Как найти полное сопротивление смешанной цепи

Смешанное соединение резисторов. Расчет смешанного соединения

26 Ноя 2018г | Раздел: Радио и Электрика начинающим

Здравствуйте, уважаемые читатели сайта sesaga.ru. Смешанное соединение резисторов представляет собой сложную электрическую цепь, в которой часть резисторов соединена последовательно, а часть параллельно.

Схема смешанного соединения резисторов

В радиолюбительской практике такое включение резисторов встретить трудно, так как нет смысла подбирать сопротивление таким сложным способом. Достаточно соединить два, ну максимум три резистора последовательно или параллельно, чтобы подобрать нужный номинал.

Смешанное соединение встречается в основном в учебниках физики или электротехники в виде задач. Мне вспоминается такая задачка из школьной программы, но тогда она мне показалась сложной и правильно решить ее не получилось.

И вот, исходя из полученного опыта, хочу рассказать Вам, как вычислить общее сопротивление смешанного соединения резисторов. Вдруг кому-нибудь в жизни да и пригодится.

Расчет смешанного соединения резисторов.

Расчет начинают от дальнего участка цепи по отношению к источнику питания.
Определяют участок с параллельным или последовательным соединением двух резисторов и высчитывают их общее сопротивление Rобщ. Затем полученное сопротивление складывают с рядом стоящим резистором и т.д.

Суть данного метода заключается в уменьшении количества элементов в цепи с целью упрощения схемы и, соответственно, упрощению расчета общего сопротивления.

Разберем схему смешанного соединения из семи резисторов:

Схема смешанного соединения из семи резисторов

Самым дальним участком схемы оказались резисторы R6 и R7, соединенные параллельно:

Параллельное соединение резисторов R6 и R7

Вычисляем их общее сопротивление используя формулу параллельного соединения:

Параллельное R6 и R7

Теперь если сравнить первоначальную схему с получившейся, то здесь мы видим, что она уменьшилась на один элемент и вместо двух резисторов R6 и R7 остался один R6 с суммарным сопротивлением равным 30, 709 кОм.

Последовательное соединение-R5-R6

Продолжим расчет и следующим дальним участком схемы оказались резисторы R5 и R6, соединенные последовательно:

Определяем соединение резисторов R5-R6

Вычисляем их общее сопротивление используя формулу последовательного соединения. Сопротивление резистора R5 составляет 27 Ом, а R6 = 30,709 кОм, поэтому для удобства расчета килоомы переводим в Омы (1 кОм = 1000 Ом):

Расчет последовательного соединения R5 и R6

Схема уменьшилась еще на один элемент и приняла вид:

Параллельное соединение R4-R5

Теперь дальним участком оказались резисторы R4 и R5 соединенные параллельно:

Определяем соединение резисторов R4 и R5

Вычисляем их общее сопротивление:

Расчет параллельного соединения R4 и R5

Первоначальная схема опять изменилась и теперь состоит всего из четырех резисторов соединенных последовательно. Таким образом мы максимально упростили схему и привели ее к удобному расчету.

Последовательное соединение R1-R4

Теперь все просто. Складываем сопротивления оставшихся четырех резисторов, используя формулу последовательного соединения, и получаем общее сопротивление всей цепи:

Rобщ - последовательное соединение

Вот в принципе и все, что хотел сказать о смешанном соединении резисторов и расчете смешанного соединения.
Удачи!

Поделиться с друзьями:

Смешанное соединение проводников. Расчёт электрических цепей

Повторение. Факты про последовательное и параллельное соединение проводников.

1. При по­сле­до­ва­тель­ном со­еди­не­нии про­вод­ни­ков общее со­про­тив­ле­ние участ­ка равно сумме со­про­тив­ле­ний про­вод­ни­ков:

 

2. При по­сле­до­ва­тель­ном со­еди­не­нии про­вод­ни­ков силы тока в каж­дом из про­вод­ни­ков равны и равны общей силе тока на участ­ке цепи:

 

3. При по­сле­до­ва­тель­ном со­еди­не­нии про­вод­ни­ков сумма на­пря­же­ний равна об­ще­му на­пря­же­нию на участ­ке цепи:

 

4. При па­рал­лель­ном со­еди­не­нии про­вод­ни­ков общая про­во­ди­мость участ­ка равна сумме про­во­ди­мо­стей про­вод­ни­ков:

 

5. При па­рал­лель­ном со­еди­не­нии про­вод­ни­ков сумма сил токов равна общей силе тока на участ­ке цепи:

 

6. При па­рал­лель­ном со­еди­не­нии про­вод­ни­ков на­пря­же­ния в каж­дом из про­вод­ни­ков равны и равны об­ще­му на­пря­же­нию на участ­ке цепи:

 

Задача 1

Че­ты­ре оди­на­ко­вые лампы под­клю­че­ны к ис­точ­ни­ку по­сто­ян­но­го на­пря­же­ния (см. Рис. 1). Опре­де­ли­те силу тока в каж­дой лампе, если на­пря­же­ние на ис­точ­ни­ке со­став­ля­ет 30 В.

