Найти показатель степени, зная основание и конечный результат
Евгений Ололош
Мастер
(2389),
закрыт
11 лет назад
ValKo
Высший разум
(112944)
11 лет назад
Если a^x = b
то надо прологарифмировать обе части (лучше по основанию a, но можно по любому) , например:
x =ln(b)/ln(a)
и для указанного примера (2^x = 72)
x = ln(72)/ln(2) = 6,172…
Как найти степень числа если известно
Степень — это краткая запись произведения одинаковых сомножителей. Основание степени — это число, которое нужно возвести в степень. А показатель степени — это число, в которое нужно возвести основание степени.
Основанием степени может быть любое целое число и десятичная дробь.
Возведению в степень обратны два действия:
- извлечение корня,
- нахождение логарифма.
Во-первых, сначала надо разобраться, что значит обратное действие. Так деление есть обратное действие умножению, а вычитание — сложению. Это вытекает из рассуждений, что произведение, получившееся от перемножения двух множителей, позволяет найти один из множителей, если известен другой. Например, 5 * 3 = 15. Если нам неизвестен второй множитель (5 * ? = 15), то его можно найти, выполнив деление: 15 : 5 = 3. Операция не меняется, если неизвестен первый множитель: ? * 3 = 15, 15 : 3 = 5. Это связано с тем, что умножение подчиняется переместительному закону (от перемены мест множителей произведение не меняется).
Аналогично и для вычитания: ? + 10 = 33, 33 — 10 = 23 или ? + 23 = 33, 33 — 23 = 10. Неважно, какое слагаемое неизвесто, его всегда находят вычитанием.
Но не все так просто с возведением в степень. Здесь от перестановки основания степени и показателя степени результат изменяется, т.е. возведение в степень не подчиняется переместительному закону: 4 3 = 64, но 3 4 = 81. (Хотя есть исключения: 2 4 = 16 и 4 2 = 16.)
Поэтому, если нам известен результат операции возведения в степень и показатель степени, то, чтобы найти основание степени, надо извлечь корень известной по показателю степени из результа возведения в степень:
? 3 = 125, следовательно 3 √125 = 5.
Если же известны основание степени и результат возведения в степень, а надо найти показатель степени, то используется такая операция как нахождение логарифма:
Самое разумное разложить число на простые множители, тогда можно найти и основание и показатель степени.
Если известно основание, то показатель можно найти логарифмированием, например,
2^x=8
Чтобы найти x нужно прологарифмировать обе части по основанию 2
x = log по основанию 2 от 8 = ln 8 / ln 2 (так можно на калькуляторе посчитать) = 3
Если известен показатель, то основание находится извлечением корня, например,
x^3=8
извлекаем корень кубический из обоих частей
x=корень кубический из 8 = 2
Если же неизвестно ни то ни другое разложи число на простые множители, это делается последовательным делением числа на простые множители
614656 / 2 = 307328
307328 / 2 = 153664
153664 / 2 = 76832
76832 / 2 = 38416
38416 / 2 = 19208
19208 / 2 = 9604
9604 / 2 = 4802
4802 / 2 = 2401
2401 не делится на 2, на 3, на 5 (последовательно перебираем простые числа)
2407 / 7 = 343
343 / 7 = 49
49 / 7 = 7
7 / 7 = 1
Итого мы делили на 2 восемь раз и на 7 четыре раза, следовательно
614656 = 2^8 * 7^4
Если мы хотим найти представление в виде a^b с натуральными a и b и b должно быть максимальным, то в качестве b нужно брать НОД степеней полученных в разложении на простые множители, то есть в данном случае b=НОД (8,4)=4
основанием степени a будет служить 2^(8/b) * 7^(4/b) = 2^2 * 7^1 = 4*7=28
Степень числа — это когда это число умножается само на себя, при этом столько раз, сколько в степени.
