Как найти полное сопротивление катушки индуктивности

Обновлено: 7 июл. 2020 г.

Отбросьте в сторону все ваши умные книги – мы займемся практикой.

Вы когда-либо пробовали разобраться, что такое полное электрическое сопротивление, которое еще называют импедансом? Если раньше вы уже успели окунуться в эту тему, то скорее всего, уже нахватались жаргонных словечек, таких как «фазовый вектор», «соотношения фаз» и даже «реактивное сопротивление». Какого черта, что все это значит?

Не все из нас по образованию инженеры-электрики. Некоторые в свободное время просто возятся с электроникой, но никогда не касаются строгих математических обоснований, которые вы изучали в университете. Однако это не означает, что отсутствие понимания, что такое полное электрическое сопротивление должно стать препятствием. Если вы планируете работать с электронными устройствами переменного тока, то вам нужно знать, что такое полное сопротивление, и как оно влияет на вашу электрическую цепь.

Давайте выясним это!

Не совсем яблочко от яблоньки

Лучший способ понять, что же такое полное электрическое сопротивление – это сравнить его с чем-то уже вам известным, скажем – «простым» сопротивлением. Так мы сможем дать исчерпывающее определение полного электрического сопротивления одной фразой:

Полное электрическое сопротивление – это вид сопротивления, зависящее от частоты.

Вот и всё. Сейчас вы можете остановиться и записать еще одно слово в ваш словарь инженера-электрика. Просто и понятно: полное электрическое сопротивление – вид сопротивления, которое зависит от рабочей частоты электрической цепи. Но, разумеется, это еще не всё.

Резисторы выполняют в цепи постоянного тока чрезвычайно простую работу. Они оказывают сопротивление току, протекающему через какой-либо металл, например медь. Вы добавляете резистор на 220 кОм в цепь постоянного тока, и получаете определенное уменьшение тока, который втекает в резистор с одной стороны, и вытекает из него с другой стороны. Резисторы, подобно другим чисто омическим компонентам электрической цепи, не думают о том, какую же частоту выдает источник тока. Они просто делают то, что должны делать – оказывают некое постоянное сопротивление току.

Но что произойдет, если вы начнете работать с электроникой с питанием от источника переменного тока? Источник переменного тока не просто дает 5 В для питания вашей схемы. Кроме нового источника тока вы получили новые переменные, с которыми необходимо считаться. Например, сюда входит заранее известная частота переменного тока в сети питания. В Соединенных Штатах Америки частота тока в электрической сети составляет 60 колебаний в секунду (60 Гц). За океаном, в Европе, частота тока в сети 50 Гц.

В отличие от постоянного тока (DC), график которого представляет собой  прямую линию, переменный ток (АС) колеблется с определенной частотой.

В отличие от постоянного тока (DC), график которого представляет собой

прямую линию, переменный ток (АС) колеблется с определенной частотой.

В итоге получается следующее: в электронных устройствах, использующих переменный ток, необходимы не только активные компоненты, такие как резисторы, задачей которых является оказание сопротивления электрическому току, также нужны компоненты, которые могут реагировать на изменения тока и частоты, например конденсаторы и катушки индуктивности. В противном случае электрическая схема не будет работать так, как задумывалось. Зная все это уже можно посчитать полное сопротивление, которое является старшим братом активного сопротивления. Полное электрическое сопротивление включает в себя и активное, и реактивное сопротивления. Это можно записать в виде выражения:

Полное сопротивление =
активное сопротивление + реактивное сопротивление

Но что такое реактивное сопротивление?

Реактивное сопротивление бывает двух видов в зависимости от используемого реактивного компонента. Сюда входит:

Индуктивное реактивное сопротивление

Оно встречается в цепях, где есть своего рода электромагниты, влияющие на магнитное поле электрической цепи. Еще их называют катушками индуктивности. Катушки индуктивности имеют низкое полное электрическое сопротивление на низких частотах и высокое полное электрическое сопротивление на высоких частотах.

Разные катушки индуктивности. Обратите внимание на общность  конструкции – медный провод намотан на магнит, образуя катушку.

Разные катушки индуктивности. Обратите внимание на общность

конструкции – медный провод намотан на магнит, образуя катушку.

Емкостное реактивное сопротивление

Оно встречается там, где электрическое поле между двумя проводящими поверхностями вызывает накопление заряда. Такие устройства еще называют конденсаторами. Конденсаторы имеют высокое полное электрическое сопротивления на низких частотах и низкое полное сопротивление на высоких частотах.

Конденсаторы встречаются всех форм и размеров.

Конденсаторы встречаются всех форм и размеров.

Соберем электрическую цепь переменного тока из резисторов, катушек индуктивности и конденсаторов. Теперь вы сможете не только оказывать сопротивление электрическому току, но и накапливать и высвобождать энергию. Если резисторы сохраняют постоянное сопротивление вне зависимости от изменяющихся условий, то сопротивление катушек индуктивности и конденсаторов изменяется в зависимости от частоты проходящего через них электрического сигнала. Когда конденсаторы и катушки индуктивности вместе оказывают сопротивление и накапливают/высвобождают энергию, тогда и говорят о полном электрическом сопротивлении.

Как измерить полное электрическое сопротивление

Соединим все детали вместе в простую электрическую цепь. Взглянем на рисунок ниже: это цепь с источником питания постоянного тока. Ток течет через резистор. Весьма просто, верно? Чем больше сопротивление резистора в цепи, тем меньше будет ток.

Простая цепь постоянного тока с резистором  на 100 Ом для ограничения силы тока.

Простая цепь постоянного тока с резистором

на 100 Ом для ограничения силы тока.

Что произойдет, если мы добавим в электрическую цепь источник питания переменного тока, катушку индуктивности и конденсатор? Теперь в цепи есть два дополнительных компонента, каждый из которых по своему оказывает сопротивление электрическому току. Как и резистор, они оба препятствуют прохождению электрического тока, при этом также воздействуют на ток. Если суммировать активное сопротивление резистора и активное и реактивное сопротивления конденсатора и катушки индуктивности, то получится полное электрическое сопротивление или импеданс.

В цепи переменного тока последовательно соединены резистор, катушка индуктивности и конденсатор

Постойте! Чтобы рассчитать полное электрическое сопротивления недостаточно просто сложить активные и реактивные сопротивления. Обычно в большинстве учебных пособий с этого момента начинается изобилие математических формул, поэтому дальше читайте не спеша.

Расчет полного электрического сопротивления конденсатора

Чтобы найти полное электрическое сопротивление конденсатора, вы можете воспользоваться следующей формулой. В ней Xc – полное электрическое сопротивление, которое необходимо найти. Оно измеряется в Омах. Переменная f – это частота сигнала, проходящего через конденсатор, а C – емкость конденсатора.