Дано: ;

Найти: , , ,

Ре­ше­ние

Задача Че­ты­ре оди­на­ко­вые лампы под­клю­че­ны к ис­точ­ни­ку по­сто­ян­но­го на­пря­же­ния (см. Рис. 1). Опре­де­ли­те силу тока в каж­дой лампе, если на­пря­же­ние на ис­точ­ни­ке со­став­ля­ет 30 В

Рис. 1. Ил­лю­стра­ция к за­да­че

На ри­сун­ке 1 изоб­ра­же­на элек­три­че­ская цепь со сме­шан­ным со­еди­не­ни­ем про­вод­ни­ков: лампы 2 и 3 со­еди­не­ны па­рал­лель­но, а лампы 2 и 4 со­еди­не­ны по­сле­до­ва­тель­но с участ­ком цепи, со­сто­я­щим из ламп 2 и 3.

Про­во­ди­мость участ­ка цепи, со­сто­я­ще­го из ламп 2 и 3, равна:

 

Сле­до­ва­тель­но, со­про­тив­ле­ние этого участ­ка равно:

 

Так как лампы 1 и 4 со­еди­не­ны по­сле­до­ва­тель­но с участ­ком цепи, со­сто­я­щим из ламп 2 и 3, то общее со­про­тив­ле­ние ламп будет равно:

 

Со­глас­но за­ко­ну Ома, сила тока всей цепи равна:

 

Так как при по­сле­до­ва­тель­ном со­еди­не­нии про­вод­ни­ков силы тока в каж­дом из про­вод­ни­ков равны и равны общей силе тока на участ­ке цепи, то:

 

Необ­хо­ди­мо найти силу тока на лам­пах 2 и 3. Для этого вы­чис­лим на­пря­же­ние на участ­ке цепи, ко­то­рый со­сто­ит из ламп 2 и 3:

 

Так как лампы 2 и 3 со­еди­не­ны па­рал­лель­но, то на­пря­же­ния на этих лам­пах равны:

 

От­сю­да сила тока в каж­дой лампе равна:

 

 

Ответ:  ;  

Задача 2

Уча­сток цепи, ко­то­рый со­сто­ит из че­ты­рёх ре­зи­сто­ров, под­клю­чён к ис­точ­ни­ку с на­пря­же­ни­ем 40 В (см. Рис. 2). Вы­чис­ли­те силу тока в ре­зи­сто­рах 1 и 2, на­пря­же­ние на ре­зи­сто­ре 3. Со­про­тив­ле­ние пер­во­го ре­зи­сто­ра равно 2,5 Ом, вто­ро­го и тре­тье­го – по 10 Ом, чет­вёр­то­го – 20 Ом.

Дано: ; ; ;

Найти: , ,

Ре­ше­ние

Задача Вы­чис­ли­те силу тока в ре­зи­сто­рах 1 и 2, на­пря­же­ние на ре­зи­сто­ре 3

Рис. 2. Ил­лю­стра­ция к за­да­че

Через ре­зи­стор  течёт такой же ток, как и через весь уча­сток (), сле­до­ва­тель­но, со­глас­но за­ко­ну Ома:

 

То есть для на­хож­де­ния  нужно вы­чис­лить со­про­тив­ле­ние (R) всего участ­ка цепи, ко­то­рый со­сто­ит из двух по­сле­до­ва­тель­но под­клю­чён­ных ча­стей, одна часть с ре­зи­сто­ром , дру­гая часть с ре­зи­сто­ра­ми :

 

Ре­зи­стор  со­еди­нён па­рал­лель­но ре­зи­сто­рам  и , сле­до­ва­тель­но:

 

Ре­зи­сто­ры  и  со­еди­не­ны по­сле­до­ва­тель­но, по­это­му:

 

 

 

Сле­до­ва­тель­но, со­про­тив­ле­ние всей цепи равно:

 

Под­ста­вим дан­ное зна­че­ние в фор­му­лу для на­хож­де­ния тока в ре­зи­сто­ре :

 

Так как при па­рал­лель­ном со­еди­не­нии про­вод­ни­ков на­пря­же­ния в каж­дом из про­вод­ни­ков равны и равны об­ще­му на­пря­же­нию на участ­ке цепи, то:

 

От­сю­да:

 

 

 

При по­сле­до­ва­тель­ном со­еди­не­нии силы тока оди­на­ко­вы, по­это­му:

 

По­лу­чи­ли си­сте­му урав­не­ний:

 

Решив эту си­сте­му по­лу­чим, что:

 

 

Так как  и  со­еди­не­ны по­сле­до­ва­тель­но:

 

На­пря­же­ние на ре­зи­сто­ре  равно:

 

Ответ: ;  ;  

Задача 3

Най­ди­те пол­ное со­про­тив­ле­ние цепи (см. Рис. 3), если со­про­тив­ле­ние ре­зи­сто­ров , , . Най­ди­те силу тока, иду­ще­го через каж­дый ре­зи­стор, если к цепи при­ло­же­но на­пря­же­ние 36 В.

