Как найти полезную мощность насоса

Мощность насоса

мощность насоса

Мощность является одной из основных характеристик насоса. В настоящее время под термином «водяной насос» понимается специальное устройство, служащее для перемещения перекачиваемой среды (твердых, жидких и газообразных веществ).

В отличие от водоподъемных механизмов, которые тоже предназначены для перемещения воды, насосный агрегат увеличивает давление или кинетическую энергию перекачиваемой жидкости.

Содержание

  • Напор и мощность насоса
  • КПД и потери мощности насоса
  • Расчет мощности или сколько потребляет насос
  • Видео по теме

Напор и мощность насоса

Мощность — работа, которую совершает агрегат в единицу времени.

Полезная мощность насоса – мощность, сообщаемая устройством подаваемой жидкой среде. Но прежде чем перейти к понятию мощности необходимо рассмотреть ещё два параметра: подача и напор.

Подача насоса представляет собой количество жидкости, подаваемой в единицу времени и обозначается символом Q.

Напором насоса называется приращение механической энергии, получаемой каждым килограммом жидкости проходящей через насосный агрегат, т.е. разность удельных энергий жидкости при выходе из насоса и входе в него. Другими словами напор устройства показывает, на какую высоту в метрах насос поднимет столб воды.

И, наконец, третьим, интересующим нас параметром является мощность насоса N. Мощность обычно измеряется в киловаттах (кВт).

Полезная мощность насоса Nп – это полное приращение энергии, получаемое всем потоком в единицу времени. Чтобы рассчитать мощность насоса используется формула:

Nп = yQH/102

где

  • указательy – удельный вес жидкости;
  • указательQ – подача насоса;
  • указательН – напор насоса.

Потребляемая мощность насоса N – мощность потребляемая устройством – мощность подводимая на вал устройства от двигателя.

В зависимости от источника информации она ещё может называться:

Мощность на валу насоса Nв – это мощность которую затрачивает центробежный агрегат на то, чтобы покрыть потери энергии

Формула мощности на валу насоса:

Nв =Nп / η = yQH / η

где

  • указательη – коэффициент полезного действия (КПД насоса)

КПД и потери мощности насоса

Вследствие потерь внутри машины только часть механической энергии, полученной им от двигателя, преобразуется в энергию потока жидкости. Степень использования энергии двигателя измеряется значением полного КПД насоса центробежного типа.

КПД насоса – коэффициент полезного действия – является одним из его основных качественных показателей и характеризует собой величину потерь энергии.

Формула кпд насоса выглядит так:

η = Nп / N

η = ηо × ηг × ηм

ηо – объемный КПД насоса – характеризует объемные потери

ηг – гидравлический КПД – характеризует гидравлические потери

ηм – механический КПД – характеризует механические потери

Расчет КПД насоса показывает возможные потери:

Потери в насосе = 1 – КПД

Анализируя причины возникновения потерь в насосе, можно найти пути к повышению его КПД.

Все виды потерь делятся на три категории: гидравлические, объемные и механические.

Гидравлические потери – часть энергии, получаемой потоком от колеса насоса, затрачивается на преодоление гидравлических сопротивлений при движении потока внутри насосного агрегата, ведут к снижению высоты напора.

Объемные потери – паразитные протечки (утечки) внутри насосной части – в уплотнениях лопастного колеса и в системе уравновешивания осевого давления ведут к уменьшению подачи.

Механические потери – часть энергии, получаемой насосом от двигателя, расходуется на преодоление механического трения внутри агрегата. В машине имеют место: трение колеса и других деталей ротора о жидкость, трение в сальниках и трение в подшипниках. Механические потери ведут к падению мощности всего устройства.

Таким образом, полный КПД центробежного насоса определяется гидродинамическим совершенствованием проточной части, качеством системы внутренних уплотнений и величиной потерь на механическое трение.

Расчет мощности или сколько потребляет насос

Мощность насоса фактически – это мощность сообщаемая ему электродвигателем. Циркуляционные аппараты, установленные в бытовых системах имеют довольно небольшую мощность и как следствие низкое энергопотребление.

Фактически такие машины не поднимают воду на высоту, а только способствуют её перемещению далее по трубопроводу преодолевая местные сопротивления такие как изгибы, краны и отводы.

Кроме циркуляционных агрегатов в систему трубопровода могут быть смонтированы насосы для повышения давления.

При использовании в трубопроводе циркуляционного насоса значительно увеличивается эффективность системы отопления дома. К тому же появляется возможность сократить диаметр трубопровода и подсоединить котел с повышенными параметрами теплоносителя.

Для обеспечения бесперебойной и эффективной работы системы отопления необходимо выполнить небольшой расчет.

Требуется определить необходимую мощность котла – эта величина будет базовой при расчете системы отопления.

Согласно СНиП 2.04.07 “Тепловые сети” для каждого дома существую свои нормы потребления тепла (для холодного времени года, т.е. минус 25 – 30 градусов цельсия).

  • указательдля домов в 1-2 этажа требуется 173 – 177 Вт/квадратный метр
  • указательдля домов в 3-4 этажа требуется 97 – 101 Вт/квадратный метр
  • указательесли 5 этажей и более нужно 81 – 87 Вт/квадратный метр.

Рассчитайте площадь отапливаемых помещений Вашего дома и умножьте на соответствующее этажности Вашего дома значение.

Оптимальный расход воды, рассчитывается по простой формуле:
Q=P
где

  • указательQ — расход теплоносителя через котел, л/мин;
  • указательР — мощность котла, кВт.

Например, для котла мощностью 20 кВт расход воды составляет примерно 20 л/мин.

насос в системе отопления

Для определения расхода теплоносителя на конкретном участке трассы, используем эту же формулу. Например, у Вас установлен радиатор мощностью 4 кВт, значит расход теплоносителя составит 4 литра в минуту.

Далее требуется определить мощность циркуляционного насоса. Чтобы определить мощность циркуляционного устройства воспользуемся правилом, на 10 метров длины трассы требуется 0,6 метра напора. Например при длине трассы 80 метров требуется агрегат с напором не менее 4,8 метра.

Следует отметить, что представленный в статье расчет носит справочный характер. Для того чтобы определить мощность центробежного насоса для Вашего дома воспользуйтесь советами наших специалистов или рекомендациями инженеров-теплотехников.