Расчет полного электрического сопротивления катушки индуктивности

Чтобы найти полное электрическое сопротивление катушки индуктивности, вы можете воспользоваться следующей формулой. В ней XL – полное электрическое сопротивление, которое необходимо найти. Оно измеряется, опять же, в Омах. Переменная f – это частота сигнала, проходящего через катушку индуктивности, а L – индуктивность.

Эти формулы правильны и прекрасны, если вы хотите рассчитать полное электрическое соединение отдельных компонентов электрической цепи, но что же делать, если нужно найти полное сопротивление всей цепи? Теперь все еще более усложняется.

Перед тем, как мы перейдем к нашей последней формуле, мы хотим предложить вашему вниманию калькулятор полного электрического сопротивления, который может упростить вам жизнь: Калькуляторы полного сопротивления от Keisan.

Расчет полного электрического сопротивления цепи

Чтобы выполнить расчет, вам необходимо обратиться за помощью к теореме Пифагора. Как мы уже рассказали выше, в цепях переменного тока действуют и активное, и реактивное сопротивления, вместе образуя полное электрическое сопротивление. Но простое суммирование активного и реактивного сопротивления не имеет смысла. Мы можем объяснить, почему это так, но тогда нам придется рассказать о премудростях фазовых векторов и о правилах работы с ними, а для этого понадобится отдельный блог.

Когда вы сталкиваетесь с расчетом полного электрического сопротивления всей цепи, вам может помочь то, что называется треугольником сопротивлений, который показан на рисунке ниже.

Треугольник сопротивлений упрощает расчет  полного электрического сопротивления цепи.

Треугольник сопротивлений упрощает расчет

полного электрического сопротивления цепи.

Наиболее важная часть этого треугольника – его гипотенуза, дает величину полного сопротивления цепи, которое представляет собой квадратный корень из суммы квадратов активного и реактивного сопротивлений. Если вы подставите их в данную формулу, то сможете найти полное сопротивление электрической цепи. В ней Z – это искомое полное электрическое сопротивление цепи, R – полное активное сопротивление, X – полное реактивное сопротивление.

Практическое применение полного электрического сопротивления

Становится понятно, в конце концов, что после всех наших объяснений разобраться, что такое полное электрическое сопротивление, несложно, не так ли? Существуют десятки бесплатных калькуляторов, которые помогут вам выполнить расчеты. Что вам на самом деле нужно – это знать, что полное сопротивление работает так же, как активное сопротивление, ограничивая ток в цепи переменного тока.

Способность таких компонентов, как конденсаторы и катушки индуктивности реагировать на постоянные изменения переменного тока, делает их уникальными. Благодаря полному сопротивлению в вашей цепи можно организовать нечто похожее на электрический щит с защитными автоматами, которые реагируют на неожиданные скачки электричества, защищая от выгорания домашнюю электропроводку. Можно также сказать спасибо полному сопротивлению за то, что вы можете носить с собой ноутбук с полностью заряженным аккумулятором, не опасаясь его взрыва.

Когда дело доходит до работы с устройствами с питанием от источника переменного тока, будь то ноутбук или электрощит в вашем доме, стоит быть благодарным полному электрическому сопротивлению. И помните, полное электрическое сопротивление – это просто старший брат привычного активного сопротивления, который объединяет активное и реактивное сопротивления в одной простой формуле.


Загрузить PDF


Загрузить PDF

Полное сопротивление, или импеданс, характеризует сопротивление цепи переменному электрическому току. Данная величина измеряется в омах. Для вычисления полного сопротивления цепи необходимо знать значения всех активных сопротивлений (резисторов) и импеданс всех катушек индуктивности и конденсаторов, входящих в данную цепь, причем их величины меняются в зависимости от того, как меняется проходящий через цепь ток. Импеданс можно рассчитать при помощи простой формулы.

Формулы

  1. Полное сопротивление Z = R или XLили XC (если присутствует что-то одно)
  2. Полное сопротивление (последовательное соединение) Z = √(R2 + X2) (если присутствуют R и один тип X)
  3. Полное сопротивление (последовательное соединение) Z = √(R2 + (|XL – XC|)2) (если присутствуют R, XL, XC)
  4. Полное сопротивление (любое соединение) = R + jX (j — мнимое число √(-1))
  5. Сопротивление R = I / ΔV
  6. Индуктивное сопротивление XL = 2πƒL = ωL
  7. Емкостное сопротивление XC = 1 / 2πƒL = 1 / ωL
  1. Изображение с названием Calculate Impedance Step 1

    1

    Импеданс обозначается символом Z и измеряется в омах (Ом). Вы можете измерить импеданс электрической цепи или отдельного элемента. Импеданс характеризует сопротивление цепи переменному электрическому току. Есть два типа сопротивления, которые вносят вклад в импеданс:[1]

    • Активное сопротивление (R) зависит от материала и формы элемента. Наибольшим активным сопротивлением обладают резисторы, но и другие элементы цепи обладают небольшим активным сопротивлением.
    • Реактивное сопротивление (X) зависит от величины электромагнитного поля. Наибольшим реактивным сопротивлением обладают катушки индуктивности и конденсаторы.
  2. Изображение с названием Calculate Impedance Step 2

    2

    Сопротивление — это фундаментальная физическая величина, описываемая законом Ома: ΔV = I * R.[2]
    Эта формула позволит вам вычислить любую из трех величин, если вы знаете две другие. Например, чтобы вычислить сопротивление, перепишите формулу так: R = I / ΔV. Вы также можете измерить сопротивление при помощи мультиметра.

    • ΔV — это напряжение (разность потенциалов), измеряемое в вольтах (В).
    • I — сила тока, измеряемая в амперах (А).
    • R — это сопротивление, измеряемое в омах (Ом).
  3. Изображение с названием Calculate Impedance Step 3

    3

    Реактивное сопротивление имеет место только в цепях переменного тока. Как и активное сопротивление, реактивное сопротивление измеряется в омах (Ом). Есть два типа реактивного сопротивления:

    • Индуктивным сопротивлением XC обладают катушки индуктивности, создающие магнитное поле, которое препятствует изменению направления тока в цепи.[3]
      Чем быстрее меняется направление тока, тем больше индуктивное сопротивление.
    • Емкостным сопротивлением XC обладают конденсаторы, которые накапливают электрический заряд. При изменении направления тока в цепи конденсатор неоднократно обнуляет и накапливает электрический заряд. Чем дольше конденсатор заряжается, тем больше емкостное сопротивление.[4]
      Поэтому чем быстрее меняется направление тока, тем меньше емкостное сопротивление.
  4. Изображение с названием Calculate Impedance Step 4