Дано: ; ; ;

Найти: , , , , , , ;

Ре­ше­ние

Задача Най­ди­те пол­ное со­про­тив­ле­ние цепи, силу тока, идущего через каждый резистор

Рис. 3. Ил­лю­стра­ция к за­да­че

Ре­зи­сто­ры , ,  со­еди­не­ны по­сле­до­ва­тель­но, по­это­му со­про­тив­ле­ние на этом участ­ке равно:

 

Ре­зи­стор  под­клю­чён па­рал­лель­но участ­ку с ре­зи­сто­ра­ми , , , по­это­му со­про­тив­ле­ние на участ­ке с ре­зи­сто­ра­ми ,, ,  равно:

 

Ре­зи­сто­ры  и  со­еди­не­ны с участ­ком цепи с ре­зи­сто­ра­ми ,, ,  по­сле­до­ва­тель­но, то есть общее со­про­тив­ле­ние цепи равно:

 

Через ре­зи­стор  и   () нераз­ветв­лён­ной цепи течёт весь ток цепи, по­это­му:

 

По за­ко­ну Ома этот ток равен:

 

Общее на­пря­же­ние цепи будет со­сто­ять из на­пря­же­ний , так как ,,  со­еди­не­ны по­сле­до­ва­тель­но (, по­то­му что  и  па­рал­лель­ны):

 

 

Со­глас­но за­ко­ну Ома:

 

Ре­зи­сто­ры , ,  со­еди­не­ны по­сле­до­ва­тель­но, сле­до­ва­тель­но:

 

Ответ: ; ;  

Разветвление: Задача на бесконечную электрическую цепь

Най­ди­те со­про­тив­ле­ние R бес­ко­неч­ной цепи, по­ка­зан­ной на ри­сун­ке 4.

Задача на бесконечную электрическую цепь

Рис. 4. Ил­лю­стра­ция к за­да­че

Ре­ше­ние

По­сколь­ку рас­смат­ри­ва­е­мая в за­да­че цепь бес­ко­неч­на, уда­ле­ние одной «ячей­ки», со­сто­я­щей из ре­зи­сто­ров  и , не вли­я­ет на её со­про­тив­ле­ние. Сле­до­ва­тель­но, вся цепь, на­хо­дя­ща­я­ся пра­вее звена , тоже имеет со­про­тив­ле­ние R. Это поз­во­ля­ет на­ри­со­вать эк­ви­ва­лент­ную схему цепи (см. Рис. 5) и за­пи­сать для неё урав­не­ние.

эк­ви­ва­лент­ная схема цепи на бесконечную электрическую цепь

Рис. 5. Ил­лю­стра­ция к за­да­че

 

 

По­лу­чи­ли квад­рат­ное урав­не­ние от­но­си­тель­но R. Решая это урав­не­ние и от­бра­сы­вая от­ри­ца­тель­ный ко­рень (от­ри­ца­тель­но­го со­про­тив­ле­ния не су­ще­ству­ет), по­лу­ча­ем фор­му­лу для об­ще­го со­про­тив­ле­ния цепи:

 

Про­ана­ли­зи­ро­вав дан­ную фор­му­лу, можно за­ме­тить, что если , то общее со­про­тив­ле­ние цепи . То есть ре­зи­стор с малым со­про­тив­ле­ние  прак­ти­че­ски за­ко­ро­тит всю по­сле­ду­ю­щую бес­ко­неч­ную цепь.

Ответ:

Итоги

Мы рас­смот­ре­ли раз­лич­ные за­да­чи на сме­шан­ное со­про­тив­ле­ние про­вод­ни­ков, а также на рас­чёт элек­три­че­ских цепей.

Разветвление: Задача из ЕГЭ

Со­про­тив­ле­ние каж­до­го ре­зи­сто­ра в цепи (см. Рис. 6) равно 100 Ом. Уча­сток под­клю­чён к ис­точ­ни­ку по­сто­ян­но­го на­пря­же­ния вы­во­да­ми AиB. На­пря­же­ние на ре­зи­сто­ре  равно 12 В. Найти на­пря­же­ние между вы­во­да­ми схемы на участ­ке A–B(ва­ри­ан­ты от­ве­та: а) 12 В; б) 18 В; в) 24 В; г) 36 В.

Дано: ;

Найти:

Ре­ше­ние

Задача из ЕГЭ

Рис. 6. Ил­лю­стра­ция к за­да­че

Ре­зи­сто­ры  рас­по­ло­же­ны по­сле­до­ва­тель­но, зна­чит, силы тока на этих ре­зи­сто­рах равны:

 

Так как, по усло­вию, , то и на­пря­же­ния на этих ре­зи­сто­рах будут равны:

 

Сле­до­ва­тель­но, общее на­пря­же­ния на участ­ке, со­сто­я­щем из ре­зи­сто­ров , будет равно:

 

Так как уча­сток с ре­зи­сто­ра­ми  со­еди­нён с участ­ком с ре­зи­сто­ра­ми  па­рал­лель­но, то на­пря­же­ния на этих участ­ках равны между собой и равны об­ще­му на­пря­же­нию на участ­ке A–B:

 

Ответ: г) 36 В

Дан­ную за­да­чу, как видим, можно ре­шить, не зная зна­че­ний со­про­тив­ле­ния, а зная толь­ко то, что они равны. Также эту за­да­чу можно ре­шить, зная зна­че­ние со­про­тив­ле­ний , даже если они не равны.

Вопросы к конспектам

Уча­сток элек­три­че­ской цепи со­сто­ит из трех со­про­тив­ле­ний: ; ;  (см. Рис. 7). Опре­де­ли­те по­ка­за­ния вольт­мет­ров  и ам­пер­мет­ров , если ам­пер­метр  по­ка­зы­ва­ет силу тока 2 А.

Ил­лю­стра­ция к Домашнему заданию

Рис. 7. Ил­лю­стра­ция к за­да­че

Как нужно со­еди­нить че­ты­ре ре­зи­сто­ра, со­про­тив­ле­ния ко­то­рых 0,5 Ом, 2 ОМ, 3,5 Ом и 4 Ом, чтобы их общее со­про­тив­ле­ние было 1 Ом?