например:
2 в 5 степени — 2*2*2*2*2
если дано какое-нибудь число(допустим, 121) и нужно узнать, квадрат какого он числа, то нужно просто знать квадраты от 1 до 20(желательно). Например, 121 — квадрат 11
Источник
Логарифм числа
Логарифмом называется математическое введение, которое предназначено для того чтобы найти степень числа в уравнении. Если рассматривать степень числа, то число, возводимое в степень, называется основанием степени, а сама степень – показателем степени. Так, в числе 2 3 , 2 является основанием, а 3 – показателем. Для того чтобы понять суть логарифма, рассмотрим показательное тождество (равенство с использованием степени). В выражении 2 3 =8 взаимосвязаны три числа, основание степени, показатель и значение степени – 8 . Соответственно, каждое из этих чисел может быть заменено на переменную с тем, чтобы получить уравнение.
x 3 =8
2 3 =x
2 x =8
Если первые два уравнения считаются довольно стандартными, то третье уравнение становится в отдельный ряд показательных уравнений, и при усложнении его другими алгебраическими действиями появляется необходимость ввести дополнительный элемент для его решения. Этим элементом становится логарифм.
2 x =8
log28=x
Таким образом, чтобы найти неизвестную x , нужно вычислить логарифм от 8 по 2 . Названия чисел сохраняются те же самые, что и в степени, 2 остается основанием, но теперь уже не степени, а логарифма, 8 становится телом логарифма. Если обратить внимание, то они сохраняют и свое положение, и визуально легко запомнить, что для вычисления логарифма нужно узнать в какую степень нужно возвести 2 (число внизу, слева), чтобы получить 8 (число справа, вверху).
Чтобы вычислить логарифмы с различными основаниями и телами, можно воспользоваться приведенным ниже он-лайн калькулятором логарифмов.
Источник
Как найти степень числа если известен результат
Самое разумное разложить число на простые множители, тогда можно найти и основание и показатель степени.
Если известно основание, то показатель можно найти логарифмированием, например,
2^x=8
Чтобы найти x нужно прологарифмировать обе части по основанию 2
x = log по основанию 2 от 8 = ln 8 / ln 2 (так можно на калькуляторе посчитать) = 3
Если известен показатель, то основание находится извлечением корня, например,
x^3=8
извлекаем корень кубический из обоих частей
x=корень кубический из 8 = 2
Если же неизвестно ни то ни другое разложи число на простые множители, это делается последовательным делением числа на простые множители
614656 / 2 = 307328
307328 / 2 = 153664
153664 / 2 = 76832
76832 / 2 = 38416
38416 / 2 = 19208
19208 / 2 = 9604
9604 / 2 = 4802
4802 / 2 = 2401
2401 не делится на 2, на 3, на 5 (последовательно перебираем простые числа)
2407 / 7 = 343
343 / 7 = 49
49 / 7 = 7
7 / 7 = 1
Итого мы делили на 2 восемь раз и на 7 четыре раза, следовательно
614656 = 2^8 * 7^4
Если мы хотим найти представление в виде a^b с натуральными a и b и b должно быть максимальным, то в качестве b нужно брать НОД степеней полученных в разложении на простые множители, то есть в данном случае b=НОД (8,4)=4
основанием степени a будет служить 2^(8/b) * 7^(4/b) = 2^2 * 7^1 = 4*7=28
Степень числа — это когда это число умножается само на себя, при этом столько раз, сколько в степени.
например:
2 в 5 степени — 2*2*2*2*2
если дано какое-нибудь число(допустим, 121) и нужно узнать, квадрат какого он числа, то нужно просто знать квадраты от 1 до 20(желательно). Например, 121 — квадрат 11
Источник
Действия, обратные возведению в степень
7. В виду последней особенности действий возведения в степень для него можно составить 2 обратных задачи. Напр.:
1) Я задумал число, возвел его в третью степень (или: в куб), получилось 64; какое число я задумал?
Эту задачу можно записать в виде
2) Я взял число 3, возвел его в некоторую степень, – получилось 81. В какую степень было возведено число 3.
Эту задачу можно записать в виде:
Теперь уже, так как возведение в степень не обладает переместительным законом, эти две задачи следует считать совершенно различными.
Сначала решать их можно подбором: попробуем число 1, 1 3 = 1, а не 64, след., 1 не годится; 2 3 = 8, а не 64, след., 2 не годится, 3 3 = 27, а не 64, след., 3 не годится; 4 3 = 64, след., в 1 задаче было задумано число 4. Также выясним, что во второй задаче число 3 было возведено в 4-ую степень.
