения, в отличие от вещественного случая, не определено однозначно. Например, согласно тождеству Эйлера, ; однако также . Это связано с тем, что показательная функция вдоль мнимой оси является периодической (с периодом )[19], и одно и то же значение функция принимает бесконечно много раз. Таким образом, комплексная логарифмическая функция является многозначной.
Комплексный нуль не имеет логарифма, поскольку комплексная экспонента не принимает нулевого значения. Ненулевое можно представить в показательной форме:
Тогда находится по формуле[20]:
Здесь — вещественный логарифм, — произвольное целое число. Отсюда вытекает:
Из формулы видно, что у одного и только одного из значений мнимая часть находится в интервале . Это значение называется главным значением комплексного натурального логарифма[11]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Иногда через также обозначают значение логарифма, лежащее не на главной ветви. Если — вещественное число, то главное значение его логарифма совпадает с обычным вещественным логарифмом.
Из приведённой формулы также следует, что вещественная часть логарифма определяется следующим образом через компоненты аргумента:
На рисунке показано, что вещественная часть как функция компонентов центрально-симметрична и зависит только от расстояния до начала координат. Она получается вращением графика вещественного логарифма вокруг вертикальной оси. С приближением к нулю функция стремится к .
Логарифм отрицательного числа находится по формуле[20]:
Примеры значений комплексного логарифма[править | править код]
Приведём главное значение логарифма () и общее его выражение () для некоторых аргументов:
Следует быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:
— ошибка, которая, однако, косвенно указывает на то, что значения, отличающиеся на , являются логарифмами одного и того же числа.
Отметим, что слева стоит главное значение логарифма, а справа — значение из нижележащей ветви (). Причина ошибки — неосторожное использование свойства , которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.
Комплексная логарифмическая функция и риманова поверхность[править | править код]
В комплексном анализе вместо рассмотрения многозначных функций на комплексной плоскости принято иное решение: рассматривать функцию как однозначную, но определённую не на плоскости, а на более сложном многообразии, которое называется римановой поверхностью[21]. Комплексная логарифмическая функция также относится к этой категории: её образ (см. рисунок) состоит из бесконечного числа ветвей, закрученных в виде спирали. Эта поверхность непрерывна и односвязна. Единственный нуль у функции (первого порядка) получается при . Особые точки: и (точки разветвления бесконечного порядка)[22].
В силу односвязности риманова поверхность логарифма является универсальной накрывающей[23] для комплексной плоскости без точки .
Аналитическое продолжение[править | править код]
Логарифм комплексного числа также может быть определён как аналитическое продолжение вещественного логарифма на всю комплексную плоскость. Пусть кривая начинается в единице, не проходит через нуль и не пересекает отрицательную часть вещественной оси. Тогда главное значение логарифма в конечной точке кривой можно определить по формуле[22]:
Если — простая кривая (без самопересечений), то для чисел, лежащих на ней, логарифмические тождества можно применять без опасений, например:
Главная ветвь логарифмической функции непрерывна и дифференцируема на всей комплексной плоскости, кроме отрицательной части вещественной оси, на которой мнимая часть скачком меняется на . Но этот факт есть следствие искусственного ограничения мнимой части главного значения интервалом . Если рассмотреть все ветви функции, то непрерывность имеет место во всех точках, кроме нуля, где функция не определена. Если разрешить кривой пересекать отрицательную часть вещественной оси, то первое такое пересечение переносит результат с ветви главного значения на соседнюю ветвь, а каждое следующее пересечение вызывает аналогичное смещение по ветвям логарифмической функции[22] (см. рисунок).
Из формулы аналитического продолжения следует, что на любой ветви логарифма[19]:
Для любой окружности , охватывающей точку :
Интеграл берётся в положительном направлении (против часовой стрелки). Это тождество лежит в основе теории вычетов.
Можно также определить аналитическое продолжение комплексного логарифма с помощью вышеприведённых рядов: ряда 1 или ряда 2, — обобщённых на случай комплексного аргумента. Однако из вида этих рядов следует, что в единице сумма ряда равна нулю, то есть ряд относится только к главной ветви многозначной функции комплексного логарифма. Радиус сходимости обоих рядов равен 1.
Связь с обратными тригонометрическими и гиперболическими функциями[править | править код]
Поскольку комплексные тригонометрические функции связаны с экспонентой (формула Эйлера), то комплексный логарифм как обратная к экспоненте функция связан с обратными тригонометрическими функциями[24][25]:
Гиперболические функции на комплексной плоскости можно рассматривать как тригонометрические функции мнимого аргумента, поэтому и здесь имеет место связь с логарифмом[25]:
- — обратный гиперболический синус
- — обратный гиперболический косинус
- — обратный гиперболический тангенс
- — обратный гиперболический котангенс
Исторический очерк[править | править код]
Предшественники[править | править код]
Идейным источником и стимулом применения логарифмов послужил тот факт (известный ещё Архимеду[26]), что при перемножении степеней их показатели складываются[27]: . Индийский математик VIII века Вирасена, исследуя степенные зависимости, опубликовал таблицу целочисленных показателей (то есть, фактически, логарифмов) для оснований 2, 3, 4[28].