Для того, чтобы обеспечить постоянное функционирование системы отопления желательно установить два насоса. Один агрегат будет функционировать постоянной, второй (установленный на байпасе) – находится в резерве. При поломке или какой-то неисправности рабочего оборудования.

Вы всегда сможете отключить его и демонтировать из контура, а в работу вступить резервный механизм. В случае когда монтаж байпасной ветки трубопровода затруднен, возможен другой вариант: один агрегат установлен в системе, а другой лежит в запасе на случай выхода из строя или поломки первого.

Видео по теме


Подбор необходимого насоса осуществляется по каталогу. Из выбранных насосов предпочтения отдаются тем, которые потребляют меньшую мощность и обладают более высоким КПД. Ведь показатели мощности и КПД в дальнейшем определяют затраты на электроэнергию при эксплуатации оборудования.

Вместе со статьей “Мощность насоса. КПД и потери мощности в насосе.” смотрят:

Подача насоса: расчет и подбор насоса по подаче.

Подача насоса: расчет и подбор насоса по подаче.

Технические характеристики циркуляционных насосов.

Технические характеристики циркуляционных насосов.

Высота всасывания насоса: геометрическая, допустимая, максимальная

Высота всасывания насоса: геометрическая, допустимая, максимальная

полезная
мощность
Nп-это
мощность затрачиваемая на сообщение
жидкости энергии. Полная мощность равна
произведению удельной энергии жидкости
на массовый расход

(Вт)
(кг/с)

Мощность
на валу насоса(
Nв)-это
мощность потребляемая насосом или
затрачиваемая. Nв>Nп
в следствии потерь энергии.

(ВТ)

(КПД)
насоса=

-объемный
КПД=(отношение
действительной подачи к теоретической)

Объемный
КПД учитывает потери производимости
при утечках жидкости через зазоры и
сальники насоса, а так же в следствии
неодновременного открытия клапанов на
всасывающей и нагнетательной (высотах)?
и выделении газов при движении жидкости
в области пониженного давления.

-гидравлический
КПД=(отношение
удельной энергии действительной к
теоретической)

-механический
КПД-возникает за счет механического
трения в насосе.

Мощность
давления:

-КПД
насосной установки.

Мощность
насосной установки

B-коэффициент
запаса мощности, который учитывает
потери энергии на преодоление инерции
покоящийся жидкости. С увеличением
мощности давления, коэффициент запаса
мощности уменьшается.

21.Принцип работы центробежного насоса.

Устройство:

Основной
рабочий орган ц-б насоса – свободно
вращающееся внутри спиралевидного
корпуса колесо, насаженное на вал. Между
дисками колеса – лопасти, плавно
изогнутые в сторону, противоположную
направлению вращения колеса. Внутренние
поверхности дисков и поверхности лопаток
образуют т.н. межлопастные каналы колеса,
при работе заполненные перекачиваемой
жидкостью. Всасывание и нагнетание
жидкости происходит равномерно и
непрерывно под действием центробежной
силы, возникающей при вращении колеса.

Принцип
работы:

При
переходе жидкости из канала рабочего
колеса в корпус происходит резкое
снижение скорости, в результате чего
кинетическая энергия жидкости превращается
в потенциальную энергию давления,
которое необходимо для подачи жидкости
на заданную высоту. При этом в центре
колеса создается разрежение, и вследствие
этого жидкость непрерывно поступает
по всасывающему трубопроводу в корпус
насоса, а затем в межлопастные каналы
рабочего колеса. Если перед пуском ц-б
насоса всасывающий трубопровод и корпус
не залиты жидкостью, то возникающего
разрежения будет недостаточно для
подъема жидкости в насос (из-за зазоров
между колесом и корпусом). Чтобы жидкость
не выливалась из насоса, на всасывающем
трубопроводе устанавливают обратный
клапан. Для отвода жидкости в корпусе
насоса есть расширяющаяся спиралевидная
камера: жидкость сначала поступает в
эту камеру, а затем в нагнетательный
трубопровод.

22. Движение жидкости в рабочем колесе центробежного насоса. Параллелограмм скоростей. Основные уравнения центробежного насоса.

Параллелограмм
скоростей – графическое изображение
относительной (W)
и окружной (U)
скоростей.

Построив
параллелограмм скоростей, находим
скорость С1на
входе жидкости в рабочее колесо,
направленную под углом α1,
и скорость С2
на выходе из колеса, направленную под
углом α2.
При движении жидкости внутри рабочего
колеса её абсолютная скорость увеличивается
от С1
до С2.

Основное
уравнение ц-б насоса устанавливает
зависимость между теоретическим напором
Нт,
создаваемым колесом, и скоростью движения
жидкости в колесе. Это уравнение
называется уравнением Эйлера:

Где

На
практике насосы изготавливают таким
образом, чтобы α1≈90о,
т.е. cosα1=
0, это условие безударного входа жидкости
в колесо. Основное уравнение принимает
вид:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Мощность насоса: определение и вычисление мощности и КПД насоса для воды

Содержание

Гидравлическая мощность и КПД центробежного насоса

Вычисление полезной мощности насоса

Расчет производительности насоса

Устройство циркуляционного насоса

Разновидности насосов

Подбор насоса по конструкции и рабочей точке

Рабочий процесс лопастного насоса

Рекомендации по установке насосов

Коротко о главном

Если Вы решили приобрести насос для собственной системы водоснабжения или для отопительной системы, нужно тщательно все изучить. Одним из параметров является мощность насоса. Для бытовых и промышленных приборов она разная. От силы работы насоса зависит потребление электроэнергии. Для бытовых помп мощность меньше, чем для промышленных. При выборе рассчитывайте количество потребляемой воды.

Погружной скважинный насос Unipump

Бытовой центробежный погружной насос

Гидравлическая мощность и КПД центробежного насоса

Центробежный агрегат – гидравлический механизм, который активность от мотора превращает в энергию водяного потока.

Центробежная помпа включает в себя электрический привод и часть, выкачивающую воду. Мощность насоса, подводимая к его валу, и есть подводимой.

Гидравлическая мощность центробежного насоса – следствие работы помпы в виде затраты и напора воды. Измеряется в кВт. Обозначается Р4.

Купить насос и необходимые для него принадлежности можно в нашем интернет-магазине.

Вертикальный многоступенчатый центробежный насос

Центробежная помпа

Что такое КПД насоса: коэффициент полезного действия представляет собой взаимосвязь полезной мощности и потребляемой. КПД насоса не сможет превысить единицу.