Так как таких задач можно составить очень много, то для их решения необходимо изобрести новые действия. Эти действия обратны возведению в степень. Итак, для возведения в степень существуют два обратных действия: первое из них называется извлечением корня и служит для решения вопросов, подобных первой из наших задач; второе называется нахождением логарифма и служит для решения вопросов, подобных второй задаче.
Если мы обратим внимание на то, что в первой задаче нам даны степень 64 и показатель степени 3, то мы установим определение:
Извлечением корня называется действие, обратное возведению в степень, при помощи которого по данной степени и по данному показателю находят основание степени.
Также точно: во второй задаче даны степень (81) и основание степени (3), а надо найти показателя степени. Поэтому
нахождением логарифма называется действие, обратное возведению в степень, при помощи которого по данной степени и по данному основанию находится показатель степени.
Источник
- Определение логарифмической операции ▼
- Свойства логарифмической операции ▼
- Доказательство некоторых свойств ▼
ОПРЕДЕЛЕНИЕ ЛОГАРИФМИЧЕСКОЙ ОПЕРАЦИИ
Операция логарифмирования позволяет найти показатель степени , если известно основание и результат . Например, с помощью логарифма можно найти показатель в следующей степени:
Вы, наверное, уже догадались, что но в математике любые действия, которые мы выполняем в уме, нужно записывать в виде операций! И, в данном случае, мы выполняем в уме операцию логарифмирования:
Вот еще несколько простых примеров:
В примерах, которые мы только что показали, операцию логарифмирования можно было вычислить в уме. Однако в некоторых случаях это можно сделать только на калькуляторе! Например, невозможно вычислить в уме следующий логарифм:
В этом случае, можно воспользоваться калькулятором или каким-нибудь онлайн сервисом с возможностью вычисления логарифма. Тогда получим:
Ответ равен бесконечной десятичной дроби, то есть иррациональному числу.
Итак, операция логарифмирования записывается следующим образом:
Она позволяет найти показатель степени если известно основание и результат
СВОЙСТВА ЛОГАРИФМИЧЕСКОЙ ОПЕРАЦИИ
Первое, самое главное свойство логарифмической операции заключается в том, что она обладает некоторыми ограничениями:
Числа и в операции имеют следующие ограничения:
Раньше мы уже сталкивались с подобными ограничениями в операциях. Например, в операции деления запрещалось деление на ноль, то есть (см. свойства алгебраических операций).
Свойства [8-11] могут использоваться для перехода к новому основанию, поэтому их часто называют свойствами перехода к новому основанию. Эти свойства мы будем часто использовать при решении логарифмических уравнений и неравенств,
Обратите внимание!!! Некоторые свойства нужно применять очень аккуратно, так как после их применения может нарушиться свойство [1], согласно которому должны выполняться следующие условия: Например, попробуем применить свойство [6], если В этом случае, получим:
Слева от знака равно, получается логарифм, который вполне можно вычислить, так как свойство [1] не нарушается:
Здесь два минуса при делении дают плюс (см. свойства алгебраических операций).
А вот справа от знака равно получаются логарифмы от отрицательных чисел:
и
которые нельзя вычислить, так как они запрещены свойством [1].
Поэтому, свойства логарифмов нужно применять очень аккуратно: всегда следите за выполнением свойства [1] !!!
ДОКАЗАТЕЛЬСТВО НЕКОТОРЫХ СВОЙСТВ
Некоторые из свойств [1-11] являются первичными, а другие вторичными. Вторичные свойства можно доказать с помощью первичных (смотрите ниже доказательство некоторых свойств ▼).
В РАЗРАБОТКЕ!!!
Степень числа
Степень числа — это выражение, обозначающее краткую запись произведения одинаковых сомножителей.
Рассмотрим умножение одинаковых чисел, например:
Произведение 5 · 5 · 5 можно записать так: 5 3 (пять в третьей степени). Выражение 5 3 — это степень. Следовательно,
5 · 5 · 5 = 5 3 = 125.
Рассмотрим выражение 5 3 . В этом выражении число 5 — основание степени, а число 3 — показатель степени.
Основание степени — это повторяющийся множитель. Показатель степени — это число, указывающее количество повторений, то есть показатель степени показывает сколько одинаковых множителей содержится в произведении.
Степень числа: определения, обозначение, примеры
В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.
Степени с натуральными показателями: понятие квадрата и куба числа
Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a ), а в качестве показателя – натуральное (обозначим буквой n ).