Логарифмическая таблица М. Штифеля, «Arithmetica integra», 1544
Решающий шаг был сделан в средневековой Европе. Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел, а также извлечением корней. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной[26]. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание, упростятся также возведение в степень и извлечение корня.
Первым эту идею опубликовал в своей книге «Arithmetica integra» (1544) Михаэль Штифель, который, впрочем, не приложил серьёзных усилий для практической реализации своей идеи[29][30]. Главной заслугой Штифеля является переход от целых показателей степени к произвольным рациональным[31] (первые шаги в этом направлении сделали Николай Орем в XIV веке и Никола Шюке в XV веке).
Джон Непер и его «удивительная таблица логарифмов»[править | править код]
В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Descriptio). В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1′. Термин логарифм, предложенный Непером, утвердился в науке. Теорию логарифмов Непер изложил в другой своей книге «Построение удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Constructio), изданной посмертно в 1619 году его сыном Робертом.
Судя по документам, техникой логарифмирования Непер владел уже к 1594 году[32]. Непосредственной целью её разработки было облегчить Неперу сложные астрологические расчёты[33]; именно поэтому в таблицы были включены только логарифмы тригонометрических функций.
Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение; например, логарифм синуса он определил следующим образом[34]:
Логарифм данного синуса есть число, которое арифметически возрастало всегда с той же скоростью, с какой полный синус начал геометрически убывать.
В современных обозначениях кинематическую модель Непера можно изобразить дифференциальным уравнением[35]:
- ,
где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10 000 000.
То есть логарифм есть такая функция , скорость роста которой обратно пропорциональна .
Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию , то она связана с натуральным логарифмом следующим образом[35]:
Очевидно, , то есть логарифм «полного синуса» (соответствующего 90°) есть нуль — этого и добивался Непер своим определением. Также он хотел, чтобы все логарифмы были положительны; нетрудно убедиться, что это условие для выполняется. .
Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма, например:
Дальнейшее развитие[править | править код]
Как вскоре обнаружилось, из-за ошибки в алгоритме все значения таблицы Непера содержали неверные цифры после шестого знака[36]. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики. Кеплер в изданный им астрономический справочник 1620 года вставил восторженное посвящение Неперу (не зная, что изобретатель логарифмов уже скончался). В 1624 году Кеплер опубликовал свой собственный вариант логарифмических таблиц (лат. Chilias Logarithmorum ad totidem numeros rotundos)[37]. Использование логарифмов позволило Кеплеру относительно быстро завершить многолетний труд по составлению Рудольфинских таблиц, которые закрепили успех гелиоцентрической астрономии.
Спустя несколько лет после книги Непера появились логарифмические таблицы, использующие более близкое к современному понимание логарифма. Лондонский профессор Генри Бригс издал 14-значные таблицы десятичных логарифмов (1617), причём не для тригонометрических функций, а для произвольных целых чисел до 1000 (7 лет спустя Бригс увеличил количество чисел до 20000). В 1619 году лондонский учитель математики Джон Спайделл (англ. John Speidell) переиздал логарифмические таблицы Непера, исправленные и дополненные так, что они фактически стали таблицами натуральных логарифмов. У Спайделла тоже были и логарифмы самих чисел до 1000 (причём логарифм единицы, как и у Бригса, был равен нулю) — хотя масштабирование до целых чисел Спайделл сохранил[38][39].
Вскоре выяснилось, что место логарифмов в математике не ограничивается расчётными удобствами. В 1629 году бельгийский математик Грегуар де Сен-Венсан показал, что площадь под гиперболой меняется по логарифмическому закону[40]. В 1668 году немецкий математик Николас Меркатор (Кауфман) открыл и опубликовал в своей книге Logarithmotechnia разложение логарифма в бесконечный ряд[41]. По мнению многих историков, появление логарифмов оказало сильное влияние на многие математические концепции, в том числе:
- Формирование и признание общего понятия иррациональных и трансцендентных чисел[42].
- Появление показательной функции и общего понятия числовой функции, числа Эйлера, развитие теории разностных уравнений[43].
- Начало работы с бесконечными рядами[41].
- Общие методы решения дифференциальных уравнений различных типов.
- Существенное развитие теории численных методов, требуемых для вычисления точных логарифмических таблиц.