Все разнообразие схем построено на двух типах соединения — параллельном и последовательном. Для разных соединений действуют разные законы, что и дает возможность создания устройств с различными характеристиками. Рассмотрим последовательное и параллельное соединение резисторов.

Содержание статьи

  • 1 Что такое резистор и для чего он нужен
  • 2 Последовательное соединение сопротивлений
    • 2.1 Теоретическая часть
    • 2.2 Примеры расчета
  • 3 Параллельное соединение резисторов
    • 3.1 Теория и законы параллельного соединения
    • 3.2 Примеры расчета параллельного соединения сопротивлений
  • 4 Смешанное соединение
  • 5 Практическое применение параллельного и последовательного соединения резисторов

Что такое резистор и для чего он нужен

Резистор — это радиоэлемент, который увеличивает сопротивление цепи. Ставят его обычно для того, чтобы понизить/ограничить напряжение или ток. Есть сопротивления постоянные и переменные.

Например, светодиоды требуют небольшого тока, иначе перегревается и быстро выходит из строя. Чтобы ограничить ток, перед светодиодом поставьте сопротивление. Ток в цепи станет меньше.

Для чего ставят сопротивления

Для чего нужны резисторы: для подстройки параметров питания

Постоянные сопротивления — это те, которые не меняют своего номинала в процессе работы. Если это и происходит, то считается выходом из строя.

Внешний вид резисторов переменных и постоянных

Так выглядят переменные и постоянные резисторы

Переменные резисторы, наоборот, отличаются тем, что их сопротивление можно изменять. Они имеют бегунок или поворотную ручку, при помощи которых и изменяется номинал. На основе таких устройств делают регуляторы. Например, регулятор громкости, накала греющего элемента и т.д.

Последовательное соединение сопротивлений

Последовательное соединение характеризуется тем, что элементы идут друг за другом. Конец одного подключается к началу другого. При подключении полученной цепочки к источнику тока получается кольцо.

Пример последовательного соединения

Лампы накаливания соединенные последовательно, можно рассматривать как сопротивления

Теоретическая часть

Последовательное соединение характерно тем, что через все элементы протекает ток одинаковой силы. То есть, если цепочка состоит из двух резисторов R1 и R2 (как на рисунке ниже), то ток протекающий через каждое из них и любую другую часть цепи будет одинаковой (I = I1 = I2).

Схема последовательного соединения

Последовательно соединенные сопротивления. I1 — ток протекающий через резистор R1, I2 — ток протекающий через резистор R2

Суммарное сопротивление всей цепи последовательно соединенных резисторов считается как сумма сопротивлений всех ее элементов. То есть, номиналы складывают.

R = R1 + R2 — это и есть формула расчета сопротивления при последовательном соединении резисторов. Если элементов больше двух, будет просто больше слагаемых.

Еще одно свойство последовательного соединения — на каждом элементе напряжение отличается. Ток в цепи одинаковый, а напряжение на резисторе зависит от его номинала.

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В.

Иллюстрация последовательного соединения

Так понятнее, что такое последовательное соединение

Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток.   R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом. Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2  А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В.

А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором  — 1600 В.  При этом напряжение источника питания — 4000 В.

Параллельное соединение резисторов

Параллельное соединение — это когда входы нескольких деталей соединяются в одной точке. Точно так же — в одну точку — соединяют их выходы.

Что такое параллельное соединение

Так выглядит параллельное соединение на схеме и в реальности

Теория и законы параллельного соединения

Если посмотреть на изображение параллельного соединения, заметно, что ко всем элементам прилагается одинаковое напряжение. То есть, при параллельном соединении резисторов, на каждом из них будет одинаковое напряжение.

U = U1 = U2 = U3.

Получается, что ток разделяется на несколько «ручейков». То есть, при параллельном соединении резисторов сила тока, протекающего через каждый из элементов, отличается. I = I1+I2+I3. И зависит сила тока (согласно тому же закону Ома) от сопротивления каждого участка цепи. В случае с параллельным соединением резисторов — от их номинала.

Схема параллельного соединения резисторов

Так выглядит параллельное соединение резисторов на схеме

Общее сопротивление участка цепи при таком соединении становится ниже. Его высчитывают по формуле:

1/R = 1/R1 + 1/R + 1/R3+…

Такая форма хоть и понятна, но неудобна. Формула расчета сопротивления параллельно подключенных резисторов получается тем сложнее, чем больше элементов соединены параллельно. Но больше двух-трех редко кто объединяет, так что на практике достаточно знать только две формулы приведенные ниже.

Формулы расчета: два резистора соединены параллельно и три резистора соединены параллельно

Формулы расчета сопротивления при параллельном подключении двух и трех резисторов

Если подставить значения в эти формулы, то заметим, что результат будет меньше, чем сопротивление резистора с наименьшим номиналом. Это стоит запомнить: результирующее сопротивление включенных параллельно резисторов будет ниже самого маленького номинала.