Степень числа a с натуральным показателем n – это произведение n -ного числа множителей, каждый из которых равен числу а . Записывается степень так: a n , а в виде формулы ее состав можно представить следующим образом:
Например, если показатель степени равен 1 , а основание – a , то первая степень числа a записывается как a 1 . Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a 1 = a .
В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8 · 8 · 8 · 8 можно сократить до 8 4 . Примерно так же произведение помогает нам избежать записи большого числа слагаемых ( 8 + 8 + 8 + 8 = 8 · 4 ) ; мы это уже разбирали в статье, посвященной умножению натуральных чисел.
Как же верно прочесть запись степени? Общепринятый вариант – « a в степени n ». Или можно сказать « n -ная степень a » либо « a n -ной степени». Если, скажем, в примере встретилась запись 8 12 , мы можем прочесть « 8 в 12 -й степени», « 8 в степени 12 » или « 12 -я степень 8 -ми».
Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7 ( 7 2 ) , то мы можем сказать « 7 в квадрате» или «квадрат числа 7 ». Аналогично третья степень читается так: 5 3 – это «куб числа 5 » или « 5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.
Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.
В основании не обязательно должно стоять целое число: для степени ( 4 , 32 ) 9 основанием будет дробь 4 , 32 , а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.
Например: 1 2 3 , ( — 3 ) 12 , — 2 3 5 2 , 2 , 4 35 5 , 7 3 .
Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи: ( − 2 ) 3 и − 2 3 . Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 2 3 .
Иногда в книгах можно встретить немного другое написание степени числа – a ^ n (где а – основание, а n — показатель). То есть 4 ^ 9 – это то же самое, что и 4 9 . В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15 ^ ( 21 ) , ( − 3 , 1 ) ^ ( 156 ) . Но мы будем использовать обозначение a n как более употребительное.
О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n -ное число раз. Подробнее об этом мы писали в другой статье.
Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.
Что такое степени с целым показателем
В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.
Степень числа с целым положительным показателем можно отобразить в виде формулы: .
При этом n – любое целое положительное число.
Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:
Равенство a m : a n = a m − n будет верно при условиях: m и n – натуральные числа, m < n , a ≠ 0 .
Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n : a n = a n − n = a 0
Но при этом a n : a n = 1 — частное равных чисел a n и a . Выходит, что нулевая степень любого отличного от нуля числа равна единице.
Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: a m · a n = a m + n .
Если n у нас равен 0 , то a m · a 0 = a m (такое равенство также доказывает нам, что a 0 = 1 ). Но если а также равно нулю, наше равенство приобретает вид 0 m · 0 0 = 0 m , Оно будет верным при любом натуральном значении n , и неважно при этом, чему именно равно значение степени 0 0 , то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 0 0 своего особенного смысла не имеет, и мы не будем ему его приписывать.
При желании легко проверить, что a 0 = 1 сходится со свойством степени ( a m ) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.
Разберем пример с конкретными числами: Так, 5 0 — единица, ( 33 , 3 ) 0 = 1 , — 4 5 9 0 = 1 , а значение 0 0 не определено.
После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: a m · a n = a m + n .
Введем условие: m = − n , тогда a не должно быть равно нулю. Из этого следует, что a − n · a n = a − n + n = a 0 = 1 . Выходит, что a n и a − n у нас являются взаимно обратными числами.
В итоге a в целой отрицательной степени есть не что иное, как дробь 1 a n .
Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).
Степень a с целым отрицательным показателем n можно представить в виде дроби 1 a n . Таким образом, a — n = 1 a n при условии a ≠ 0 и n – любое натуральное число.
Проиллюстрируем нашу мысль конкретными примерами:
3 — 2 = 1 3 2 , ( — 4 . 2 ) — 5 = 1 ( — 4 . 2 ) 5 , 11 37 — 1 = 1 11 37 1
В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:
Степень числа a с натуральным показателем z – это: a z = a z , e с л и z — ц е л о е п о л о ж и т е л ь н о е ч и с л о 1 , z = 0 и a ≠ 0 , ( п р и z = 0 и a = 0 п о л у ч а е т с я 0 0 , з н а ч е н и я в ы р а ж е н и я 0 0 н е о п р е д е л я е т с я ) 1 a z , е с л и z — ц е л о е о т р и ц а т е л ь н о е ч и с л о и a ≠ 0 ( е с л и z — ц е л о е о т р и ц а т е л ь н о е ч и с л о и a = 0 п о л у ч а е т с я 0 z , е г о з н а ч е н и е н е о п р е д е л я е т с я )
Что такое степени с рациональным показателем
Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.
Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m / n , где n – натуральное число, а m – целое.
У нас есть некоторая степень с дробным показателем a m n . Для того, чтобы свойство степени в степени выполнялось, равенство a m n n = a m n · n = a m должно быть верным.
Учитывая определение корня n -ной степени и что a m n n = a m , мы можем принять условие a m n = a m n , если a m n имеет смысл при данных значениях m , n и a .
Приведенные выше свойства степени с целым показателем будут верными при условии a m n = a m n .
Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m / n – это корень n -ой степени из числа a в степени m . Это справедливо в том случае, если при данных значениях m , n и a выражение a m n сохраняет смысл.
Далее нам необходимо определить, какие именно ограничения на значения переменных накладывает такое условие. Есть два подхода к решению этой проблемы.
1. Мы можем ограничить значение основания степени: возьмем a , которое при положительных значениях m будет больше или равно 0 , а для отрицательных – строго меньше (поскольку при m ≤ 0 мы получаем 0 m , а такая степень не определена). В таком случае определение степени с дробным показателем будет выглядеть следующим образом:
Степень с дробным показателем m / n для некоторого положительного числа a есть корень n -ной степени из a, возведенного в степень m . В виде формулы это можно изобразить так:
Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.
Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как
0 m n = 0 m n = 0 при условии целого положительного m и натурального n .
При отрицательном отношении m n < 0 степень не определяется, т.е. такая запись смысла не имеет.
Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.
Выражение a m n иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m . Так, верны записи ( — 5 ) 2 3 , ( — 1 , 2 ) 5 7 , — 1 2 — 8 4 , в которых основание отрицательно.
2. Второй подход – это рассмотреть отдельно корень a m n с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a , в показателе которой стоит сократимая обыкновенная дробь, считается степенью a , в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись a m · k n · k , то мы можем свести ее к a m n и упростить расчеты.
Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.
Объединим все данные выше определения в одной записи:
Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.
Для любой обыкновенной сократимой дроби m · k n · k степень можно заменить на a m n .
Степень числа a с несократимым дробным показателем m / n – можно выразить в виде a m n в следующих случаях: — для любых действительных a , целых положительных значений m и нечетных натуральных значений n . Пример: 2 5 3 = 2 5 3 , ( — 5 , 1 ) 2 7 = ( — 5 , 1 ) — 2 7 , 0 5 19 = 0 5 19 .
— для любых отличных от нуля действительных a , целых отрицательных значений m и нечетных значений n , например, 2 — 5 3 = 2 — 5 3 , ( — 5 , 1 ) — 2 7 = ( — 5 , 1 ) — 2 7
— для любых неотрицательных a , целых положительных значений m и четных n , например, 2 1 4 = 2 1 4 , ( 5 , 1 ) 3 2 = ( 5 , 1 ) 3 , 0 7 18 = 0 7 18 .
— для любых положительных a , целых отрицательных m и четных n , например, 2 — 1 4 = 2 — 1 4 , ( 5 , 1 ) — 3 2 = ( 5 , 1 ) — 3 , .
В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: — 2 11 6 , — 2 1 2 3 2 , 0 — 2 5 .
Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6 / 10 = 3 / 5 . Тогда должно быть верным ( — 1 ) 6 10 = — 1 3 5 , но — 1 6 10 = ( — 1 ) 6 10 = 1 10 = 1 10 10 = 1 , а ( — 1 ) 3 5 = ( — 1 ) 3 5 = — 1 5 = — 1 5 5 = — 1 .
Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.
Таким образом, степень положительного числа a с дробным показателем m / n определяется как 0 m n = 0 m n = 0 . В случае отрицательных a запись a m n не имеет смысла. Степень нуля для положительных дробных показателей m / n определяется как 0 m n = 0 m n = 0 , для отрицательных дробных показателей мы степень нуля не определяем.
В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 5 1 , 7 , 3 2 5 — 2 3 7 .