До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log, то над ним. В конечном счёте математики пришли к выводу, что наиболее удобное место для основания — ниже строки, после символа log: . Краткие обозначения наиболее употребительных видов логарифма — для десятичного и натурального — появились намного раньше сразу у нескольких авторов и закрепились окончательно также к концу XIX века[44].
Близкое к современному понимание логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса (1685) и Иоганна Бернулли (1694), а окончательно было узаконено Эйлером[36]. В книге «Введение в анализ бесконечных» (1748) Эйлер дал современные определения как показательной, так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма[45]. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.
Расширение логарифма на комплексную область[править | править код]
Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII—XVIII веков Лейбниц и Иоганн Бернулли, однако создать целостную теорию им не удалось — в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма[46]. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века — между Д’Аламбером и Эйлером. Бернулли и Д’Аламбер считали, что следует определить , в то время как Лейбниц доказывал, что логарифм отрицательного числа есть мнимое число[46]. Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747—1751 годах и по существу ничем не отличается от современной[47]. Хотя спор продолжался (Д’Аламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), подход Эйлера к концу XVIII века получил всеобщее признание.
В XIX веке, с развитием комплексного анализа, исследование комплексного логарифма стимулировало новые открытия. Гаусс в 1811 году разработал полную теорию многозначности логарифмической функции[48], определяемой как интеграл от . Риман, опираясь на уже известные факты об этой и аналогичных функциях, построил общую теорию римановых поверхностей.
Разработка теории конформных отображений показала, что меркаторская проекция в картографии, возникшая ещё до открытия логарифмов (1550), может быть описана как комплексный логарифм[49].
Некоторые практические применения[править | править код]
Логарифмические зависимости в науке и природе[править | править код]
Логарифмические функции распространены чрезвычайно широко как в математике, так и в естественных науках. Часто логарифмы появляются там, где проявляется самоподобие, то есть некоторый объект последовательно воспроизводится в уменьшенном или увеличенном масштабе; см. ниже такие примеры, как рекурсивные алгоритмы, фракталы или раковины моллюсков. Приведём несколько примеров использования логарифмов в разнообразных науках.
Теория чисел[править | править код]
Распределение простых чисел асимптотически подчиняется простым законам[50]:
- Число простых чисел в интервале от 1 до приблизительно равно .
- k-е простое число приблизительно равно .
Ещё более точные оценки используют интегральный логарифм.
Нередко возникает задача грубо оценить очень большое число — например, факториал или число Мерсенна с большим номером. Для этого было бы удобно приближённо записать число в экспоненциальном формате, то есть в виде мантиссы и десятичного порядка.
Задача легко решается с применением логарифмов. Рассмотрим для примера 44-е число Мерсенна .
Следовательно, мантисса результата равна Окончательно получим:
Математический анализ[править | править код]
Логарифмы нередко возникают при нахождении интегралов и при решении дифференциальных уравнений. Примеры:
Теория вероятностей и статистика[править | править код]
В статистике и теории вероятностей логарифм входит в ряд практически важных вероятностных распределений. Например, логарифмическое распределение[51] используется в генетике и физике. Логнормальное распределение часто встречается в ситуациях, когда исследуемая величина есть произведение нескольких независимых положительных случайных переменных[52].
Закон Бенфорда («закон первой цифры») описывает вероятность появления определённой первой значащей цифры при измерении реальных величин.
Для оценки неизвестного параметра широко применяются метод максимального правдоподобия и связанная с ним логарифмическая функция правдоподобия[53].
Флуктуации при случайном блуждании описывает закон Хинчина-Колмогорова.
Информатика и вычислительная математика[править | править код]
В информатике: единица измерения информации (бит). Например, для хранения в компьютере натурального числа (в обычном для компьютера двоичном формате) понадобится битов.
Информационная энтропия — мера количества информации.
Оценка асимптотической сложности рекурсивных алгоритмов, основанных на принципе «разделяй и властвуй»[54] — таких как быстрая сортировка, быстрое преобразование Фурье и т. п.
Обычно числовые значения хранятся в памяти компьютера или специализированного процессора в формате с плавающей запятой. Если, однако, сложение и вычитание для группы данных выполняются редко, а умножение, деление, возведение в степень и извлечение корня — гораздо чаще, тогда имеет смысл рассмотреть возможность хранения таких данных в логарифмическом формате. В этом случае вместо числа хранится логарифм его модуля и знак, и скорость вычислений благодаря свойствам логарифма значительно повышается[55]. Логарифмический формат хранения был использован в нескольких системах, где доказал свою эффективность[56][57].
Фракталы и размерность[править | править код]
Логарифмы помогают выразить размерность Хаусдорфа для фрактала[58]. Например, рассмотрим треугольник Серпинского, который получается из равностороннего треугольника последовательным удалением аналогичных треугольников, линейный размер каждого из которых на каждом этапе уменьшается вдвое (см. рисунок). Размерность результата определяется по формуле:
Механика и физика[править | править код]
Принцип Больцмана в статистической термодинамике — одна из важнейших функций состояния термодинамической системы, характеризующая степень её хаотичности.