Примеры расчета параллельного соединения сопротивлений

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

  • Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
  • Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

Формула дял соединения резисторов

Как высчитывать сопротивление составных резисторов

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Пример параллельного подключения

Еще один пример с лампочками

При соединении параллельно трех резисторов, считать приходится больше, так как формула сложнее. Но картина не отличается:

  • Если подключить параллельно 150 Ом, 100 Ом и 50 Ом, результирующее будет 27,3 Ом.
  • Попробуем с более низкими номиналами. Если параллельно включены 20 Ом, 15 Ом и 10 Ом. Получим результирующее сопротивление 4,61 Ом.

Вот вам подтверждение правила. Суммарное сопротивление параллельно соединенных резисторов меньше чем самый низкий номинал.

Смешанное соединение

Как быть, если в схеме есть и параллельное, и последовательное соединение резисторов? В таком случае считают общее сопротивление по участкам. Можно при этом перерисовывать схему, заменяя составные сопротивления на один «прямоугольник», но проставляя над ним высчитанный результат.

Расчет сопротивления цепи при смешанном соединении резисторов

Пример расчета сопротивления при смешанном соединении резисторов. Рассматриваем исходную схему как совокупность параллельных и последовательных соединений

Шаг 1. Нашли общее сопротивление последовательно соединенных резисторов R3 и R4:

R3-4 = 3 кОм + 3 кОм = 6 кОм;

Шаг 2. Рассчитали сопротивление параллельно соединенных резисторов R2 и R3-4:

R2-4 = 3 кОм * 6 кОм / (3 кОм + 6 кОм) = 18 кОм/9 кОм = 2 кОм;

Шаг 3. Рассчитали общее сопротивление последовательно соединенных резисторов R1 и R2-4:

R1-4 = R1 + R2-4 = 1 кОм + 2 кОм = 3 кОм.

Практическое применение параллельного и последовательного соединения резисторов

Для чего практически можно использовать параллельное и последовательное соединение резисторов? Случается, что при ремонте электронной аппаратуры, не всегда в наличии сопротивление нужного номинала. Ехать в магазин за одним копеечным элементом — накладно. Вот тут и могут пригодиться составные резисторы. Просто надо последовательно или параллельно соединить их, подобрав требуемый номинал.

Применение последовательного и параллельного соединения резисторов

Последовательное и параллельное соединение резисторов применяют для подбора требуемого номинала. Контролировать точное значение получившегося сопротивления можно при помощи цифрового мультиметра

При соединении резисторов, их ножки первоначально скручивают. Какой стороной разворачивать сопротивление — неважно (в отличие от диодов, резисторы одинаково пропускают ток в обоих направлениях). На концах скрутку слегка обжимают плоскогубцами, затем пропаивают. Следите за тем, чтобы корпуса были друг от друга подальше — так они будут лучше охлаждаться при работе.

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике. Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов. Соединение резисторов может производиться последовательно, параллельно и смешанно (то есть и последовательно и параллельно), что показано на рисунке 1.

Соединение резисторов

Рисунок 1. Соединение резисторов.

Смешанное соединение резисторов. Расчет смешанного соединения

Здравствуйте, уважаемые читатели сайта sesaga.ru. Смешанное соединение резисторов представляет собой сложную электрическую цепь, в которой часть резисторов соединена последовательно, а часть параллельно.

В радиолюбительской практике такое включение резисторов встретить трудно, так как нет смысла подбирать сопротивление таким сложным способом. Достаточно соединить два, ну максимум три резистора последовательно или параллельно, чтобы подобрать нужный номинал.

Смешанное соединение

встречается в основном в учебниках физики или электротехники в виде задач. Мне вспоминается такая задачка из школьной программы, но тогда она мне показалась сложной и правильно решить ее не получилось.

И вот, исходя из полученного опыта, хочу рассказать Вам, как вычислить общее сопротивление смешанного соединения резисторов. Вдруг кому-нибудь в жизни да и пригодится.

топологические понятия, элементы, схема замещения

2.Законы Ома и Кирхгофа для цепей постоянного тока

3.Последовательное, параллельное и смешанное соединение потребителей

Последовательное, параллельное и смешанное соединения резисторов. Значительное число приемников, включенных в электрическую цепь (электрические лампы, электронагревательные приборы и др.), можно рассматривать как некоторые элементы, имеющие определенное сопротивление. Это обстоятельство дает нам возможность при составлении и изучении электрических схем заменять конкретные приемники резисторами с определенными сопротивлениями. Различают следующие способы соединения резисторов (приемников электрической энергии): последовательное, параллельное и смешанное.

Последовательное соединение резисторов. При последовательном соединении нескольких резисторов конец первого резистора соединяют с началом второго, конец второго — с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит один и тот же ток I. Напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.

Параллельное соединение резисторов. При параллельном соединении нескольких приемников они включаются между двумя точками электрической цепи, образуя параллельные ветви.

При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

I1=U/R1; I2=U/R2; I3=U/R3.

Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I1+I2+I3,

Смешанное соединение резисторов. Смешанным соединением называется такое соединение, при котором часть резисторов включается последовательно, а часть — параллельно. Например, в схеме рис. 27, а имеются два последовательно включенных резистора сопротивлениями R1 и R2, параллельно им включен резистор сопротивлением Rз, а резистор сопротивлением R4 включен последовательно с группой резисторов сопротивлениями R1, R2 и R3.

4.Расчёт цепи постоянного тока методами контурных токов и узловых потенциалов

Метод контурных токов. В основе лежит 2-й закон Кирхгофа. Суть метода в ведении фиктивных контурных токов и их расчёт.