При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:
5 1 , 7 = 5 17 10 = 5 7 10 3 2 5 — 2 3 7 = 3 2 5 — 17 7 = 3 2 5 — 17 7
Что такое степени с иррациональным и действительным показателем
Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.
Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a 0 , a 1 , a 2 , . . . . Например, возьмем значение a = 1 , 67175331 . . . , тогда
a 0 = 1 , 6 , a 1 = 1 , 67 , a 2 = 1 , 671 , . . . , a 0 = 1 , 67 , a 1 = 1 , 6717 , a 2 = 1 , 671753 , . . .
и так далее (при этом сами приближения являются рациональными числами).
Последовательности приближений мы можем поставить в соответствие последовательность степеней a a 0 , a a 1 , a a 2 , . . . . Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.
Возьмем для примера a = 3 , тогда a a 0 = 3 1 , 67 , a a 1 = 3 1 , 6717 , a a 2 = 3 1 , 671753 , . . . и т.д.
Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем a . В итоге : степень с иррациональным показателем вида 3 1 , 67175331 . . можно свести к числу 6 , 27 .
Степень положительного числа a с иррациональным показателем a записывается как a a . Его значение – это предел последовательности a a 0 , a a 1 , a a 2 , . . . , где a 0 , a 1 , a 2 , . . . являются последовательными десятичными приближениями иррационального числа a . Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0 a = 0 Так, 0 6 = 0 , 0 21 3 3 = 0 . А для отрицательных этого сделать нельзя, поскольку, например, значение 0 — 5 , 0 — 2 π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 1 2 , 1 5 в 2 и 1 — 5 будут равны 1 .
Как узнать степень числа?
Самое разумное разложить число на простые множители, тогда можно найти и основание и показатель степени.
Если известно основание, то показатель можно найти логарифмированием, например,
2^x=8
Чтобы найти x нужно прологарифмировать обе части по основанию 2
x = log по основанию 2 от 8 = ln 8 / ln 2 (так можно на калькуляторе посчитать) = 3
Если известен показатель, то основание находится извлечением корня, например,
x^3=8
извлекаем корень кубический из обоих частей
x=корень кубический из 8 = 2
Если же неизвестно ни то ни другое разложи число на простые множители, это делается последовательным делением числа на простые множители
614656 / 2 = 307328
307328 / 2 = 153664
153664 / 2 = 76832
76832 / 2 = 38416
38416 / 2 = 19208
19208 / 2 = 9604
9604 / 2 = 4802
4802 / 2 = 2401
2401 не делится на 2, на 3, на 5 (последовательно перебираем простые числа)
2407 / 7 = 343
343 / 7 = 49
49 / 7 = 7
7 / 7 = 1
Итого мы делили на 2 восемь раз и на 7 четыре раза, следовательно
614656 = 2^8 * 7^4
Если мы хотим найти представление в виде a^b с натуральными a и b и b должно быть максимальным, то в качестве b нужно брать НОД степеней полученных в разложении на простые множители, то есть в данном случае b=НОД (8,4)=4
основанием степени a будет служить 2^(8/b) * 7^(4/b) = 2^2 * 7^1 = 4*7=28
Аналитического способа не существует. То бишь формулы для нахождения степени и числа, которое возводят в эту степень — нет.
Так для общего развития скажу, что даже нахождение достаточно больших простых чисел — занятие затруднительное и очень хорошо оплачиваемое. А для решения вашей задачи (как минимум) нужно знать что это число уже не простое. :)))
Здравствуйте, уважаемый Максим Сальников !
Общей методики для задач такого типа, как мне известно, нет .
Самый простой способ — разложить данное число на простые множители .
В приведённом Вами примере это будет выглядеть так :
614656 = ( 2 x 2 x2 x 2 x 2 x 2 x 2 x 2 ) x ( 7 x 7 x 7 x 7 )
Из 7 x 7 x 7 x 7 следует, что » вероятная степень » равна 4 : 7 x 7 x 7 x 7 = 7 ^ 4 ( 1 )
Тогда из 2 x 2 x2 x 2 x 2 x 2 x 2 x 2 образуем ( 2 x 2 ) x ( 2 x 2 ) x( 2 x 2 ) x ( 2 x 2 ) = 4 ^ 4 ( 2 )
Согласно ( 1 ) и ( 2 ) можем записать : 614656 = ( 4 ^ 4 ) x ( 7 ^ 4 ) = ( 4 x 7 ) ^ 4 = 28 ^ 4 !