Формула Циолковского применяется для расчёта скорости ракеты.
Химия и физическая химия[править | править код]
Уравнение Нернста связывает окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, а также со стандартными электродными потенциалами окислительно-восстановительных пар.
Логарифм используется в определениях таких величин, как показатель константы автопротолиза (самоионизации молекулы) и водородный показатель (кислотности раствора).
Теория музыки[править | править код]
Чтобы решить вопрос о том, на сколько частей делить октаву, требуется отыскать рациональное приближение для . Если разложить это число в непрерывную дробь, то третья подходящая дробь (7/12) позволяет обосновать классическое деление октавы на 12 полутонов[59].
Психология и физиология[править | править код]
Человеческое восприятие многих явлений хорошо описывается логарифмическим законом.
Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула[60] — громкости звука[61], яркости света.
Закон Фиттса: чем дальше или точнее выполняется движение организма, тем больше коррекции необходимо для его выполнения и тем дольше эта коррекция исполняется[62].
Время на принятие решения при наличии выбора можно оценить по закону Хика[en][63].
Биология[править | править код]
Ряд биологических форм хорошо соответствует логарифмической спирали[64] — кривой, у которой касательная в каждой точке образует с радиус-вектором в этой точке один и тот же угол, то есть прирост радиуса на единицу длины окружности постоянен:
Разное[править | править код]
Число кругов игры по олимпийской системе равно двоичному логарифму от числа участников соревнований, округлённому до ближайшего большего целого[65].
Логарифмическая шкала[править | править код]
Неравномерная шкала десятичных логарифмов используется во многих областях науки. Для обеспечения вычислений она наносится на логарифмические линейки. Другие примеры:
- Акустика — уровень звукового давления и интенсивность звука (децибелы)[66].
- Отношение сигнал/шум в радиотехнике и электросвязи[67].
- Астрономия — шкала яркости звёзд[68].
- Химия — активность водородных ионов (pH)[69].
- Сейсмология — шкала Рихтера[70].
- Оптическая плотность — мера поглощения света прозрачными объектами или отражения света непрозрачными объектами[71].
- Фотографическая широта — характеристика светочувствительного материала[72].
- Шкала выдержек и диафрагм в фотографии[73].
- Теория музыки — нотная шкала, по отношению к частотам нотных звуков[59].
- Сельское хозяйство — основная гидрофизическая характеристика почвы[74].
- Теория управления — логарифмическая амплитудно-фазовая частотная характеристика[75].
Логарифмическая шкала особенно удобна в тех случаях, когда уровни измеряемой величины образуют геометрическую прогрессию, поскольку тогда их логарифмы распределены с постоянным шагом. Например, 12 полутонов классической октавы образуют (приближённо) такую прогрессию[59] со знаменателем . Аналогично, каждый уровень шкалы Рихтера соответствует в 10 раз большей энергии, чем предыдущий уровень. Даже при отсутствии геометрической прогрессии логарифмическая шкала может пригодиться для компактного представления широкого диапазона значений измеряемой величины.
Логарифмическая шкала также широко применяется для оценки показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.
Графики трёх функций при различном выборе шкал по осям координат:
Верхний ряд – 1) обе линейные; 2) логарифмическая (x) и линейная (y);
Нижний ряд – 1) линейная (x) и логарифмическая (y); 2) обе логарифмические.
Логарифмические таблицы[править | править код]
Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам (раздел «Антилогарифмы») выполнить потенцирование, то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются.
Первые таблицы логарифмов опубликовал Джон Непер (1614), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Йост Бюрги, друг Кеплера (1620). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже — с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги (1783) появилось только в 1857 году в Берлине (таблицы Бремикера)[76].
В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого[77]. В СССР выпускались несколько сборников таблиц логарифмов[78]:
- Брадис В. М. Четырёхзначные математические таблицы. М.: Дрофа, 2010, ISBN 978-5-358-07433-0. Таблицы Брадиса, издаваемые с 1921 года, использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.
- Вега Г. Таблицы семизначных логарифмов, 4-е издание, М.: Недра, 1971. Профессиональный сборник для точных вычислений.
- Бремикер К. Логарифмо-тригонометрические таблицы. М.: Наука, 1962. 664 с. Классические шестизначные таблицы, удобные для расчётов с тригонометрическими функциями.
- Пятизначные таблицы натуральных значений тригонометрических величин, их логарифмов и логарифмов чисел, 6-е издание, М.: Наука, 1972.
- Таблицы натуральных логарифмов, 2-е издание, в 2 томах, М.: Наука, 1971.