    4

    Вычислите индуктивное сопротивление. Это сопротивление прямо пропорционально быстроте изменения направления тока, то есть частоты тока. Эта частота обозначается символом ƒ и измеряется в герцах (Гц). Формула для расчета индуктивного сопротивления: XL = 2πƒL, где L — индуктивность, измеряемая в генри (Гн).[5]

    • Индуктивность L зависит от количества витков в катушке индуктивности.[6]
      Также вы можете измерить индуктивность.
    • Если вы знакомы с единичной окружностью, то представьте, что один цикл переменного тока равен одному полному вращению этой окружности (на 2π радиан). Если умножить это значение на ƒ, которая измеряется в герцах (единиц в секунду), вы получите результат, измеряемый в радианах в секунду. Это единица измерения угловой скорости, которая обозначается через ω. Вы можете переписать формулу для вычисления индуктивного сопротивления так: XL=ωL[7]
  5. Изображение с названием Calculate Impedance Step 5

    5

    Вычислите емкостное сопротивление. Это сопротивление обратно пропорционально быстроте изменения направления тока, то есть частоты тока. Формула для вычисления емкостного сопротивления: XC = 1 / 2πƒC.[8]
    С — это емкость конденсатора, измеряемая в фарадах (Ф).

    • Вы можете измерить электрическую емкость.
    • Эту формулу можно переписать так: XC = 1 / ωL (объяснения см. выше).

    Реклама

  1. Изображение с названием Calculate Impedance Step 6

    1

    Если цепь состоит исключительно из резисторов, то импеданс вычисляется следующим образом. Сначала измерьте сопротивление каждого резистора или посмотрите значения сопротивления на схеме цепи.[9]

    • Если резисторы соединены последовательно, то полное сопротивление R = R1 + R2 + R3
    • Если резисторы соединены параллельно, то полное сопротивление R = 1 / R1 + 1 / R2 + 1 / R3
  2. Изображение с названием Calculate Impedance Step 7

    2

    Сложите одинаковые реактивные сопротивления. Если в цепи присутствуют исключительно катушки индуктивности или исключительно конденсаторы, то полное сопротивление равно сумме реактивных сопротивлений. Вычислите его следующим образом:[10]

    • Последовательное соединение катушек: Xtotal = XL1 + XL2 + …
    • Последовательное соединение конденсаторов: Ctotal = XC1 + XC2 + …
    • Параллельное соединение катушек: Xtotal = 1 / (1/XL1 + 1/XL2 …)
    • Параллельное соединение конденсаторов: Ctotal = 1 / (1/XC1 + 1/XC2 …)
  3. Изображение с названием Calculate Impedance Step 8

    3

    Вычтите индуктивные и емкостные сопротивления, чтобы получить общее реактивное сопротивление. Так как при возрастании одного типа сопротивления другое уменьшается, то они, как правило, компенсируют друг друга. Чтобы найти общее реактивное сопротивление, вычтите меньшее сопротивление из большего.[11]

    • Или воспользуйтесь формулой: Xtotal = |XC – XL|
  4. Изображение с названием Calculate Impedance Step 9

    4

    Вычислите импеданс по активному и реактивному сопротивлениям в последовательной цепи. Нельзя просто сложить эти величины, так как они меняются с течением времени, но достигают максимальных значений в разное время.[12]
    Поэтому воспользуйтесь формулой:Z = √(R2 + X2).[13]

    • Вычисления по этой формуле включают в себя использование векторов, но вы можете воспользоваться теоремой Пифагора, представив R и X в качестве катетов прямоугольного треугольника, а сопротивление Z — как гипотенузу.[14]
      [15]
  5. Изображение с названием Calculate Impedance Step 10

    5

    Вычислите импеданс по активному и реактивному сопротивлениям в параллельной цепи. В этом случае используются комплексные числа (это единственный способ вычислить полное сопротивление в параллельной цепи, в которой есть как активное, так и реактивное сопротивление).

    • Z = R + jX, где j — мнимая единица: √(-1). Используйте j вместо i, чтобы не перепутать мнимую единицу (j) с силой тока (I).
    • Складывать эти числа нельзя. Например, полное сопротивление может быть представлено так: 60 Ом + j120 Ом.
    • Если у вас есть две последовательные цепи, то вы можете отдельно сложить натуральные числа и отдельно — комплексные. Например, если Z1 = 60 Ом + j120 Ом, а к этой цепи последовательно подключен резистор с Z2 = 20Ω, то Ztotal = 80Ω + j120Ω.

    Реклама

Советы

  • Общее сопротивление (активное и реактивное сопротивления) также может быть выражено через мнимое число.

Реклама

Об этой статье

Эту страницу просматривали 168 436 раз.

Была ли эта статья полезной?

Электрическая цепь.

Источник электрического тока, соединенный проводами с различными электроприборами и потребителями электри­ческой энергии, образует электрическую цепь.

Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления, источники тока, включатели, лампы, при­боры и т. д.) обозначены специальными значками.

Закон Ома для полной электрической цепи

Направление тока в цепи — это направление от положи­тельного полюса источника тока к отрицательному. Это пра­вило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с ус­ловным направлением тока. Так, в металлах носителями тока являются отрицательно заряжен­ные электроны, и движутся они от отрицательного полюса к положительному, т. е. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заря­да — положительные или отрицательные.

Включение элементов в электрическую цепь может быть последовательным или параллельным.

Что такое сопротивление

Ток, протекая через провода и различные радиодетали, тратит свою энергию. Это явление количественно выражается величиной сопротивления. В электротехнике его разделяют на активное и реактивное сопротивление. В первом случае при прохождении тока часть его энергии превращается в тепловой вид, а иногда и в другие (например, проявляется в химических реакциях). Величина активного сопротивления зависит от частоты переменного электротока и возрастает с ее увеличением.

Виды сопротивлений и их формулы

Второй тип сопротивления имеет более сложную природу и возникает в момент включения или выключения потребителя электроэнергии в сеть переменного или постоянного тока. В цепи с реактивным сопротивлением энергия электрического тока частично превращается в другую форму, а затем переходит обратно, то есть, наблюдается периодический колебательный процесс. Полное сопротивление цепи включает в себя активный и реактивный типы, которые учитываются по особым правилам.

Виды сопротивления

В электротехнике рассматривается активное электрическое сопротивление, а также две разновидности реактивного: индуктивное и ёмкостное.

Детали с разным сопротивлением

Активное сопротивление
Можно представить себе электрическую цепь, в которой к клеммам батарейки через провод последовательно присоединены резистор и электрическая лампочка. Если замкнуть провода, лампочка загорится. Можно использовать вольтметр или мультиметр в соответствующем режиме работы, с помощью которых измеряется разность потенциалов между двумя точками цепи.