1.Определение числа уравнений: у=в-ви.т-(n-1).

В-число ветвей, ви.т-с источником тока,n-число узлов.

2.Составляем уравнения для неизвестных контурных токов в общем виде.

3.Определяем неизвестные коэффициенты левой и правой части (Е и R).

4.Подставив коэффициенты, решаем уравнения, находим токи контуров.

5.Определяем через контурные токи токи в ветвях.

Метод узловых потенциалов. В основе лежит 1-й закон Кирхгофа. Определяем потенциалы узлов цепи с последующим определением токов в ветвях, используя закон Ома для участков цепи.

1.Подготовка схемы. Обозначим узлы. Потенциал одного из них принимаем за 0.

2.Составляем уравнения потенциалов в общем виде:

Фи1*g11 + фи2*g12 = I11 – для первого узла

Фи1g21 + фи*g22 = I22 – для второго узла

3.Определяем неизвестные проводимости gmn –сумма проводимостей ветвей, подходящих к узлу n.

4.Подставив, решаем уравнения, находим фи1 и фи2.

5.Произвольно выбираем направления токов и, используя закон Ома для участка цепи определяем эти токи: In = (фиX-фиY+En)/Rn.

Расчет смешанного соединения резисторов.

Расчет начинают от дальнего участка цепи по отношению к источнику питания. Определяют участок с параллельным или последовательным соединением двух резисторов и высчитывают их общее сопротивление Rобщ

. Затем полученное сопротивление складывают с рядом стоящим резистором и т.д.

Суть данного метода заключается в уменьшении

количества элементов в цепи с целью
упрощения схемы
и, соответственно, упрощению расчета общего сопротивления.

Разберем схему смешанного соединения из семи резисторов

:

Самым дальним участком схемы оказались резисторы R6

и
R7
, соединенные
параллельно
:

Вычисляем их общее сопротивление используя формулу параллельного

соединения:

Теперь если сравнить первоначальную схему с получившейся, то здесь мы видим, что она уменьшилась на один элемент и вместо двух резисторов R6 и R7 остался один R6

с суммарным сопротивлением равным
30, 709 кОм
.

Продолжим расчет и следующим дальним участком схемы оказались резисторы R5

и
R6
, соединенные
последовательно
:

Вычисляем их общее сопротивление используя формулу последовательного

соединения. Сопротивление резистора R5 составляет 27 Ом, а R6 = 30,709 кОм, поэтому для удобства расчета килоомы переводим в Омы (1 кОм = 1000 Ом):

Схема уменьшилась еще на один элемент и приняла вид:

Теперь дальним участком оказались резисторы R4

и
R5
соединенные
параллельно
:

Вычисляем их общее сопротивление:

Первоначальная схема опять изменилась и теперь состоит всего из четырех резисторов соединенных последовательно

. Таким образом мы максимально упростили схему и привели ее к удобному расчету.

Теперь все просто. Складываем сопротивления оставшихся четырех резисторов, используя формулу последовательного

соединения, и получаем общее сопротивление всей цепи:

Вот в принципе и все, что хотел сказать о смешанном соединении резисторов и расчете смешанного соединения. Удачи!

Виды соединений потребителей.

Различают последовательное, параллельное и смешанное соединение потребителей.

Припоследовательном соединении потребителей конец первого потребителя присоединяется к началу второго, конец второго – к началу третьего и т.д.

Рисунок 9 – Схема последовательного соединения потребителей

1) Сила тока на всех потребителях одинаковая

2)

Общее сопротивление равно сумме сопротивлений отдельных потребителей

3) Напряжение на зажимах цепи равно сумме падений напряжений на отдельных её участках .

При необходимости уменьшить U и I приемника последовательно ему подключают резистор.

Вывод: при выходе из работы одного элемента вся цепь обесточивается, и при изменении сопротивления одного из них меняется ток во всей цепи и напряжение на каждом элементе.

При параллельном соединении элементов цепи все начала собираются в одну точку, а концы в другую точку и включаются в электрическую цепь, образуя параллельные ветви.

Рисунок 10 – Схема параллельного соединения потребителей

1) Общий ток равен сумме токов параллельных ветвей

2) Напряжение на всех потребителях включенных параллельно одинаковое

3) Общее сопротивление будет меньше наименьшего из включенных параллельно

Из закона Ома для участка цепи

для двух потребителей

Если сопротивление потребителей равны, то

Вывод:

При выходе из строя одного потребителя остальные остаются включенные в цепь.

Все приемники находятся под одним напряжением независимо от их мощности (сопротивления).

Смешанным называется такое соединение потребителей, когда в цепи имеются одновременно и параллельное и последовательное их соединение.

Цепь постепенно упрощают, заменяя эквивалентным (равноценным) сопротивлением, используя формулы для последовательного и параллельного соединения потребителей.

Дата добавления: 2017-11-21; ;

Похожие статьи:

Общее сопротивление Rобщ

При таком соединении, через каждый резистор потечет отдельный ток. Сила данного тока будет обратно пропорциональна сопротивлению резистора. В результате общая проводимость такого участка электрической цепи увеличивается, а общее сопротивление в свою очередь уменьшается.

Таким образом, при параллельном подсоединении резисторов с разным сопротивлением, общее сопротивление будет всегда меньше значения самого маленького отдельного резистора.