- Десятизначные таблицы логарифмов комплексных чисел. М., 1952.
Логарифмическая линейка[править | править код]
В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов служившую незаменимым расчётным орудием инженера[79]. С помощью этого компактного инструмента можно быстро производить все алгебраические операции, в том числе с участием тригонометрических функций[80]. Точность расчётов — около 3 значащих цифр.
Логарифмическая линейка. Умножение 1,3 × 2 или деление 2,6 / 2 (см. шкалы C и D).
Вариации и обобщения[править | править код]
Логарифм как решение уравнения можно определить не только для вещественных и комплексных чисел.
- Можно ввести логарифмическую функцию для кватернионов (см. функции кватернионного переменного). Однако большинство алгебраических свойств логарифма при этом теряется[81] — например, логарифм произведения не равен сумме логарифмов, и это снижает практическую ценность такого обобщения.
- Если — элементы конечной абелевой мультипликативной группы, то логарифм в указанном смысле (если он существует) называется дискретным. Чаще всего он рассматривается для конечной группы кольца вычетов по некоторому модулю, где называется индексом по этому модулю[82] и играет важную роль в криптографии. В циклических группах логарифм существует, если его основание является первообразным корнем этой группы.
- Матричный логарифм: можно определить логарифмы также для матриц[83].
- Можно определить p-адический логарифм[en] для некоторых p-адических чисел[84].
- Для работы с очень большими числами вводится понятие суперлогарифма, связанное не с возведением в степень, а с операцией более высокого порядка: тетрацией.
См. также[править | править код]
- Антилогарифм
- Логарифмический вычет
- Логарифмический признак сходимости
- Логарифмическая бумага
- Полилогарифм
- Порядок величины
- Список интегралов от логарифмических функций
Примечания[править | править код]
- ↑ Краткий словарь иностранных слов. М.: Русский язык, 1984.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 186.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 184—186.
- ↑ Швецов К. И., Бевз Г. П. Справочник по элементарной математике. Арифметика, алгебра. Киев: Наукова Думка, 1966. § 40. Исторические сведения о логарифмах и логарифмической линейке.
- ↑ 1 2 Корн Г., Корн Т. Справочник по математике, 1973, с. 34.
- ↑ Алгебра и начала анализа. Учебник для 10-11 классов. 12-е издание, М.: Просвещение, 2002. Стр. 229.
- ↑ Алгебра и начала анализа. Учебник для 10-11 классов. 12-е издание, М.: Просвещение, 2002. Стр. 233.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187.
- ↑ Элементарная математика, 1976, с. 93f.
- ↑ 1 2 Элементарная математика, 1976, с. 89.
- ↑ 1 2 Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. Архивировано 16 октября 2013 года.
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 159-160.
- ↑ Sasaki T., Kanada Y. Practically fast multiple-precision evaluation of log(x) (англ.) // Journal of Information Processing. — 1982. — Vol. 5, iss. 4. — P. 247—250. Архивировано 29 июля 2011 года.
- ↑ 1 2 Элементарная математика, 1976, с. 94—100.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 406.
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том I, стр. 164.
- ↑ Baker, Alan (1975), Transcendental number theory, Cambridge University Press, ISBN 978-0-521-20461-3, p. 10.
- ↑ 1 2 Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том II, стр. 520-522.
- ↑ 1 2 Корн Г., Корн Т. Справочник по математике, 1973, с. 623.
- ↑ Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной, 1967, с. 92—94.
- ↑ 1 2 3 Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной, 1967, с. 45—46, 99-100.
- ↑ Болтянский В. Г., Ефремович В. А. Наглядная топология. — М.: Наука, 1982. — С. 112. — (Библиотечка Квант, выпуск 21). Архивировано 2 марта 2022 года.
- ↑ Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, 1966, Том II, стр. 522-526.
- ↑ 1 2 Корн Г., Корн Т. Справочник по математике, 1973, с. 624.
- ↑ 1 2 Успенский Я. В. Очерк истории логарифмов, 1923, с. 9.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 206.
- ↑ Gupta, R. C. (2000), History of Mathematics in India, in Hoiberg, Dale & Ramchandani, Students’ Britannica India: Select essays, New Delhi: Popular Prakashan, с. 329 Архивная копия от 17 марта 2018 на Wayback Machine
- ↑ История математики, том II, 1970, с. 54—55.
- ↑ Vivian Shaw Groza, Susanne M. Shelley (1972), Precalculus mathematics, New York: Holt, Rinehart, Winston, с. 182, ISBN 978-0-03-077670-0, <https://books.google.com/?id=yM_lSq1eJv8C&pg=PA182&dq=%22arithmetica+integra%22+logarithm&q=stifel>
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 210.
- ↑ Успенский Я. В. Очерк истории логарифмов, 1923, с. 13.