Потребляемая мощность насоса – мощность, которую насос потребляет при работе.

Мощность насоса частично может теряться, а эти потери могут быть гидравлическими, механическими и объемными. КПД насоса показывает степень высокого качества как в гидравлическом, так и в механическом порядке.

Если проанализировать, почему происходят потери в помпе, можно найти решение, как повысить КПД насоса.

Вычисление полезной мощности насоса

Механизм гидравлических агрегатов основывается на применении принципов гидравлики.

Полезная мощность насоса тратится на передачу энергии перекачиваемой воде.

Основные параметры центробежного насоса

Формулы расчетов мощностей центробежных оснащений

Как определить мощность насоса и КПД по формуле, показано на картинке ниже.

Мощность насоса формула

Формула для расчета гидравлической мощности насоса

Расчет производительности насоса

Для расчета производительности учитываются показатели:

  • среднее потребление воды человеком за час;
  • расход воды для полива (при необходимости).

Чтобы определить объемный КПД насоса (отношение расхода воды к теоретическому значению) необходимо вычислить это значение. Нужно умножить объем перерабатываемой воды за один оборот на количество оборотов в минуту, выполняемых насосом.

КПД для промышленных насосов

Центробежный агрегат. КПД насоса зависит от порядка эксплуатации и особенностей конструкции. Чем больше мощность привода, чем выше коэффициент полезного действия.

Помпы с магнитной муфтой имеют примерно такой же КПД, как и у вышесказанных аппаратов. Имеет значение материал изготовления задней герметичной крышки, которая устанавливается между двумя магнитами – ведущим и ведомым. Если материал проводит ток – КПД существенно снижается.

Герметичный насос с магнитной муфтой

Насос с магнитной муфтой

Винтовое устройство несет большие механические потери в связи с трениями между ротором и стартером. КПД данные приборы имеют примерно 60 %.

Импеллерный насос способен очень аккуратно перекачивать воду. Несет высокие механические потери.

Самовсасывающие насосы импеллерные

Импеллерная помпа

Мембранно–пневматический насос лишен двигателя. Его работа происходит за счет сжатого воздуха. КПД данного прибора полностью зависит от коэффициента полезного действия воздушного компрессора.

Пневматический диафрагменный насос

Мембранно–пневматическая помпа

Как вычислить КПД насоса

Коэффициент полезного действия насоса – характеризует эффективность прибора. Это соотношение полезной энергии к затраченной.

Для определения КПД используется формула: КПД = P2 / P1 * 100%:

  • Р1 – гидравлическая мощность;
  • Р2 – затраченная.

Что нужно, чтобы вычислить коэффициент полезного действия:

  • Специальные устройства, имеющие токовые щипцы. Они определяют электрическую силу, которую потребляет мотор из сети.
  • Если между мотором и помпой есть механическая связь, то рассчитывается мощность, расходуемая насосом, как и мощность на валу насоса.
  • Вымеряем расход и вычисляем гидравлическую мощность.

В случае, если КПД оказывается ниже, насос подлежит ремонту или замене.

Устройство циркуляционного насоса

Циркуляционная помпа необходима для циркуляции воды и поддерживания натиска в магистрали поставки воды. Если данный прибор установлен в обогревательной системе – температура тепла по трубам будет располагаться равномерным образом. Устройство предотвращает сбои в системе поставки воды и позволяет уменьшить расход электроэнергии.

Насос циркуляционный Grundfos UPS 32 80 180

Циркуляционная помпа

Устройство циркуляционного насоса:

  • металлический корпус;
  • ротор;
  • крыльчатка.
Устройство циркуляционного насоса

Подробное устройство циркуляционного аппарата

Для чего нужен циркуляционный насос

Данные устройства используют в таких сферах, как:

  • система отопления;
  • подача горячей воды;
  • «теплый пол»;
  • вентиляционная система;
  • канализация.

Более подробная информация о циркуляционных насосах, их расчете и подборе приведена в ролике

Разновидности насосов

Импеллерный насос – один из видов гидравлического механизма, имеющего гибкие пластины. Перекачивание воды происходит подобно работе пластинчатому устройству. Плюсы данной помпы:

  • простота самого устройства;
  • возможность перекачивать вязкие жидкости;
  • возможность осуществлять реверс;
  • простота в эксплуатации.

Недостатки:

  • некоторые детали быстро выходят из строя;
  • если прибор долго работает «на сухую», рабочее колесо быстро ломается;
  • далеко не вся температура перекачиваемой среды подходит для аппарата.
Насос импеллерный

Импеллерная помпа

Винтовой насос – гидравлический аппарат, главной деталью которого является шнековая пара, которая включает в себя винт и обойму.

Достоинства данных агрегатов:

  • шнековые помпы не нуждаются в предварительном заполнении рабочей средой;
  • винтовой насос имеет высокий коэффициент полезного действия;
  • данные приборы могут функционировать в реверсе.

Недостатки:

  • чуткие к работе на «сухом ходу»;

Эксплуатация данных приборов требует определенных знаний.

Насосы винтовые горизонтальные

Промышленная шнековая помпа

Мембранно–пневматический насос – одни из самых надежных механизмов перекачивания жидкостей. Его плюсы:

  • долговечность;
  • герметичность;
  • компактность;
  • работа на «сухом ходу» без повреждений;
  • простота в эксплуатации.
Мембранный насос высокого давления

Мембранно–пневматическая помпа

Насос с магнитной муфтой – механизм для перекачивания жидкости, крыльчатка которого под воздействием магнитного поля производит вращение в герметичной капсуле, которая предотвращает протечки.

Магнитный центробежный насос

Помпа с магнитной муфтой

Подбор насоса по конструкции и рабочей точке

Подбор общий. Погружаемый и не погружаемый в жидкость, которая подлежит перекачиванию.

Подбор по назначению. Одноступенчатые и многоступенчатые. Циркуляционные (система отопления), фекальные, дренажные (водоотведение), колодезные и скважинные (система водоснабжения).

Подбор по конструкции. С сухим и мокрым ротором (циркуляционные), вертикальные и горизонтальные, моноблочные и консольные (центробежные), с встроенным и выносным эжектором (центробежные), полупогружные, дренажные, канализационные станции.