Формула общей проводимости при параллельном соединении резисторов:

Формула эквивалентного общего сопротивления при параллельном соединении резисторов:

Для двух одинаковых резисторов общее сопротивление будет равно половине одного отдельного резистора:

Соответственно, для n одинаковых резисторов общее сопротивление будет равно значению одного резистора, разделенного на n.

Общее сопротивление Rобщ

Для того чтобы посчитать общее сопротивление смешанного соединения:

  • Цепь разбивают на участки с только пареллельным или только последовательным соединением.
  • Вычисляют общее сопротивление для каждого отдельного участка.
  • Вычисляют общее сопротивление для всей цепи смешанного соединения.

Так это будет выглядеть для схемы 1:

Также существует более быстрый способ расчета общего сопротивления для смешанного соединения. Можно, в соответствии схеме, сразу записывать формулу следующим образом:

  • Если резисторы соединяются последоватеьно — складывать.
  • Если резисторы соединяются параллельно — использовать условное обозначение «||».
  • Подставлять формулу для параллельного соединения где стоит символ «||».

Так это будет выглядеть для схемы 1:

После подстановки формулы параллельного соединения вместо «||»:

Все схемы, обсуждаемые в этой статье, скорее теоретические, чем практические. На практике такие способы подключения используются, когда нет резистора нужной мощности или ватта. Это любительская, но не промышленная практика.

Смешанное соединение резисторов

Резистор — это устройство с фиксированным, постоянным значением сопротивления. Это позволяет установить его в любой точке цепи. Существует несколько типов соединений, включая соединения со смешанным сопротивлением. Падение напряжения и распределение тока в цепи напрямую зависят от используемого метода подключения. Вариант смешанной схемы состоит из последовательного и параллельного соединения активных резисторов. Поэтому, чтобы понять, как работают остальные схемы, следует сначала рассмотреть эти два типа соединений.

В последовательной схеме резисторы в цепи расположены так, что конец первого элемента соединен с началом второго, конец второго соединен с началом третьего и так далее. Это означает, что все резисторы следуют друг за другом последовательно. Ток в последовательной цепи одинаков в каждом элементе. Выраженный в формулах, он выглядит следующим образом.общий= I1= I2где яобщийполный ток цепи, I1и я2— соответствуют токам 1-го и 2-го резисторов.

Смешанное соединение резисторов

Согласно закону Ома, напряжение питания является суммой падений напряжения на отдельных резисторах: Uобщий= U1+ U2= I1r1+ I2r2где Uобщий— напряжение источника питания или самой сети; U1и U2— падение напряжения на 1-м и 2-м резисторах; r1и р2— сопротивления 1-го и 2-го резисторов. Поскольку токи в каждой части цепи имеют одинаковое значение, формула имеет вид: U в целом = I(r1+ r2Из этого можно сделать вывод, что при последовательном соединении резисторов ток, протекающий через отдельные резисторы, равен общему току во всей цепи. Напряжение на отдельных резисторах разное, но их общая сумма равна общему напряжению всей цепи. Общее сопротивление цепи также равно сумме сопротивлений отдельных резисторов в цепи.

Параметры цепи при параллельном соединении

Параллельная схема — это соединение первых выводов двух или более резисторов в одной точке и концов тех же элементов в другой общей точке. Таким образом, каждый резистор фактически подключен непосредственно к источнику тока.

Из этого следует, что напряжение отдельных резисторов равно общему напряжению цепи: Uобщий= U1= U2. Величина токов, в свою очередь, различна на каждом резисторе, а их распределение прямо пропорционально сопротивлению этих резисторов. То есть, с увеличением сопротивления ток уменьшается, и общий ток равен сумме токов, протекающих через отдельные элементы. Формула для этой должности выглядит следующим образом.общий= I1+ I2.

Формула используется для расчета полного сопротивления:

Таким образом, общее сопротивление цепи меньше, чем меньшее сопротивление любого из резисторов, подключенных параллельно в этой цепи. На каждый элемент подается напряжение, равное напряжению источника тока. Распределение тока прямо пропорционально сопротивлению резисторов. Суммарное значение сопротивления параллельно подключенных резисторов не должно превышать минимального сопротивления элемента.

Последовательное соединение резисторов

Последовательное соединение резисторов — это соединение, при котором конец одного резистора соединен с началом второго резистора, конец второго резистора соединен с началом третьего резистора и так далее (рис. 2).

Последовательное соединение резисторов

Рисунок 2: Последовательное соединение резисторов.

При последовательном соединении резисторы соединяются последовательно. При таком подключении через резисторы протекает общий ток. Поэтому для последовательного соединения резисторов верно, что между точками A и B течет только один путь тока. Чем больше резисторов соединено последовательно, тем большее сопротивление они оказывают протекающему току, т.е. общее сопротивление Rcomm увеличивается. Общее сопротивление последовательно соединенных резисторов рассчитывается по следующей формуле:

Rcomm = R1 + R2 + R3+. + Rn.

Параллельное соединение резисторов

Параллельное соединение резисторов — это соединение, при котором начала всех резисторов подключены к общей точке (A), а концы — к другой общей точке (B) (см. рисунок 3).

Параллельное соединение резисторов

Рисунок 3: Параллельное соединение резисторов.