Измерив напряжение между клеммами и сравнив его с тем, которое имеется на проводах подсоединённых к лампочке, можно увидеть, что последнее меньше. Это связано с падением напряжения на впаянной в цепь радиодетали. Последняя оказывает противодействие электрическому току, затрудняя его прохождение.

Активным сопротивлением обладает каждая деталь, через которую проходит ток. У металлических проводов оно очень маленькое. Чтобы узнать величину сопротивления радиодетали, нужно изучить обозначение на ее корпусе. Если из рассматриваемой электроцепи убрать резистор, то сила тока, проходящего через лампочку, увеличится.

Формула для расчета активного сопротивления соответствует закону Ома:

R = U / I, где

  • R — величина активного сопротивления между двумя точками в цепи;
  • U — напряжение или разность потенциалов между ними;
  • I — сила тока на рассматриваемом участке цепи.

Для расчета активного сопротивления проводника формула будет другая:

Расчет активного сопротивления проводника

где K-коэффициент поверхностного эффекта, который равен 1,

  • l — длина проводника,
  • s — площадь поперечного сечения,
  • p — “ро” удельное сопротивление.

Сопротивление принято измерять в Омах. Оно существенно зависит от формы и размеров объекта, через который протекает ток: сечения, длины, материала, а также от температуры. Действие активного сопротивления уменьшает энергию электрического тока, превращая её в другие формы (преимущественно в тепловую).

Один из видов омметров
Реактивное сопротивление

Этот вид возникает тогда, когда переменный ток проходит сквозь элемент, который обладает индуктивностью или емкостью. Основной особенностью реактивного сопротивления является преобразование электрической энергии в другую форму в прямом и обратном направлениях. Часто это происходит циклически. Реактивное сопротивление проявляется только при изменениях силы тока и напряжения. Существует два его вида: индуктивное и емкостное.

Индуктивное сопротивление

При увеличении силы тока порождается магнитное поле, обладающее различными характеристиками. Наиболее важной из них является индуктивность. Магнитное поле, в свою очередь, воздействует на проводник, по которому протекает ток. Влияние является противоположным направлению изменения тока. То есть, если сила тока увеличилась, то магнитное поле будет уменьшать его, и наоборот, если снизилась, то поле усилит его. Когда ток не меняется, реактивное сопротивление катушки индуктивности будет равно нулю.

Индуктивное сопротивление зависит от частоты тока. Чем она выше, тем выше скорость изменения данного параметра. Это значит, что будет образовано более сильное магнитное поле. Возникающая при этом ЭДС препятствует изменению электрического тока.

Катушки индуктивности

Расчет реактивного индуктивного сопротивления осуществляется по такой формуле:

XL = L×w = L×2π×f, где буквами обозначаются:

  • L — индуктивность магнитного поля, которое порождается изменением силы тока;
  • W — круговая частота изменения, которая используется в описании синусоидального изменения силы тока;
  • Π — число «пи»;
  • f — частота тока в обычном смысле.

При синусоидальном изменении напряжения сила тока будет меняться, отставая от него по фазе. Поэтому реактивное сопротивление трансформатора существенно зависит от его индуктивности.

Мощные трансформаторы используются для преобразования электроэнергии

Емкостное сопротивление

Оно имеет иную природу, чем индуктивное. Это понятие удобно проиллюстрировать на примере электрической цепи, состоящей из источника питания, клеммы которого соединены с обкладками конденсатора. Сразу после подключения на них будет постепенно накапливаться заряд, создавая ток в цепи.

После достижения предельной величины, которая определяется ёмкостью детали, ток не будет проходить по цепи. Если после этого отключить провода от клемм, а затем последние соединить, то между ними начнётся перемещение зарядов до тех пор, пока разность потенциалов станет равной нулю.

Если к конденсатору подключить источник переменного тока, то будет происходить следующее. С увеличением разности потенциалов заряд на обкладках конденсатора будет расти. Когда напряжение перейдёт в фазу уменьшения, накопленный заряд начнёт стекать с них, образуя ток противоположного направления. Затем разность потенциалов станет отрицательной, но по абсолютной величине будет расти до максимального значения. При этом конденсатор начнет вновь заряжаться, но при этом знак поступающих зарядов будет не такой, который был раньше.

Виды конденсаторов

Когда напряжение начнёт увеличиваться (уменьшаясь по абсолютной величине), заряд с обкладок конденсатора будет стекать. Когда разность потенциалов у источника достигнет нуля и продолжит увеличиваться, начнётся новый цикл изменений.

На каждом этапе описанной ситуации ток с обкладок конденсатора будет иметь направление противоположное тому, которое порождается переменной разностью потенциалов источника питания.

Происходящее таким образом уменьшение силы тока представляет собой физический смысл ёмкостного сопротивления. Оно обозначается буквами ХС и рассчитывается по формуле:

XС = 1/(w×C) = 1/(2π×f×C), где

  • C — ёмкость используемого конденсатора;
  • w — круговая частота переменного тока;
  • π — число «пи»;
  • f — частота переменного тока.

В рассматриваемом случае изменения тока отстают от напряжения.

Полное сопротивление

При использовании нескольких разновидностей важно знать, как они сочетаются между собой. Активное сопротивление присутствует в любых схемах. Оно способствует превращению части электрической энергии в нагрев. Реактивное сопротивление возникает лишь в цепи переменного тока. Чтобы определить его величину, необходимо из индуктивного вычесть ёмкостное. Эта характеристика показывает энергию, которая пульсирует в цепи, переходя из одной формы в другую.

Расчет полной цепи

Полное сопротивление представляет собой сумму активного и реактивного сопротивления в цепи переменного тока, но такое сложение необходимо выполнять особым образом. Для этого нужно начертить прямоугольный треугольник, катеты в котором должны иметь длину, равную величине активного и реактивного сопротивлений соответственно.

Определение полного сопротивления

Длина гипотенузы будет численно выражать полное сопротивление электрической цепи. Для его определения используется правило, говорящее о том, что сумма квадратов катетов равна квадрату гипотенузы. Это правило называют теоремой Пифагора. Следовательно, формула, с помощью которой можно найти полное сопротивление, выглядит так:

Z = √(R^2+〖(XL-XC)〗^2 ), где

  • Z — полное сопротивление;
  • R — величина активной составляющей;
  • XL и XC — значение индуктивного и емкостного параметра соответственно.

Следовательно, при расчёте полного сопротивления или импеданса нужно учитывать, что такое ёмкость и индуктивность и как они могут проявляться в электрических схемах. Эти  величины называются еще паразитными, так как они могут отрицательно влиять на работу электроприбора. Их возникновение относят к непредсказуемым факторам. При этом емкостным или индуктивным сопротивлением, имеющим небольшое значение, при выполнении расчетов можно пренебречь.