Степень числа
- Возведение в степень
- Выражения со степенями. Порядок действий
- Калькулятор возведения в степень
Степень числа — это выражение, обозначающее краткую запись произведения одинаковых сомножителей.
Рассмотрим умножение одинаковых чисел, например:
5 · 5 · 5 = 125.
Произведение 5 · 5 · 5 можно записать так: 53 (пять в третьей степени). Выражение 53 — это степень. Следовательно,
5 · 5 · 5 = 53 = 125.
Рассмотрим выражение 53 . В этом выражении число 5 — основание степени, а число 3 — показатель степени.
Основание степени — это повторяющийся множитель. Показатель степени — это число, указывающее количество повторений, то есть показатель степени показывает сколько одинаковых множителей содержится в произведении.
Читаются степени так:
- 72 —
семь во второй степени
.Вторую степень числа также называют квадратом этого числа. Следовательно, выражение 72 можно прочесть так:
семь в квадрате
иликвадрат числа семь
. - 23 —
два в третьей степени
.Третью степень числа также называют кубом этого числа. Следовательно, выражение 23 можно прочесть так:
два в кубе
илидва куб
. - 64 —
шесть в четвёртой степени
. - 1015 —
десять в пятнадцатой степени
. - an —
a в энной степени
илиa в степени эн
.
Пример. Записать в виде степени:
a) 5 · 5;
б) 10 · 10 · 10 · 10;
в) 8 · 8 · 8.
Решение:
a) 5 · 5 = 52;
б) 10 · 10 · 10 · 10 = 104;
в) 8 · 8 · 8 = 83.
Возведение в степень
Возведение числа в степень — это вычисление произведения одинаковых множителей. Например, возвести число 2 в третью степень (23) — это значит найти произведение 2 · 2 · 2 , то есть
23 = 2 · 2 · 2 = 8.
Результат возведения в степень называется степенью (также как и само выражение, значение которого вычисляется). В выражении:
23 = 8,
2 — это основание степени, 3 — показатель степени, 8 — степень.
Пример. Вычислите:
a) 112;
б) 25;
в) 104.
Решение:
a) 112 = 11 · 11 = 121;
б) 25 = 2 · 2 · 2 · 2 · 2 = 32;
в) 104 = 10 · 10 · 10 · 10 = 10000.
Выражения со степенями. Порядок действий
Если выражение не содержит скобки и содержит степени, то сначала выполняется возведение в степень в порядке следования степеней (слева направо), а затем все остальные арифметические действия. Если выражение содержит скобки, то сначала выполняются действия в скобках, с учётом всех правил порядка выполнения действий.
Рассмотрим два выражения:
52 + 22
и
(5 + 2)2
В соответствии с порядком выполнения действий в первом случае сначала выполняется возведение в степень, а затем вычисляется сумма. Во втором случае сначала вычисляется сумма, а затем результат возводится в квадрат.
52 + 22 = 25 + 4 = 29,
(5 + 2)2 = 72 = 49.
Пример 1. Найти значение выражения:
5 · (10 – 8)3.
Решение: Сначала выполняется действие, заключённое в скобки:
1) 10 – 8 = 2.
Затем, по правилам порядка действий, выполняется возведение в степень:
2) 23 = 2 · 2 · 2 = 8.
И последним действием вычисляется произведение:
3) 5 · 8 = 40.
Ответ: 5 · (10 – 8)3 = 40.
Пример 2. Вычислить:
a) (4 + 2) · 32;
б) 3 · 52 – 50;
в) 3 · 4 + 62.
Решение:
a) (4 + 2) · 32 = 54
- 4 + 2 = 6
- 32 = 9
- 6 · 9 = 54
б) 3 · 52 – 50 = 25
- 52 = 25
- 3 · 25 = 75
- 75 – 50 = 25
в) 3 · 4 + 62 = 48
- 62 = 36
- 3 · 4 = 12
- 12 + 36 = 48
Калькулятор возведения в степень
Данный калькулятор поможет вам выполнить возведение в степень. Просто введите основание с показателем степени и нажмите кнопку Вычислить
.