Рабочий процесс лопастного насоса

Время сопротивляющихся сил относительно оси совершает противодействие оборотам рабочего колеса. В связи с этим лопатки профилируют, принимая во внимание величину подачи, частоту оборотов, направление движения рабочей среды. Большая часть энергии передается воде, остальная энергия теряется во время преодоления сопротивлений.

Лопастной гидравлический насос

Лопастный насос

Рекомендации по установке насосов

При монтаже помп в систему отопления стоит учитывать, что:

  • аппарат встраивается так, чтобы вал принимал горизонтальное положение;
  • прикрепляется при помощи разводного ключа;
  • подсоединение производится строго по схеме.

При просмотре ролика можно узнать, как правильно установить циркуляционный насос

Коротко о главном

Насосы по своей функциональности разделяют на водяные и помпы для системы отопления. Они бывают бытовыми и промышленными. При выборе модели важно учитывать мощность потока и мощность насоса.


А Вы знаете, какая мощность у Вашего насоса?

Добавить комментарий


Ваш адрес email не будет опубликован.
Обязательные поля помечены *

Мощность и коэффициент полезного действия насоса

Мощность и коэффициент полезного действия насоса

Формула расчета мощности насоса:

  • (Nп) = ρ*g*Q*H;

Где:

  • (Nп) – полезная мощность, Вт
  • ρ – плотность перекачиваемой среды, кг/м3 
  • g – ускорение свободного падения, м/с2 
  • Q – расход, м3/с 
  • H – общий напор, м

 Потребляемая насосом мощность будет равна: N=(ρ*g*Q*H)/η;

Мощность  насоса калькулятор онлайн

Подача насоса:

Напор насоса:

Плотность жидкости:

КПД насоса:

Полезная мощность насоса:

Потребляемая насосом мощность:

Поделиться в соц сетях:

Популярные сообщения из этого блога

Найти тангенс фи , если известен косинус фи

Калькулятор коэффициент мощности cos fi в tg fi Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ Калькулятор онлайн – косинус в тангенс cos φ: tg φ: Поделиться в соц сетях: Найти синус φ, если известен тангенс φ Найти косинус φ, если известен тангенс φ

Индекс Руфье калькулятор

Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание  доктора Диксона о “Использование сердечного индекса Руфье в медико-спортивном контроле”. Проба Руфье – представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке. Индекс Руфье для школьников и студентов. У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле:  Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменов Измеряют пульс в положении сидя (Р1); Спортсмен выполняет 30 глубоких приседаний в

Найти косинус фи (cos φ), через тангенс фи (tg φ)

tg фи=…  чему равен cos фи? Как перевести тангенс в косинус формула: cos(a)=(+-)1/sqrt(1+(tg(a))^2) Косинус через тангенс, перевести tg в cos, калькулятор – онлайн tg φ: cos φ: ± Поделиться в соц сетях:

  • Основные принципы подбора насосов
    • Технологические и конструктивные требования
    • Характер перекачиваемой среды
    • Основные расчетные параметры
    • Области применения (подбора) насосов по создаваемому напору
    • Области применения (подбора) насосов по производительности
  • Основные расчетные параметры насосов (производительность, напор, мощность)
  • Расчет производительности для различных насосов. Формулы
    • Поршневые насосы
    • Шестеренчатые насосы
    • Винтовые насосы
    • Центробежные насосы
  • Расчет напора насоса
  • Расчет потребляемой мощности насоса
  • Предельная высота всасывания (для центробежного насоса)
  • Примеры задач по расчету и подбору насосов с решениями
    • расчет объемного коэффициента полезного действия плунжерного насоса
    • расчет необходимой мощности электродвигателя двухпоршневого насоса
    • расчет величины потери напора трехпоршневого насоса
    • расчет объемного коэффициента полезного действия винтового насоса
    • расчет напора, расхода и полезной мощности центробежного насоса
    • расчет целесообразности перекачки воды центробежным насосом
    • расчет коэффициента подачи шестеренчатого (шестеренного) насоса
    • определить, удовлетворяет ли данный насос требованиям по пусковому моменту
    • расчет полезной мощности центробежного насоса
    • расчет предельного повышения расхода насоса

Основные принципы подбора насосов

Выбор насосного оборудования – ответственный этап, от которого будут зависеть как технологические параметры, так и эксплуатационные качества проектируемой установки. При выборе типа насоса можно выделить три группы критериев:

1) Технологические и конструктивные требования

2) Характер перекачиваемой среды

3) Основные расчетные параметры

Технологические и конструктивные требования:

В некоторых случаях выбор насоса может диктоваться какими-либо строгими требованиями по ряду конструктивных или технологических параметров. Центробежные насосы, в отличие от поршневых, могут обеспечивать равномерную подачу перекачиваемой среды, в то время как для выполнения условий равномерности на поршневом насосе приходится значительно усложнять его конструкцию, располагая на коленчатом вале несколько поршней, совершающих возвратно-поступательные движения с определенным отставанием друг от друга. В то же время подача перекачиваемой среды дискретными порциями заданного объема также может являться технологическим требованием. Примером определяющих конструктивных требований может служить использование погружных насосов в тех случаях, когда необходимо или единственно возможно расположить насос ниже уровня перекачиваемой жидкости.

Технологические и конструктивные требования к насосу редко являются определяющими, а диапазоны подходящих типов насосов для различных специфических случаев применения известны исходя из накопленного человечеством опыта, поэтому в доскональном их перечислении нет необходимости.

Характер перекачиваемой среды:

Характеристики перекачиваемой среды часто становятся определяющим фактором в выборе насосного оборудования. Различные типы насосов подходят для перекачки самых разнообразных сред, отличающихся по вязкости, токсичности, абразивности и множеству других параметров. Так винтовые насосы способны перекачивать вязкие среды с различными включениями, не повреждая структуру среды, и могут с успехом применяться в пищевой промышленности для перекачивания джемов и паст с различными наполнителями. Коррозионные свойства перекачиваемой среды определяют материальное исполнение выбираемого насоса, а токсичность – уровень его герметизации.

Основные расчетные параметры:

Требованиям по эксплуатации, предъявляемы различными отраслями, могут удовлетворять несколько типов насосов. В такой ситуации предпочтение отдается тому типу насосов, который наиболее применим при конкретных значениях основных расчетных параметров (производительность, напор и потребляемая мощность). Ниже приведены таблицы, в общих чертах отражающие границы применения наиболее распространенных типов насосов.