Так выглядит мощная катушка индуктивности

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

polnoe-soprotivlenie-posledovat-rl

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью.        а) – схема цепи; б) – сдвиг фаз тока и напряжения; в) – треугольник напряжений; д) – треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

polnoe-soprotivlenie-formula-1

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-2
(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

polnoe-soprotivlenie-formula-3
(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

polnoe-soprotivlenie-posledovat-rc

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью.                                                а) – схема цепи; б) – треугольник сопротивлений.

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

polnoe-soprotivlenie-formula-4
(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

polnoe-soprotivlenie-posledovat-rlc

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) – схема цепи; б) – треугольник сопротивлений.

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

polnoe-soprotivlenie-formula-5
(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-6
(5)

Или

polnoe-soprotivlenie-formula-7
(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

parallelnoe-soedinenie

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) – параллельное соединение R и L; б) – параллельное соединение R и C.

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

polnoe-soprotivlenie-formula-8
(7)

Приводя к общему знаменателю подкоренное выражение, получим:

polnoe-soprotivlenie-formula-9
(8)

откуда:

polnoe-soprotivlenie-formula-10
(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С будет равно:

polnoe-soprotivlenie-formula-11
(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

kolebatelnyj-kontur

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

polnoe-soprotivlenie-formula-12
(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

polnoe-soprotivlenie-formula-13
(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

polnoe-soprotivlenie-formula-14
(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

polnoe-soprotivlenie-formula-15
(14)

где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

Закон Ома для полной цепи.

Рассмотрим электрическую цепь, состоящую из источника тока и ре­зистора R.

Закон Ома для полной электрической цепи

Закон Ома для полной цепи устанавливает связь между силой тока в цепи, ЭДС и полным сопротивлением цепи, состоя­щим из внешнего сопротивления R и внутреннего сопротивления источ­ника тока r.

Работа сторонних сил Aст источника тока, согласно определению ЭДС (ɛ) равна Aст = ɛq, где q — заряд, перемещенный ЭДС. Согласно определе­нию тока q = It, где t — время, в течение которого переносился заряд. Отсюда имеем:

Aст =ɛIt.

Тепло, выделяемое при совершении работы в цепи, согласно закону Джоуля — Ленца, равно:

Q = I2Rt + I2rt.

Согласно закону сохранения энергии А = Q. Приравнивая (Aст =ɛIt) и (Q = I2Rt + I2rt), получим:

ɛ = IR + Ir.

Закон Ома для замкнутой цепи обычно записывается в виде:

Закон Ома для полной электрической цепи
.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Если цепь содержит несколько последовательно соединенных ис­точников с ЭДС ɛ1, ɛ2, ɛ3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников. Знак ЭДС источника определяется по отношению к направлению обхода контура, который выбирается произвольно, например, на рисунке ниже — против часовой стрелки.

Закон Ома для полной электрической цепи

Сторонние силы внутри источника совершают при этом по­ложительную работу. И наоборот, для цепи справедливо следующее уравнение:

ɛ = ɛ1 + ɛ2 + ɛ3 = | ɛ1| – | ɛ2| -| ɛ3| .

В соответствии с Закон Ома для полной электрической цепи
сила тока положительна при положительной ЭДС — направление тока во внешней цепи совпадает с направлением обхода контура. Полное сопротивление цепи с несколькими источниками равно сумме внешнего и внутренних сопротивлений всех источников ЭДС, например, для рисунка выше:

Rn = R + r1 + r2 + r3.

Как измерить полное электрическое сопротивление

Соединим все детали вместе в простую электрическую цепь. Взглянем на рисунок ниже: это цепь с источником питания постоянного тока. Ток течет через резистор. Весьма просто, верно? Чем больше сопротивление резистора в цепи, тем меньше будет ток.

Простая цепь постоянного тока с резистором

на 100 Ом для ограничения силы тока
Что произойдет, если мы добавим в электрическую цепь источник питания переменного тока, катушку индуктивности и конденсатор? Теперь в цепи есть два дополнительных компонента, каждый из которых по своему оказывает сопротивление электрическому току. Как и резистор, они оба препятствуют прохождению электрического тока, при этом также воздействуют на ток. Если суммировать активное сопротивление резистора и активное и реактивное сопротивления конденсатора и катушки индуктивности, то получится полное электрическое сопротивление или импеданс.

В цепи переменного тока последовательно соединены резистор, катушка индуктивности и конденсатора

Постойте! Чтобы рассчитать полное электрическое сопротивления недостаточно просто сложить активные и реактивные сопротивления. Обычно в большинстве учебных пособий с этого момента начинается изобилие математических формул, поэтому дальше читайте не спеша.

Практическое применение полного электрического сопротивления

Становится понятно, в конце концов, что после всех наших объяснений разобраться, что такое полное электрическое сопротивление, несложно, не так ли? Существуют десятки бесплатных калькуляторов , которые помогут вам выполнить расчеты. Что вам на самом деле нужно – это знать, что полное сопротивление работает так же, как активное сопротивление, ограничивая ток в цепи переменного тока.

Способность таких компонентов, как конденсаторы и катушки индуктивности реагировать на постоянные изменения переменного тока, делает их уникальными. Благодаря полному сопротивлению в вашей цепи можно организовать нечто похожее на электрический щит с защитными автоматами, которые реагируют на неожиданные скачки электричества, защищая от выгорания домашнюю электропроводку. Можно также сказать спасибо полному сопротивлению за то, что вы можете носить с собой ноутбук с полностью заряженным аккумулятором, не опасаясь его взрыва.

Когда дело доходит до работы с устройствами с питанием от источника переменного тока, будь то ноутбук или электрощит в вашем доме, стоит быть благодарным полному электрическому сопротивлению. И помните, полное электрическое сопротивление – это просто старший брат привычного активного сопротивления, который объединяет активное и реактивное сопротивления в одной простой формуле.

Расчет полного электрического сопротивления конденсатора

Чтобы найти полное электрическое сопротивление конденсатора, вы можете воспользоваться следующей формулой. В ней Xc – полное электрическое сопротивление, которое необходимо найти. Оно измеряется в Омах. Переменная f – это частота сигнала, проходящего через конденсатор, а C – емкость конденсатора.

Расчёт индуктивного сопротивления катушки

Любая индуктивность, в т.ч. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.

Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:

где:

  • u0 – магнитная проницаемость вакуума – 4p*10-7 Гн/м;
  • ur – относительная проницаемость сердечника;
  • N – количество витков дросселя;
  • S – его поперечное сечение в м2;
  • l – длина катушки в метрах.

Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.

Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.

Калькулятор импеданса катушки индуктивности

Scheme

Калькулятор определяет импеданс катушки индуктивности для заданной частоты синусоидального сигнала. Определяется также угловая частота.