- ↑ История математики, том II, 1970, с. 56.
- ↑ Хрестоматия по истории математики. Математический анализ. Теория вероятностей / Под ред. А. П. Юшкевича. — М.: Просвещение, 1977. — С. 40. — 224 с.
- ↑ 1 2 История математики, том II, 1970, с. 59.
- ↑ 1 2 История математики, том II, 1970, с. 61.
- ↑ Успенский Я. В. Очерк истории логарифмов, 1923, с. 39.
- ↑ История математики, том II, 1970, с. 63.
- ↑ Charles Hutton. Mathematical Tables. Архивная копия от 11 сентября 2016 на Wayback Machine London, 1811, p. 30.
- ↑ История математики, том II, 1970, с. 133.
- ↑ 1 2 Успенский Я. В. Очерк истории логарифмов, 1923, с. 52.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 51, 286, 352.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 213, 217.
- ↑ Florian Cajori. A History of Mathematics, 5th ed (англ.). — AMS Bookstore, 1991. — P. 152. — ISBN 0821821024.
- ↑ Рыбников К. А. История математики. В двух томах. — М.: Изд. МГУ, 1963. — Т. II. — С. 25.
- ↑ 1 2 История математики, том III, 1972, с. 325—328.
- ↑ Рыбников К. А. История математики. В двух томах. — М.: Изд. МГУ, 1963. — Т. II. — С. 27, 230—231.
- ↑ Математика XIX века. Том II: Геометрия. Теория аналитических функций, 1981, с. 122—123.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. II. Геометрия. — С. 159—161. — 416 с. Архивировано 16 октября 2015 года.
- ↑ Дербишир, Джон. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — Астрель, 2010. — 464 с. — ISBN 978-5-271-25422-2.
- ↑ Weisstein, Eric W. Log-Series Distribution (англ.). MathWorld. Дата обращения: 26 апреля 2012. Архивировано 11 мая 2012 года.
- ↑ Логарифмически нормальное распределение // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. Архивировано 16 октября 2013 года.
- ↑ Максимального правдоподобия метод // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. Архивировано 16 октября 2013 года.
- ↑ Harel, David; Feldman, Yishai A. Algorithmics: the spirit of computing. — New York: Addison-Wesley, 2004. — P. 143. — ISBN 978-0-321-11784-7.
- ↑ N. G. Kingsburg, P. J. W. Rayner. Digital filtering using logarithmic arithmetic (англ.) // Electronics Letters (англ.) (рус. : journal. — 1971. — 28 January (vol. 7). — P. 55.
- ↑ R. C. Ismail and J. N. Coleman. ROM-less LNS (англ.) // 2011 20th IEEE Symposium on Computer Arithmetic (ARITH). — 2011. — July. — P. 43—51. — doi:10.1109/ARITH.2011.15.
- ↑ Haohuan Fu, Oskar Mencer, Wayne Luk. Comparing Floating-point and Logarithmic Number Representations for Reconfigurable Acceleration (англ.) // IEEE Conference on Field Programmable Technology : journal. — 2006. — December. — P. 337. — doi:10.1109/FPT.2006.270342. Архивировано 19 января 2012 года.
- ↑ Иванов М. Г. Размер и размерность // «Потенциал», август 2006.
- ↑ 1 2 3 Шилов Г. Е. Простая гамма. Устройство музыкальной шкалы. Архивная копия от 22 февраля 2014 на Wayback Machine М.: Физматгиз, 1963. 20 с. Серия «Популярные лекции по математике», выпуск 37.
- ↑ Головин С. Ю. ЗАКОН ВЕБЕРА-ФЕХНЕРА // Словарь практического психолога. Дата обращения: 17 апреля 2012. Архивировано 11 июня 2013 года.
- ↑ Ирина Алдошина. Основы психоакустики // Звукорежиссёр. — 1999. — Вып. 6. Архивировано 24 апреля 2012 года.
- ↑ Закон Фиттса // Психологическая энциклопедия. Дата обращения: 17 апреля 2012. Архивировано 2 июля 2015 года.
- ↑ Welford, A. T. Fundamentals of skill. — London: Methuen, 1968. — P. 61. — ISBN 978-0-416-03000-6.
- ↑ Логарифмическая спираль // Математический энциклопедический словарь / Гл. ред. Ю. В. Прохоров. — М.: Советская энциклопедия, 1988. — С. 328. — 847 с. — ISBN 5-85270-278-1. Архивировано 10 сентября 2014 года.
- ↑ Харин А. А. Организация и проведение соревнований. Методическое пособие. — Ижевск: УдГУ, 2011. — С. 27. Архивировано 24 июля 2020 года.
- ↑ Децибел // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Учебно-методический комплекс: Методы и средства обработки сигналов. Дата обращения: 28 апреля 2012. Архивировано из оригинала 19 марта 2012 года.