Области применения (подбора) насосов по создаваемому напору

До 10 м

От 10

до 100 м

От 100

до 1 000 м

От 1 000

до 10 000

От 10 000
м

и более

Одноступенчатые
центробежные

Многоступенчатые
центробежные

Осевые
(напор до 20-30 м)

Поршневые

Винтовые

Плунжерные

Вихревые

Области применения (подбора) насосов по производительности

До 10 м3/ч

От 10

до 100 м3/ч

От 100

до 1 000 м3/ч

От
1 000

до 10 000 м3/ч

От
10 000 м3

и более

Одноступенчатые
центробежные

Многоступенчатые
центробежные

Осевые

Поршневые

Винтовые

Плунжерные

Вихревые

Только соответствующий всем трем группам критериев насос может гарантировать длительную и надежную эксплуатацию.

Основные расчетные параметры насосов

Несмотря на многообразие машин для перекачки жидкостей и газов, можно выделить ряд основных параметров, характеризующих их работу: производительность, потребляемая мощность и напор.

Производительность (подача, расход) – объем среды, перекачиваемый насосом в единицу времени. Обозначается буквой Q и имеет размерность м3/час, л/сек, и т.д. В величину расхода входит только фактический объем перемещаемой жидкости без учета обратных утечек. Отношение теоретического и фактического расходов выражается величиной объемного коэффициента полезного действия:

Однако в современных насосах, благодаря надежной герметизации трубопроводов и соединений, фактическая производительность совпадает с теоретической. В большинстве случаев подбор насоса идет под конкретную систему трубопроводов, и величина расхода задается заранее.

Напор – энергия, сообщаемая насосом перекачиваемой среде, отнесенная к единице массы перекачиваемой среды. Обозначается буквой H и имеет размерность метры. Стоит уточнить, что напор не является геометрической характеристикой и не является высотой, на которую насос может поднять перекачиваемую среду.

Потребляемая мощность (мощность на валу) – мощность, потребляемая насосом при работе. Потребляемая мощность отличается от полезной мощности насоса, которая затрачивается непосредственно на сообщение энергии перекачиваемой среде. Часть потребляемой мощности может теряться из-за протечек, трения в подшипниках и т.д. Коэффициент полезного действия определяет соотношение между этими величинами.

Для различных типов насосов расчет этих характеристик может отличаться, что связано с различиями в их конструкции и принципах действия.

Расчет производительности для различных насосов

Все многообразие типов насосов можно разделить на две основные группы, расчет производительности которых имеет принципиальные отличия. По принципу действия насосы подразделяют на динамические и объемные. В первом случае перекачка среды происходит за счет воздействия на нее динамических сил, а во втором случае – за счет изменения объема рабочей камеры насоса.

К динамическим насосам относятся:

1) Насосы трения (вихревые, шнековые, дисковые, струйные и т.д.)
2) Лопастные (осевые, центробежные)
3) Электромагнитные

К объемным насосам относятся:
1) Возвратно-поступательные (поршневые и плунжерные, диафрагменные)
2) Роторные
3) Крыльчатые

Ниже будут приведены формулы расчета производительности для наиболее часто встречающихся типов.

Поршневые насосы (объемные насосы)

Поршневые насосы (объемные насосы)

Поршневые насосы (объемные насосы)

Основным рабочим элементом поршневого насоса является цилиндр, в котором двигается поршень. Поршень совершает возвратно-поступательные движения за счет кривошипно-шатунного механизма, чем обеспечивается последовательное изменение объема рабочей камеры. За один полный оборот кривошипа из крайнего положения поршень совершает полный ход вперед (нагнетание) и назад (всасывание). При нагнетании в цилиндре поршнем создается избыточное давление, под действием которого всасывающий клапан закрывается, а нагнетательный клапан открывается, и перекачиваемая жидкость подается в нагнетательный трубопровод. При всасывании происходит обратный процесс, при котором в цилиндре создается разряжение за счет движения поршня назад, нагнетательный клапан закрывается, предотвращая обратный ток перекачиваемой среды, а всасывающий клапан открывается и через него происходит заполнение цилиндра. Реальная производительность поршневых насосов несколько отличается от теоретической, что связано с рядом факторов, таких как утечки жидкости, дегазация растворенных в перекачиваемой жидкости газов, запаздывание открытия и закрытия клапанов и т.д.

Для поршневого насоса простого действия формула расхода будет выглядеть следующим образом:

Q = F·S·n·ηV

Q – расход (м3/с)
F – площадь поперечного сечения поршня, м2
S – длина хода поршня, м
n – частота вращения вала, сек-1
ηV – объемный коэффициент полезного действия

Для поршневого насоса двойного действия формула расчета производительности будет несколько отличаться, что связано наличием штока поршня, уменьшающего объем одной из рабочих камер цилиндра.

Q = F·S·n + (F-f)·S·n = (2F-f)·S·n

Q – расход, м3
F – площадь поперечного сечения поршня, м2
f – площадь поперечного сечения штока, м2
S – длина хода поршня, м
n – частота вращения вала, сек-1
ηV – объемный коэффициент полезного действия

Если пренебречь объемом штока, то общая формула производительности поршневого насоса будет выглядеть следующим образом:

Q = N·F·S·n·ηV

Где N – число действий, совершаемых насосом за один оборот вала.

Шестеренчатые насосы (объемные насосы)

Шестеренчатые насосы (объемные насосы)

Шестеренчатые насосы (объемные насосы)

В случае шестеренчатых насосов роль рабочей камеры выполняет пространство, ограничиваемое двумя соседними зубьями шестерней. Две шестерни с внешним или внутренним зацеплением размещаются в корпусе. Всасывание перекачиваемой среды в насос происходит за счет разряжения, создаваемого между зубьями шестерен, выходящими из зацепления. Жидкость переносится зубьями в корпусе насоса, и затем выдавливается в нагнетательный патрубок в момент, когда зубья вновь входят в зацепление. Для протока перекачиваемой среды в шестеренных насосах предусмотрены торцевые и радиальные зазоры между корпусом и шестернями.

Производительность шестеренного насоса может быть рассчитана следующим образом:

Q = 2·f·z·n·b·ηV

Q – производительность шестеренчатого насоса, м3
f – площадь поперечного сечения пространства между соседними зубьями шестерни, м2
z – число зубьев шестерни
b – длинна зуба шестерни, м
n – частота вращения зубьев, сек-1
ηV – объемный коэффициент полезного действия

Существует также альтернативная формула расчета производительности шестеренного насоса:

Q = 2·π·DН·m·b·n·ηV

Q – производительность шестеренчатого насоса, м3
DН – начальный диаметр шестерни, м
m – модуль шестерни, м
b – ширина шестерни, м
n – частота вращения шестерни, сек-1
ηV – объемный коэффициент полезного действия

Винтовые насосы (объемные насосы)

Винтовые насосы (объемные насосы)

Винтовые насосы (объемные насосы)

В насосах данного типа перекачивание среды обеспечивается за счет работы винта (одновинтовой насос) или нескольких винтов, находящихся в зацеплении, если речь идет о многовинтовых насосах. Профиль винтов подбирается таким образом, чтобы область нагнетания насоса была изолирована от области всасывания. Винты располагаются в корпусе таким образом, чтобы при их работе образовывались заполненные перекачиваемой средой области замкнутого пространства, ограниченные профилем винтов и корпусом и движущиеся по направлению в области нагнетания.

Производительность одновинтового насоса может быть рассчитана следующим образом:

Q = 4·e·D·T·n·ηV

Q – производительность винтового насоса, м3
e – эксцентриситет, м
D – диаметр винта ротора, м
Т – шаг винтовой поверхности статора, м
n – частота вращения ротора, сек-1
ηV – объемный коэффициент полезного действия

Центробежные насосы

Центробежные насосы

Центробежные насосы

Центробежные насосы являются одним из наиболее многочисленных представителей динамических насосов и широко распространены. Рабочим органом в центробежных насосах является насаженное на вал колесо, имеющее лопасти, заключенные между дисками, и расположенное внутри спиралевидного корпуса.

За счет вращения колеса создается центробежная сила, воздействующая на массу перекачиваемой среды, находящейся внутри колеса, и передает ей часть кинетической энергии, которая затем переходит в потенциальную энергию напора. Создаваемое при этом в колесе разрежение обеспечивает непрерывную подачу перекачиваемой среды их всасывающего патрубка. Важно отметить, что перед началом эксплуатации центробежный насос должен быть предварительно заполнен перекачиваемой средой, так как в противном случае всасывающей силы будет недостаточно для нормальной работы насоса.

Центробежный насос может иметь не один рабочий орган, а несколько. В таком случае насос называется многоступенчатым. Конструктивно он отличается тем, что на его валу расположено сразу несколько рабочих колес, и жидкость последовательно проходит через каждое из них. Многоступенчатый насос при той же производительности будет создавать больший напор в сравнении с аналогичным ему одноступенчатым насосом.

Совместная работа колес могоступенчатого насоса
Совместная работа колес могоступенчатого насоса

Производительность центробежного насоса может быть рассчитана следующим образом:

Q = b1·(π·D1-δ·Z)·c1 = b2·(π·D2-δ·Z)·c2

Q – производительность центробежного насоса, м3
b1,2 – ширины прохода колеса на диаметрах D1 и D2, ­м
D1,2 – внешний диаметр входного отверстия (1) и внешний диаметр колеса (2), м
δ – толщина лопаток, м
Z – число лопаток
C1,2 – радиальные составляющие абсолютных скоростей на входе в колесо (1) и выходе из него (2), м/с

Расчет напора

Как было отмечено выше, напор не является геометрической характеристикой и не может отождествляться с высотой, на которую необходимо поднять перекачиваемую жидкость. Необходимое значение напора складывается из нескольких слагаемых, каждое из которых имеет свой физический смысл.

Общая формула расчета напора (диаметры всасывающего и нагнетающего патрубком приняты одинаковыми):

H = (p2-p1)/(ρ·g) + Hг + hп

H – напор, м
p1 – давление в заборной емкости, Па
p2 – давление в приемной емкости, Па
ρ – плотность перекачиваемой среды, кг/м3
g – ускорение свободного падения, м/с2
Hг – геометрическая высота подъема перекачиваемой среды, м
hп – суммарные потери напора, м

Первое из слагаемых формулы расчета напора представляет собой перепад давлений, который должен быть преодолен в процессе перекачивания жидкости. Возможны случаи, когда давления p1 и p2 совпадают, при этом создаваемый насосом напор будет уходить на поднятие жидкости на определенную высоту и преодоление сопротивления.

Второе слагаемое отражает геометрическую высоту, на которую необходимо поднять перекачиваемую жидкость. Важно отметить, что при определении этой величины не учитывается геометрия напорного трубопровода, который может иметь несколько подъемов и спусков.

Третье слагаемое характеризует снижение создаваемого напора, зависящее от характеристик трубопровода, по которому перекачивается среда. Реальные трубопроводы неизбежно будут оказывать сопротивление току жидкости, на преодоление которого необходимо иметь запас величины напора. Общее сопротивление складывается из потерь на трение в трубопроводе и потерь в местных сопротивлениях, таких как повороты и отводы трубы, вентили, расширения и сужения прохода и т.д. Суммарные потери напора в трубопроводе рассчитываются по формуле:

Hоб – суммарные потери напора, складывающиеся из потерь на трение в трубах Hт и потерь в местных сопротивлениях Нмс

Hоб = HТ + HМС = (λ·l)/dэ·[w2/(2·g)] + ∑ζМС·[w2/(2·g)] = ((λ·l)/dэ + ∑ζМС)·[w2/(2·g)]

λ – коэффициент трения
l – длинна трубопровода, м
dЭ – эквивалентный диаметр трубопровода, м
w – скорость потока, м/с
g – ускорение свободного падения, м/с2
w2/(2·g) – скоростной напор, м
∑ζМС – сумма всех коэффициентов местных сопротивлений

Расчет потребляемой мощности насоса

Выделяют несколько мощностей в зависимости от потерь при ее передаче, которые учитываются различными коэффициентами полезного действия. Мощность, идущая непосредственно на передачу энергии перекачиваемой жидкости, рассчитывается по формуле:

NП = ρ·g·Q·H

NП – полезная мощность, Вт
ρ – плотность перекачиваемой среды, кг/м3
g – ускорение свободного падения, м/с2
Q – расход, м3
H – общий напор, м

Мощность, развиваемая на валу насоса, больше полезной, и ее избыток идет на компенсацию потерь мощности в насосе. Взаимосвязь между полезной мощностью и мощностью на валу устанавливается коэффициентом полезного действия насоса. КПД насоса учитывает утечки через уплотнения и зазоры (объемный КПД), потери напора при движении перекачиваемой среды внутри насоса (гидравлический КПД) и потери на трение между подвижными частями насоса, такими как подшипники и сальники (механический КПД).

NВ = NПН

NВ – мощность на валу насоса, Вт
NП – полезная мощность, Вт
ηН – коэффициент полезного действия насоса

В свою очередь мощность, развиваемая двигателем, превышает мощность на валу, что необходимо для компенсации потерь энергии при ее передаче от двигателя к насосу. Мощность электродвигателя и мощность на валу связаны коэффициентами полезного действия передачи и двигателя.

NД = NВ/(ηП·ηД)

NД – потребляемая мощность двигателя, Вт
NВ – мощность на валу, Вт
ηП – коэффициент полезного действия передачи
ηН – коэффициент полезного действия двигателя

Окончательная установочная мощность двигателя высчитывается из мощности двигателя с учетом возможной перегрузки в момент запуска.

NУ = β·NД

NУ – установочная мощность двигателя, Вт
NД – потребляемая мощность двигателя, Вт
β – коэффициент запаса мощности

Коэффициент запаса мощности может быть приближенно выбран из таблицы:

N, кВт Менее 1 От 1до 5 От 5 до 50 Более 50
β 2 – 1,5 1,5 – 1,2 1,2 – 1,15 1,1

Предельная высота всасывания
(для центробежного насоса)

Всасывание в центробежном наосе происходит за счет разности давлений в сосуде, откуда происходит забор перекачиваемой среды, и на лопатках рабочего колеса. Чрезмерное увеличение разности давлений может привести к появлению кавитации – процессу, при котором происходит понижение давления до значения, при котором температура кипения жидкости опускается ниже температуры перекачиваемой среды и начинается ее испарение в пространстве потока с образованием множества пузырьков. Пузырьки уносятся потоком дальше по ходу течения, где под действием возрастающего давления они конденсируются, и происходит их “схлопывание”, сопровождаемое многочисленными гидравлическими ударами, негативно сказывающимися на сроке службы насоса. В целях избегания негативного воздействия кавитации необходимо ограничивать высоту всасывания центробежного насоса.

Геометрическая высота всасывания может быть определена по формуле:

hг = (P0-P1)/(ρ·g) — hсв — w²/(2·g) — σ·H

hГ – геометрическая высота всасывания, м
P0 – давление в заборной емкости, Па
P1 – давление на лопатках рабочего колеса, Па
ρ – плотность перекачиваемой среды, кг/м3
g – ускорение свободного падения, м/с2
hсв – потери на преодоление гидравлических сопротивлений во всасывающем трубопроводе, м
w²/(2·g) – скоростной напор во всасывающем трубопроводе, м
σ·H – потери на добавочное сопротивление, пропорциональное напору, м
где σ – коэффициент кавитации, H – создаваемый насосом напор

Коэффициент кавитации может быть рассчитан по эмпирической формуле:

σ = [(n·√Q) / (126H4/3)]4/3

σ – коэффициент кавитации
n – частота вращения рабочего колеса, сек-1
Q – производительность насоса, м3
Н – создаваемый напор, м

Также существует формула для центробежных насосов для расчета запаса напора, обеспечивающего отсутствие кавитации:

Hкв = 0,3·(Q·n²)2/3

Hкв – запас напора, м
Q – производительность центробежного насоса, м3
n – частота вращения рабочего колеса, с-1

Примеры задач по расчету и подбору насосов с решениями

Пример №1

Плунжерный насос одинарного действия обеспечивает расход перекачиваемой среды 1 м3/ч. Диаметр плунжера составляет 10 см, а длинна хода – 24 см. Частота вращения рабочего вала составляет 40 об/мин.

Требуется найти объемный коэффициент полезного действия насоса.

пример 1

Решение:

Площадь поперечного сечения плунжера :

F = (π·d²)/4 = (3,14·0,1²)/4 = 0,00785 м²2

Выразим коэффициент полезного действия из формулы расхода плунжерного насоса:

ηV = Q/(F·S·n) = 1/(0,00785·0,24·40) · 60/3600 = 0,88

Пример №2

Двухпоршневой насос двойного действия создает напор 160 м при перекачивании масла с плотностью 920 кг/м3. Диаметр поршня составляет 8 см, диаметр штока – 1 см, а длинна хода поршня равна 16 см. Частота вращения рабочего вала составляет 85 об/мин. Необходимо рассчитать необходимую мощность электродвигателя (КПД насоса и электродвигателя принять 0,95, а установочный коэффициент 1,1).

пример 2

Решение:

Площади попреречного сечения поршня и штока:

F = (3,14·0,08²)/4 = 0,005024 м²

F = (3,14·0,01²)/4 = 0,0000785 м²

Производительность насоса находится по формуле:

Q = N·(2F-f)·S·n = 2·(2·0,005024-0,0000785)·0,16·85/60 = 0,0045195 м³/час

Далее находим полезную мощность насоса:

NП = 920·9,81·0,0045195·160 = 6526,3 Вт

С учетом КПД и установочного коэффициента получаем итоговую установочную мощность:

NУСТ = 6526,3/(0,95·0,95)·1,1 = 7954,5 Вт = 7,95 кВт

Пример №3

Трехпоршневой насос перекачивет жидкость с плотностью 1080 кг/м3 из открытой емкости в сосуд под давлением 1,6 бара с расходом 2,2 м3/час. Геометрическая высота подъема жидкости составляет 3,2 метра. Полезная мощность, расходуемая на перекачивание жидкости, составляет 4 кВт. Необходимо найти величину потери напора.

Решение:

Найдем создаваемый насосом напор из формулы полезной мощности:

H = NП/(ρ·g·Q) = 4000/(1080·9,81·2,2)·3600 = 617,8 м

Подставим найденное значение напора в формулу напора, выраженую через разность давлений, и найдем искомую величину:

hп = H — (p2-p1)/(ρ·g) — Hг = 617,8 — ((1,6-1)·105)/(1080·9,81) — 3,2 = 69,6 м

Пример №4

Реальная производительность винтового насоса составляет 1,6 м3/час. Геометрические характеристики насоса: эксцентриситет – 2 см; диаметр ротора – 7 см; шаг винтовой поверхности ротора – 14 см. Частота вращения ротора составляет 15 об/мин. Необходимо определить объемный коэффициент полезного действия насоса.

Решение:

Выразим искомую величину из формулы производительности винтового насоса:

ηV = Q/(4·e·D·T·n) = 1,6/(4·0,02·0,07·0,14·15) · 60/3600 = 0,85

Пример №5

Необходимо рассчитать напор, расход и полезную мощность центробежного насоса, перекачивающего жидкость (маловязкая) с плотностью 1020 кг/м3 из резервуара с избыточным давлением 1,2 бара а резервуар с избыточным давлением 2,5 бара по заданному трубопроводу с диаметром трубы 20 см. Общая длинна трубопровода (суммарно с эквивалентной длинной местных сопротивлений) составляет 78 метров (принять коэффициент трения равным 0,032). Разность высот резервуаров составляет 8 метров.

пример 5

Решение:

Для маловязких сред выбираем оптимальную скорость движения в трубопроводе равной 2 м/с. Рассчитаем расход жидкости через заданный трубопровод:

Q = (π·d²) / 4·w = (3,14·0,2²) / 4·2 = 0,0628 м³/с

Скоростной напор в трубе:

w²/(2·g) = 2²/(2·9,81) = 0,204 м

При соответствующем скоростном напоре потери на трение м местные сопротивления составят:

HТ = (λ·l)/dэ · [w²/(2g)] = (0,032·78)/0,2 · 0,204 = 2,54 м

Общий напор составит:

H = (p2-p1)/(ρ·g) + Hг + hп = ((2,5-1,2)·105)/(1020·9,81) + 8 + 2,54 = 23,53 м

Остается определить полезную мощность:

NП = ρ·g·Q·H = 1020·9,81·0,0628·23,53 = 14786 Вт

Пример №6

Целесообразна ли перекачка воды центробежным насосом с производительностью 50 м3/час по трубопроводу 150х4,5 мм?

Решение:

Рассчитаем скорость потока воды в трубопроводе:

Q = (π·d²)/4·w

w = (4·Q)/(π·d²) = (4·50)/(3,14·0,141²) · 1/3600 = 0,89 м/с

Для воды скорость потока в нагнетательном трубопроводе составляет 1,5 – 3 м/с. Получившееся значение скорости потока не попадает в данный интервал, из чего можно сделать вывод, что применение данного центробежного насоса нецелесообразно.

Пример №7

Определить коэффициент подачи шестеренчатого насоса. Геометрические характеристики насоса: площадь поперечного сечения пространства между зубьями шестерни 720 мм2; число зубьев 10; длинна зуба шестерни 38 мм. Частота вращения составляет 280 об/мин. Реальная подача шестеренчатого насоса составляет 1,8 м3/час.

Решение:

Теоретическая производительность насоса:

Q = 2·f·z·n·b = 2·720·10·0,38·280·1/(3600·106) = 0,0004256 м³/час

Коэффициент подачи соответственно равен:

ηV = 0,0004256/1,8·3600 = 0,85

Пример №8

Насос, имеющий КПД 0,78, перекачивает жидкость плотностью 1030 кг/м3 с расходом 132 м3/час. Создаваемый в трубопроводе напор равен 17,2 м. Насос приводится в действие электродвигателем с мощностью 9,5 кВт и КПД 0,95. Необходимо определить, удовлетворяет ли данный насос требованиям по пусковому моменту.

Решение:

Рассчитаем полезную мощность, идущую непосредственно на перекачивание среды:

NП = ρ·g·Q·H = 1030·9,81·132/3600·17,2 = 6372 Вт

Учтем коэффициенты полезного действия насоса и электродвигателя и определим полную необходимую мощность электродвигателя:

NД = NП/(ηН·ηД) = 6372/(0,78·0,95) = 8599 Вт

Поскольку нам известна установочная мощность двигателя, определим коэффициент запаса мощности электродвигателя:

β = NУ/NД = 9500/8599 = 1,105

Для двигателей с мощностью от 5 до 50 кВт рекомендуется выдирать пусковой запас мощности от 1,2 до 1,15. Полученное нами значение не попадает в данный интервал, из чего можно сделать вывод, что при эксплуатации данного насоса при заданных условиях могут возникнуть проблемы в момент его пуска.

Пример №9

Центробежный насос перекачивает жидкость плотностью 1130 кг/м3 из открытого резервуара в реактор с рабочим давлением 1,5 бар с расходом 5,6 м3/час. Геометрическая разница высот составляет 12 м, причем реактор расположен ниже резервуара. Потери напора на трение в трубах и местные сопротивления составляет 32,6 м. Требуется определить полезную мощность насоса.

пример 9

Решение:

Рассчитаем напор, создаваемый насосом в трубопроводе:

H = (p2-p1)/(ρ·g) + Hг + hп = ((1,5-1)·105)/(1130·9,81) — 12 + 32,6 = 25,11 м

Полезная мощность насоса может быть найдена по формуле:

NП = ρ·g·Q·H = 1130·9,81·5,6/3600·25,11 = 433 Вт

Пример №10

Определить предельное повышение расхода насоса, перекачивающего воду (плотность принять равной 1000 кг/м3) из открытого резервуара в другой открытый резервуар с расходом 24 м3/час. Геометрическая высота подъема жидкости составляет 5 м. Вода перекачивается по трубам 40х5 мм. Мощность электродвигателя составляет 1 кВт. Общий КПД установки принять равным 0,83. Общие потери напора на трение в трубах и в местных сопротивлениях составляет 9,7 м.

пример 10

Решение:

Определим максимальное значение расхода, соответствующее максимально возможной полезной мощности, развиваемой насосом. Для этого предварительно определим несколько промежуточных параметров.

Рассчитаем напор, необходимый для перекачивания воды:

H = (p2-p1)/(ρ·g) + Hг + hп = ((1-1)·105)/(1000·9,81) + 5 + 9,7 = 14,7 м

Полезная мощность, развиваемая насосом:

NП = NобщН = 1000/0,83 = 1205 Вт

Значение максимального расхода найдем из формулы:

NП = ρ·g·Q·H

Найдем искомую величину:

Qмакс = NП/(ρ·g·H) = 1205/(1000·9,81·14,7) = 0,00836 м³/с

Расход воды может быть увеличен максимально в 1,254 раза без нарушения требований эксплуатации насоса.

Qмакс/Q = 0,00836/24·3600 = 1,254

Добавить комментарий