Через каждый резистор протекает разный ток. Когда ток течет от точки A к точке B в параллельном соединении, у него есть несколько путей. Поэтому увеличение числа параллельно соединенных резисторов приводит к увеличению путей прохождения тока, т.е. к уменьшению сопротивления растеканию тока. Это означает, что чем больше резисторов соединено параллельно, тем меньше общее сопротивление такого участка цепи (сопротивление между точками A и B):

1/Rcomm= 1/R1+1/R2+1/R3+…+1/Rn

Следует отметить, что здесь действует правило «меньше — значит меньше». Это означает, что общее сопротивление всегда меньше, чем сопротивление отдельных резисторов, соединенных параллельно. Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле:

R общий= R1*R2/R1+R2

Если два резистора с одинаковым сопротивлением соединены параллельно, их общее сопротивление равно половине сопротивления одного из них.

Смешанное соединение резисторов

Цепь со смешанным резистором — это комбинация последовательной и параллельной цепи. Иногда такую комбинацию также называют последовательно-параллельной схемой. На рисунке 4 показан простой пример смешанного соединения резисторов.

Смешанное соединение резисторов

Рисунок 4: Подключение смешанного резистора.

На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 соединены последовательно. Чтобы рассчитать сопротивление этих соединений, вся цепь делится на простые участки путем параллельного или последовательного соединения резисторов. Затем применяется следующий алгоритм. Если эти участки содержат последовательно соединенные резисторы, сначала рассчитайте их сопротивление. 3. 3. рассчитайте эквивалентные сопротивления резисторов и перерисуйте схему. Обычно получается схема эквивалентных резисторов, соединенных последовательно. 4. 4. рассчитайте сопротивления полученной цепи.

Пример расчета части схемы со смешанным соединением резисторов показан на рисунке 5.

Расчет смешанного соединения резисторов

Рисунок 5. Вычисление сопротивления части цепи со смешанным соединением резисторов.

ПОНРАВИЛАСЬ ЛИ ВАМ СТАТЬЯ? ПОДЕЛИТЕСЬ ИМ СО СВОИМИ ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

При таком соединении все провода с одной стороны элемента соединяются в одной точке (Рисунок 3).

Параллелное соединение резисторов

Как и в предыдущем варианте — сначала выходы.

Общий ток равен сумме токов, протекающих через отдельные резисторы. I1I1I1 +I1,

2. все напряжения равны U=U1=U2=. =Un,

3. значения токов обратно пропорциональны значениям резисторов,

4. общее сопротивление рассчитывается по следующей формуле: 1/R=1/R1+1/R2+. +1/Rn ,

Выведем формулы для п. 3, 4 и для простоты снова возьмем два резистора, соединенных параллельно.

I1=U/R1, I2=U/R2 (помните: U1=U2=U),

Я сразу же «переверну» значение сопротивления и сделаю расчет для 1/R вместо R — так будет менее громоздко.

Если преобразовать эту формулу в более удобную форму, то получится:

Примечание: Если вы подключите два резистора с одинаковым номиналом параллельно, общее сопротивление будет равно половине сопротивления каждого из них.

СМЕШАННОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

Здесь возможны различные комбинации. Простейший вариант показан на рисунке 4.

Смешанное соединение резисторов

Однако, поскольку любое смешанное соединение может быть сведено либо к параллельному, либо к последовательному соединению (диаграмма выше объясняет это), в этом случае нет необходимости проводить расчеты и выводить формулы.

Поэтому если у вас под рукой нет резистора с нужным сопротивлением, вы можете найти его, выполнив соответствующие подключения.

На что вам следует обратить внимание.

В каждом соединении, если резисторы имеют одинаковую силу, сумма (для всей цепи) равна их сумме.

Если нет, вы должны выбрать самый слабый. Для этого используйте формулу P=I*U. Поэтому рассчитайте ток и напряжение для этого резистора и оцените, какую мощность он может рассеять.

  • P=I 2 *R – для последовательного соединения;
  • P=U 2 /R – для параллельного.

Обычно это не имеет значения в электронике, но имеет значение в схемах.

Авторское право © 2014-2022 Все права защищены. Материалы, содержащиеся на этом сайте, предназначены только для информационных целей и не должны восприниматься как руководство к действию или предписание.

Электрический ток при параллельном соединении

Каждый резистор питается током, величина которого обратно пропорциональна сопротивлению резистора. Чтобы узнать, сколько тока протекает через определенный резистор, можно воспользоваться законом Ома:

Смешанная цепь — это часть цепи, в которой некоторые резисторы соединены последовательно, а некоторые — параллельно. Существует два типа смешанных соединений: Последовательные соединения и параллельные соединения.

Общее сопротивление Rобщий

Существует два типа смешанных соединений: два типа резисторов (т.е. резисторы двух разных типов):

  • Цепь разбивают на участки с только пареллельным или только последовательным соединением.
  • Вычисляют общее сопротивление для каждого отдельного участка.
  • Вычисляют общее сопротивление для всей цепи смешанного соединения.

Для схемы 1 это будет выглядеть следующим образом:

Существует также более быстрый метод расчета полного сопротивления для смешанного соединения. После схемы формулу можно сразу записать следующим образом:

  • Если резисторы соединяются последоватеьно — складывать.
  • Если резисторы соединяются параллельно — использовать условное обозначение «||».
  • Подставлять формулу для параллельного соединения где стоит символ «||».

Для схемы 1 это будет выглядеть следующим образом:

После замены формулы для параллельного соединения на «||»:

Добавить комментарий