- ↑ Звёздная величина // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Бейтс Р. Определение рН. Теория и практика. — 2 изд. — Л.: Химия, 1972.
- ↑ Горкин А. П. Шкала Рихтера // География. — М.: Росмэн-Пресс, 2006. — 624 с. — (Современная иллюстрированная энциклопедия). — 10 000 экз. — ISBN 5-353-02443-5.
- ↑ Оптическая плотность // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — 447 с.
- ↑ Фотографическая широта // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — 447 с.
- ↑ Кулагин С. В. Выдержка // Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская энциклопедия, 1981. — 447 с.
- ↑ Шеин Е. В. Курс физики почв. М.: Изд-во МГУ, 2005. — 432 с. ISBN 5-211-05021-5.
- ↑ Понятие частотных характеристик. Дата обращения: 28 апреля 2012. Архивировано 24 апреля 2012 года.
- ↑ История математики, том II, 1970, с. 62.
- ↑ Гнеденко Б. В. Очерки по истории математики в России, издание 2-е. — М.: КомКнига, 2005. — С. 66. — 296 с. — ISBN 5-484-00123-4.
- ↑ Логарифмические таблицы // Большая советская энциклопедия : [в 51 т.] / гл. ред. С. И. Вавилов. — 2-е изд. — М. : Советская энциклопедия, 1949—1958.
- ↑ История математики, том II, 1970, с. 65—66.
- ↑ Березин С. И. Счётная логарифмическая линейка. — М.: Машиностроение, 1968.
- ↑ David Eberly. Quaternion algebra and calculus (англ.) (2 марта 1999). Дата обращения: 12 апреля 2012. Архивировано 15 сентября 2012 года.
- ↑ Виноградов И. М. Основы теории чисел. — М.—Л.: ГИТТЛ, 1952. — С. 97. — 180 с. Архивировано 4 ноября 2011 года.
- ↑ Гантмахер Ф. Р. Теория матриц. — М.: Наука, 1967. — 576 с.
- ↑ p-adic exponential and p-adic logarithm (англ.) // PlanetMath.org. Архивировано 20 июня 2010 года.
Литература[править | править код]
- Теория логарифмов
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Переиздание: АСТ, 2003, ISBN 5-17-009554-6.
- Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
- Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
- Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — 304 с.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.
- Шахмейстер А. Х. Логарифмы. Пособие для школьников, абитуриентов и преподавателей. — изд. 5-е. — СПб.: МЦНМО, 2016. — 288 с. — ISBN 978-5-4439-0648-5.
- История логарифмов
- Абельсон И. Б. Рождение логарифмов. — М.—Л.: Гостехиздат, 1948. — 231 с.
- Гиршвальд Л. Я. История открытия логарифмов. — Харьков: Изд-во Харьковского университета, 1952. — 33 с.
- Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. I. Арифметика. Алгебра. Анализ. — 432 с.
- Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Колмогоров А. Н., Юшкевич А. П. (ред.). Математика XIX века. Геометрия. Теория аналитических функций. — М.: Наука, 1981. — Т. II.
- Успенский Я. В. Очерк истории логарифмов. — Петроград: Научное книгоиздательство, 1923. — 78 с.
Наталья Игоревна Восковская
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Логарифм степени основания
Определение 1
Значением логарифма степени числа, которое равно основанию логарифма, является показатель этой степени:
$log_{a}a^s=s$
при $a > 0$, $a ne 1$,
$s$ – любом числе.
Данное свойство вытекает из определения логарифма. С его помощью можно сразу найти значение логарифма при условии, что число, которое стоит под знаком логарифма, можно записать в виде степени числа, являющегося основанием данного логарифма.
Пример 1
$log_{11}{11^8}=8$;
$lg10^{-17}=-17$;
$log_{sqrt{8,7}}(sqrt{8,7})^{7,23}=7,23$.
Логарифм степени числа
Определение 2
Логарифм степени любого числа равен произведению логарифма модуля основания этой степени на показатель степени:
$log_{a}x^r=r cdot log_{a}|x|$
при $x^r,a > 0$, $a ne 1$.
Сделаем домашку
с вашим ребенком за 380 ₽
Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online
Бесплатное пробное занятие
*количество мест ограничено
Пример 2
Найти значение выражения $log_{5}frac{1}{125}+log_{11}121$.
Решение.
Представим подлогарифмические выражения в виде основания логарифма в степени и используем свойство логарифма степени:
$log_{5}frac{1}{125}+log_{11}121=log_{5}5^{-3}+log_{11}11^2=-3log_{5}5+2log_{11}11=$
воспользуемся равенством $log_{a}a=1$:
$=-3+2=-1$.
Ответ: $log_{5} frac{1}{125}+log_{11}121=-1$.