Пример. Рассчитать импеданс катушки индуктивности 10 мкГн на частоте 25 МГц.

Введите значения индуктивности и частоты, выберите единицы измерения и нажмите кнопку Рассчитать. Для ввода значения бесконечность наберите inf.

Отметим, что величина импеданса идеальной катушки индуктивности равна ее реактивному сопротивлению. Однако это не идентичные величины, так как между током и напряжением в индуктивной цепи существует фазовый сдвиг. Для расчетов используются указанная ниже формула:

Formula

Formula

Здесь

XL — реактивное сопротивление катушки в омах (Ом),

ZL — импеданс катушки в омах (Ом),

ω = 2πf — угловая частота в рад/с,

f — частота в герцах (Гц),

L — индуктивность в генри (Гн),

j — мнимая единица.

Для расчета выберите единицы измерения и введите индуктивность и частоту. Импеданс катушки индуктивности будет показан в омах.

Катушка индуктивности представляет собой пассивный электрический элемент с двумя выводами, изготовленный, как правило, из изолированного провода в форме спирали, намотанного на магнитный сердечник или на оправку (без сердечника). Магнитный сердечник обычно изготовляется из ферромагнитного металла, например, железа или ферромагнитной керамики (феррита) и используется для усиления магнитного поля и, таким образом, для увеличения индуктивности катушки. Как и конденсаторы, катушки индуктивности используются для накопления и сохранения энергии. Однако, в отличие от конденсаторов, энергия в катушке хранится в форме окружающего ее магнитного поля. Катушки индуктивности применяются, в частности, в фильтрах для сглаживания постоянного тока или для предотвращения передачи высокочастотных помех по кабелям. Катушки индуктивности широко используются в колебательных контурах радиопередатчиков и радиоприемников, а также для изготовления трансформаторов.

Высокодобротная катушка индуктивности без сердечника, установленная в радиопередатчике

В отличие от конденсаторов, которые препятствуют изменению напряжения, приложенного к их обкладкам, катушки индуктивности препятствуют изменению текущего в них тока. В отличие от конденсаторов, которые не пропускают постоянный ток, катушки индуктивности пропускают его легко. Они препятствуют только прохождению переменного тока или иного изменяющегося тока и их способность препятствовать прохождению тока и называется индуктивностью. Индуктивность обозначается символом L в честь российского физика Эмиля Ленца и измеряется в генри — единицах, названных в честь американского ученого Джозефа Генри.

В отличие от резисторов, которые препятствуют прохождению электрического тока вследствие падения напряжения на них, пропорционального протекающему току, катушки индуктивности препятствуют изменению протекающего через них тока. На них создается падение напряжения, прямо пропорциональное скорости изменения тока. Полярность индуцированного напряжения всегда такова, что это напряжение поддерживает изменяющийся ток в его текущем состоянии. Например, если ток растет, то напряжение препятствует этому росту и старается уменьшить ток. В то же время, если ток через катушку уменьшается, напряжение мешает этому уменьшению и поддерживает более высокий ток. Чем выше скорость изменения тока, тем больше амплитуда этого обратного напряжения. В связи с указанным свойством, это напряжение часто называют индуктивными выбросами или обратным током. Для того, чтобы как-то отличить это свойство от сопротивления, используют понятие реактивного сопротивления. Если к катушке индуктивности приложено синусоидальное напряжение, то при бóльших частотах катушка оказывает току большее сопротивление, следовательно, ее реактивное сопротивление также увеличивается, как показано на графике.

График зависимости реактивного сопротивления катушки XL индуктивности и текущего через нее тока I от частоты f для нескольких величин индуктивности показывает прямую пропорциональную зависимость от частоты реактивного сопротивления и обратную зависимость от частоты протекающего через катушку тока

Полное сопротивление Z, как и реактивное сопротивление, измеряется в омах (Ом) и состоит из двух частей — действительной и мнимой. Первая из них представляет собой активное сопротивление R, которое затрудняет протекание тока в материале с плохой проводимостью и зависит от формы этого материала. Вторая часть — это рассмотренное выше реактивное сопротивление X. Оно также затрудняет протекание тока, но не вследствие свойств и формы проводящего материала, а из-за того, что протеканию тока мешает электрическое и магнитное поля.

Если реальная катушка индуктивности подключена к источнику постоянного напряжения, через нее протекает постоянный ток, ограниченный только сопротивлением провода, из которого намотана катушка. Когда катушка подключается к источнику постоянного напряжения, ток через нее медленно повышается от нуля до максимального значения, которое определяется внутренним сопротивлением источника и внутренним сопротивлением витков катушки. ЭДС самоиндукции, возникающая в катушке, препятствует резкому увеличению тока в ней. Эта ЭДС противодействует приложенному напряжению до тех пор, пока ток не достигнет максимального значения.

Если источник постоянного напряжения отключить от катушки, протекающий через нее ток постепенно падает до нуля. В этом случае опять возникает ЭДС самоиндукции, которая снова препятствует, на этот раз, уменьшению тока и которая старается поддержать ток в неизменном состоянии. В конце концов, ток постепенно уменьшается до нуля.

В чисто индуктивной цепи ток отстает от напряжения на π/2 радиан или 90°. 1 — в момент отрицательного максимума тока скорость его изменения нулевая и напряжение равно нулю; 2 — ток нулевой, скорость его изменения максимальная и напряжение равно положительному максимуму; 3 — ток положительный и максимальный, скорость его изменения нулевая и напряжение равно нулю; 4 — ток нулевой, скорость его изменения максимальная и напряжение равно отрицательному максимуму

Если к катушке индуктивности приложено переменное синусоидальное напряжение, ток отстает от напряжения на некоторый фазовый угол, как показано на графике. В идеальной катушке индуктивности этот угол будет равен точно 90° или четверти цикла. В точке (ωt = π/2), временнóй оси, где ток нулевой, напряжение на катушке достигает своего положительного максимума. Затем ток постепенно увеличивается и вокруг катушки создается магнитное поле, которое, в свою очередь, создает ЭДС самоиндукции, направленную противоположно току. Эта ЭДС является реакцией катушки на изменение протекающего через нее тока, и она максимальна, когда ток нулевой, так как в этой точке скорость изменения тока максимальная. Когда же ток достигает своего максимального значения (положительного или отрицательного), скорость изменения синусоидального тока становится нулевой и в этих точках максимумов ток ЭДС самоиндукции (определяемая этой скоростью) также равна нулю. Это приводит к тому, что синусоида напряжения не совпадает по фазе с током на угол 90° или π/2 радиан. То есть, напряжение опережает ток или ток отстает от напряжения.

Аналогичное явление можно наблюдать и в природе. Сравните: Солнце светит сильнее всего в астрономический полдень (солнечный свет — напряжение), однако самая жаркая часть дня обычно бывает через несколько часов после полудня (температура — ток). Или другой пример. День зимнего солнцестояния в северном полушарии (самый короткий день) — в конце декабря, однако самые холодные месяцы еще впереди. В зависимости от того, где вы живете, это будет январь или февраль. Вспомните поговорку «Солнце — на лето, зима — на мороз». Это как раз о поведении индуктивности, только в природной аналогии. Такой сезонный «сдвиг фаз» или отставание вызван поглощением энергии Солнца огромными массами воды в океанах. Они отдадут эту запасенную энергию, но позже — точно так же, как это делают катушки индуктивности.

День зимнего солнцестояния в северном полушарии — в конце декабря, однако самые холодные месяцы еще впереди. Именно так ведет себя ток в катушке индуктивности

Рассчитанный этим калькулятором импеданс представляет собой меру сопротивления катушки индуктивности протекающему через нее току на определенной частоте. Индуктивное реактивное сопротивление изменяется при изменении частоты приложенного переменного напряжения. Приведенные выше формула и график показывают, что реактивное сопротивление катушки индуктивности XL велико при высоких частотах и мало при низких частотах (конденсаторы ведут себя с точностью до наоборот). При высоких частотах индуктивное реактивное сопротивление становится очень большим и очень сильно противодействует протекающему току. С другой стороны, при очень низких частотах или при постоянном напряжении катушка индуктивности проводит очень хорошо — отсюда правило, которое мы выучили в школе: катушки индуктивности не пропускают переменный ток и пропускают постоянный. Если частота очень низкая, катушки индуктивности пропускают сигнал очень хорошо. Именно поэтому их устанавливают в фильтрах громкоговорителей (кроссоверах), чтобы высокие частоты не попадали на низкочастотные динамические головки.

Импеданс измеряется в омах, так же, как и сопротивление. Импеданс мешает прохождению электрического тока так же, как и сопротивление, и показывает как сильно катушка противодействует прохождению тока через нее. Но тогда возникает вопрос: в чем же разница между импедансом и сопротивлением? А разница заключается в зависимости импеданса от частоты приложенного сигнала. Сопротивление от частоты не зависит, а импеданс катушек индуктивности от частоты зависит. С увеличением частоты импеданс катушек уменьшается.

Этот калькулятор предназначен для расчета импеданса идеальных катушек индуктивности. Реальные катушки всегда имеют сопротивление, которое на эквивалентной схеме изображают включенным последовательно с индуктивностью. Для расчета импеданса реальных катушек индуктивности пользуйтесь калькулятором импеданса RL-цепей.

Катушки индуктивности в высокочастотном модуле телевизионного приемника

Предыдущая

РазноеЧто такое фазное и линейное напряжение?

Следующая

РазноеБлуждающие токи и способы борьбы с ними

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току – Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

cepi-peremennogo-toka

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

polnoe-soprotivlenie-posledovat-rl

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью.        а) – схема цепи; б) – сдвиг фаз тока и напряжения; в) – треугольник напряжений; д) – треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

polnoe-soprotivlenie-formula-1

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-2                                      (1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

polnoe-soprotivlenie-formula-3                                       (2)

 Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

polnoe-soprotivlenie-posledovat-rc

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью.                                                а) – схема цепи; б) – треугольник сопротивлений.

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

polnoe-soprotivlenie-formula-4(3)

 В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

polnoe-soprotivlenie-posledovat-rlc

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) – схема цепи; б) – треугольник сопротивлений.

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

polnoe-soprotivlenie-formula-5                           (4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-6                                     (5)

Или

polnoe-soprotivlenie-formula-7                         (6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

parallelnoe-soedinenie

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) – параллельное соединение R и L; б) – параллельное соединение R и C.

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

polnoe-soprotivlenie-formula-8                       (7)

Приводя к общему знаменателю подкоренное выражение, получим:

polnoe-soprotivlenie-formula-9  (8)

 откуда:

polnoe-soprotivlenie-formula-10                              (9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

polnoe-soprotivlenie-formula-11                             (10)

 Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

kolebatelnyj-kontur

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

 polnoe-soprotivlenie-formula-12                  (11)

 Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

 polnoe-soprotivlenie-formula-13(12)

 В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

 polnoe-soprotivlenie-formula-14                                    (13)

 При соблюдении этого условия полное сопротивление колебательного контура будет равно:

 polnoe-soprotivlenie-formula-15                                    (14)

 где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Рассматривая цепь переменного тока, содержащую только индуктивное сопротивление (смотрите статью “Катушка индуктивности в цепи переменного тока”), мы предполагали равным нулю активное сопротивление этой цепи.

Однако в действительности как провод самой катушки, так и соединительные провода обладают хотя и небольшим, но активным сопротивлением, поэтому цепь неизбежно потребляет энергию источника тока.

Поэтому при определении общего сопротивления внешней цепи нужно складывать ее реактивное и активное сопротивления. Но складывать эти два различных по своему характеру сопротивления нельзя.

В этом случае полное сопротивление цепи переменному току находят путем геометрического сложения.

Строят прямоугольный треугольник (см. рисунок 1) одной стороной которого служит величина индуктивного сопротивления, а другой — величина активного сопротивления. Искомое полное сопротивление цепи определится третьей стороной треугольника.

Рисунок 1. Определение полного сопротивления цепи, содержащей индуктивное и активное сопротивление

Полное сопротивление цепи обозначается латинской буквой Z и измеряется в омах. Из построения видно, что полное сопротивление всегда больше индуктивного и активного сопротивлений, отдельно взятых.

Алгебраическое выражение полного сопротивления цепи имеет вид:

где Z — общее сопротивление, R — активное сопротивление, X L — индуктивное сопротивление цепи.

Таким образом, полное сопротивление цепи переменному току, состоящей из активного и индуктивною сопротивлений, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений этой цепи.

Закон Ома для такой цепи выразится формулой I = U / Z , где Z — общее сопротивление цепи.

Разберем теперь, какое будет напряжение, если цепь, кроме и и сдвиг фаз между током и на индуктивности, обладает также сравнительно большим активным сопротивлением. На практике такой цепью может служить, например, цепь, содержащая катушку индуктивности без железного сердечника, намотанную из тонкой проволоки (дроссель высокой частоты).

В этом случае сдвиг фаз между током и напряжением составит уже не четверть периода (как это было в цепи только с индуктивным сопротивлением), а значительно меньше; причем чем больше будет активное сопротивление, тем меньший получится сдвиг фаз.

Рисунок 2. Ток и напряжение в цепи, содержащей R и L

Теперь и сама ЭДС самоиндукции не находится в противофазе с напряжением источника тока, так как сдвинута относительно напряжения уже не на половину периода, а меньше. Кроме того, напряжение, создаваемое источником тока на зажимах катушки, не равно ЭДС самоиндукции, а больше нее на величину падения напряжения в активном сопротивлении провода катушки. Иначе говоря, напряжение на катушке состоит как бы из двух слагающих:

uL— реактивной слагающей напряжения, уравновешивающей действие ЭДС самоиндукции,

uR — активной слагающей напряжения, идущей на преодоление активного сопротивления цепи.

Если бы мы включили в цепь последовательно с катушкой большое активное сопротивление, то сдвиг фаз настолько бы уменьшился, что синусоида тока почти догнала бы синусоиду напряжения и разность фаз между ними была бы едва заметна. В этом случае амплитуда слагающей и, была бы больше амплитуды слагающей.

Точно так же можно уменьшить сдвиг фаз и даже совсем свести его к нулю, если уменьшить каким-либо способом частоте генератора. Уменьшение частоты приведет к уменьшению ЭДС самоиндукции, а следовательно, и к уменьшению вызываемого ею сдвига фаз между током и напряжением в цепи.

Мощность цепи переменного тока, содержащей катушку индуктивности

Цепь переменного тока, содержащая катушку, не потребляет энергии источника тока и что в цепи происходит процесс обмена энергией между генератором и цепью.

Разберем теперь, как будет обстоять дело с мощностью, потребляемой такой цепью.

Мощность, потребляемая в цепи переменного тока, равна произведению тока на напряжение, но так как ток и напряжение есть переменные величины, то и мощность будет также переменной. При этом значение мощности для каждого момента времени мы сможем определить, если умножим величину тока на величину напряжения, соответствующую данному моменту времени.

Чтобы получить график мощности, мы должны перемножить величины отрезков прямых линий, определяющие ток и напряжение в различные моменты времени. Такое построение и приведено на рис. 3, а. Пунктирная волнообразная кривая р показывает нам, как изменяется мощность в цепи переменного тока, содержащей только индуктивное сопротивление.

При построении этой кривой использовалось следующее правило алгебраического умножения : при умножении положительной величины на отрицательную получается отрицательная величина, а при перемножении двух отрицательных или двух положительных — положительная величина.

Рисунок 3. Графики мощности: а — в цепи содержащей индуктивное сопротивление, б — тоже, активное сопротивление

Рисунок 4. График мощности для цепи, содержащей R и L

Кривая мощности в этом случае расположена выше оси времени. Это значит, что обмена энергией между генератором и цепью не происходит, а следовательно, мощность, отдаваемая генератором в цепь, полностью потребляется цепью.

На рис. 4 изображен график мощности для цепи, содержащей в себе одновременно индуктивное и активное сопротивления. В этом случае также происходит обратный переход энергии из цепи к источнику тока, однако в значительно меньшей степени, чем в цепи с одним индуктивным сопротивлением.

Рассмотрев приведенные выше графики мощности, мы приходим к выводу, что только сдвиг фаз между током и напряжением в цепи создает “отрицательную” мощность. При этом, чем больше будет сдвиг фаз между током и напряжением в цепи тем потребляемая цепью мощность будет меньше, и, наоборот, чем меньше сдвиг фаз, тем потребляемая цепью мощность будет больше.

Полное сопротивление — катушка

Полное сопротивление катушки току высокой частоты на длинных и средних волнах определяется суммой: сопротивления провода току высокой частоты, внесенного сопротивления диэлектрических потерь в каркасе и внесенного сопротивления потерь в экранах и сердечниках. [1]

Полное сопротивление катушек , из которых составлен мост ( фиг. [2]

Полное сопротивление Zt катушки является гипотенузой прямоугольного треугольника. [3]

Полное сопротивление катушки Z с индуктивностью L4 2 мГн составляет 100 Ом. Катушка подключена к источнику переменного тока с частотой / 2500 Гц и действующим значением напряжения / 150 В. Определить емкость конденсатора, включаемого параллельно катушке, для получения в цепи резонанса токов, действу-щие значения токов во всех ветвях, полную потребляемую при этом мощность, коэффициент мощности. [4]

Полное сопротивление катушки Z с индуктивностью L 4 2 мГн составляет 100 Ом. Определить емкость конденсатора, включаемого параллельно катушке, для получения в цепи резонанса токов, действующие значения токов во всех ветвях, полную потребляемую при этом мощность, коэффициент мощности. [5]

Так как полное сопротивление катушки переменному току значительно превосходит сопротивление постоянному току, то для получения достаточно определенных результатов к обмотке возбуждения подводят более высокое напряжение переменного тока или же питают поочередно часть катушек. При питании дефектной катушки переменным током наблюдается но только уменьшение падения напряжения на ее зажимах, но и сильное разогревание короткозамкнутых витков, охватывающих переменный магнитный поток. [6]

Так как полное сопротивление катушки переменному току значительно превосходит сопротивление постоянному току, то для получения достаточно определенных результатов к обмотке возбуждения подводят более высокое напряжение переменного тока или же питают поочередно часть катушек. При питании дефектной катушки переменным током наблюдается не только уменьшение падения напряжения на ее зажимах, но и сильное разогревание короткозамкнутых витков, охватывающих переменный магнитный поток. [8]

Так как полное сопротивление катушки для переменного тока значительно превосходит сопротивление для постоянного то & а, то для получения достаточно определенных результатов к обмотке подводят более высокое напряжение переменного тока или же питают поочередно часть катушек. При питании дефектной катушки переменным током наблюдается не только уменьшение падения напряжения на ее зажимах-но и сильное разогревание короткозамкнутых витков, пронизываемых переменным магнитным потоком. [9]

Так как полное сопротивление катушки для переменного тока значительно превосходит сопротивление для постоянного тока, то для получения достаточно определенных результатов к обмотке подводят более высокое напряжение переменного тока или же питают поочередно часть катушек. При питании дефектной катушки переменным током наблюдается не только уменьшение падения напряжения на. [10]

Трещины влияют на полное сопротивление катушки так же, как уменьшение электропроводности и изменение зазора одновременно. [12]

Как было выяснено ранее, полное сопротивление катушки с ферромагнитным сердечником зависит от действующего значения напряжения или тока. Для некоторых электротехнических устройств необходима катушка с неизменной или произвольно регулируемой индуктивностью; такие катушки применяются, например, в фильтрах выпрямителей и сварочных агрегатах. В ряде устройств ( электрические машины, индукционные датчики, звукозаписывающие головки и др.) необходимость воздушного зазора определяется принципом их действия. [14]

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2 ) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

(5)

(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

(7)

Приводя к общему знаменателю подкоренное выражение, получим:

(8)

(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

(14)

где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Добавить комментарий