При вычислении логарифмов справедливым является и обратное определение:
Определение 3
Коэффициент, который стоит перед логарифмом можно внести в степень подлогарифмического выражения:
$s log_{a}x=log_{a}x^s$
при $a,b > 0$, $a ne 1$.
Пример 3
Упростить $6 log_{13}x^2-log_{13}x^7$.
Решение.
Используем свойство логарифма степени и вынесем степень за знак логарифма:
$6 log_{13}x^2-log_{13}x^7=6 cdot 2 log_{13}x-7 log_{13}x=12 log_{13}x-7 log_{13}x=5 log_{13}x=$
внесем коэффициент $5$ под знак логарифма:
$=log_{13}x^5$.
Ответ: $6 log_{13}x^2-log_{13}x^7=log_{13}x^5$.
«Логарифм степени» 👇
Логарифм корня
Определение 4
Следствием из свойства логарифма степени числа является свойство логарифма степени в виде дроби:
$log_{a}sqrt[r]{x}=frac{1}{r} cdot log_{a}x$
при $a,x > 0$, $a ne 1$, $r$ – натуральное число, $r > 1$.
Пример 4
$log_{7,8}sqrt[6]{2}=log_{7,8}2^{frac{1}{6}}=frac{1}{6}log_{7,8}2$.
Пример 5
Найти значение выражения $lgsqrt[3]{10x}$, если $lgx=frac{5}{7}$.
Решение.
Используем свойство логарифма корня:
$lgsqrt[3]{10x}=frac{1}{3}lg10x=$
воспользуемся свойством логарифма произведения:
$frac{1}{3} (lg10+lgx )=frac{1}{3} (1+frac{5}{7})=frac{1}{3} cdot frac{12}{7}=frac{12}{21}$.
Ответ: $lgsqrt[3]{10x}=frac{12}{21}$.
Также можно применять и обратное свойство:
Определение 5
Если перед логарифмом стоит дробь, то ее можно внести в степень подлогарифмического выражения:
$frac{1}{r} cdot log_{a}x=log_{a}sqrt[r]{x}$
при $a,x > 0$, $a ne 1$, $r$ – натуральное число, $r > 1$.
Пример 6
Вычислить $frac{1}{4}log_{12}16+log_{12}6$.
Решение.
Применим свойство логарифма корня:
$frac{1}{4}log_{12}16+log_{12}6=log_{12}sqrt[4]{16}+log_{12}6=log_{12}2+log_{12}6=$
используем свойство суммы логарифмов:
$=log_{12}2 cdot 6=log_{12}12=1$.
Ответ: $frac{1}{4}log_{12}16+log_{12}6=1$.
При вычислении логарифмов зачастую встречаются случаи, когда основание логарифма и число, для которого вычисляется логарифм, можно записать в виде степени одного и того же числа. Тогда для упрощения вычислений пользуются формулой:
$log_{a^x}a^y=frac{y}{x}$.
Данная формула дает возможность практически моментально получить значение рассматриваемого логарифма при его кажущейся сложности записи.
Рассмотрим пример, который покажет удобство использования данной формулы.
Пример 7
Вычислить $log_{27}9sqrt[7]{81}$.
Решение.
Запишем основание логарифма $27$ и подлогарифмическое выражение $9sqrt[7]{81}$ в виде степени числа $3$:
$log_{27}9sqrt[7]{81}=log_{3^3}3^2 cdot 3^{frac{4}{7}}=log_{3^3}3^{frac{18}{7}}=$
теперь воспользуемся рассматриваемой формулой:
$=frac{frac{18}{7}}{3}=frac{18}{7 cdot 3}=frac{6}{7}$.
Ответ: $log_{27}9sqrt[7]{81}=frac{6}{7}$.
Пример 8
Вычислить $log_{sqrt[11]{8}}frac{x^3}{16}$, если $log_{sqrt[11]{8}}x=13$.
Решение.
Применим свойство логарифма дроби:
$log_{sqrt[11]{8}}frac{x^3}{16}=log_{sqrt[11]{8}}x^3-log_{sqrt[11]{8}}16=$
к первому логарифму применим свойство логарифма степени, а во втором в основании логарифма и подлогарифмическом выражении перейдем к степеням числа $2$:
$=3 log_{sqrt[11]{8}}x-log_{2^{frac{3}{11}}}2^4=$
подставим условие $log_{sqrt[11]{8}}x=13$ в первый логарифм и применим рассмотренное свойство для логарифма степени ко второму логарифму:
$=3 cdot 13-frac{4}{frac{3}{11}}=39-4 cdot frac{11}{3}=39-frac{44}{3}=frac{73}{3}=24 frac{1}{3}$.
Ответ: $log_{sqrt[11]{8}}frac{x^3}{16}=24 frac{1}{3}$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме