Как найти полную производную второго порядка

Уважаемые студенты!
Заказать решение задач можно у нас всего за 10 минут.

Полная производная функции

Как найти?

Постановка задачи

Найти полную производную функции $ z = f(u,v) $, где $ u = g_1(x) $ и $ v = g_2(x) $

План решения

Так как функции $ u = g_1(x), v = g_2(x) $ зависят только от одной переменной $ x $, то полная производная функции $ z = f(u,v) $ находится по формуле:

$$ frac{dz}{dx} = frac{partial z}{partial u} cdot frac{du}{dx} + frac{partial z}{partial v} cdot frac{dv}{dx} $$

Если же функция $ u = x $, а функция $ v = g_2(x) $, то полная производная записывается формулой:

$$ frac{dz}{dx} = frac{partial z}{partial x} + frac{partial z}{partial v} cdot frac{dv}{dx} $$

  1. Находим производные первого порядка, требующиеся в формуле
  2. Подставляем в формулу и записываем ответ

Примеры решений

Пример 1
Найти полную производную функции $ z = cos frac{u}{v} $, где $ u = e^x $ и $ v = x^2-1 $
Решение

Найдем частные производные функции $ z(u,v) $ по $ u $ и $ v $:

$$ frac{partial z}{partial u} = -frac{1}{v} sin frac{u}{v} $$

$$ frac{partial z}{partial v} = frac{u}{v^2} sin frac{u}{v} $$

 Найдем частные производные от $ u(x) $ и $ v(x) $ по $ x $:

$$ frac{du}{dx} = e^x $$ $$ frac{dv}{dx} = 2x $$

Используя формулу для полной производной получаем:

$$ frac{dz}{dx} = -frac{1}{v} sin frac{u}{v} cdot 2x + frac{u}{v^2} sin frac{u}{v} cdot 2x = $$

$$ = bigg (frac{u}{v} – 1 bigg ) frac{1}{v} sin frac{u}{v} 2x = frac{u-v}{v^2} sin frac{u}{v}2x $$

Заменяя $ u $ и $ v $ выражениями через переменную $ x $ записываем ответ:

$$ frac{dz}{dx} = frac{e^x-x^2+1}{(x^2-1)^2} sin frac{e^x}{x^2-1} 2x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ frac{dz}{dx} = 2x frac{e^x-x^2+1}{(x^2-1)^2} sin frac{e^x}{x^2-1} $$
Пример 2
Найти полную производную $ z = uv $, где $ u = x^2 $ и $ v = sin x $
Решение

Находим частные производные функции $ z = uv $ по $ u $ и $ v $:

$$ frac{partial z}{partial u} = v $$ $$ frac{partial z}{partial v} = u $$

Берем частные производные для функций $ u = x^2 $ и $ v = sin x $ по переменной $ x $:

$$ frac{partial u}{partial x} = 2x $$ $$ frac{partial v}{partial x} = cos x $$

Подставляем в формулу все полученные данные:

$$ frac{dz}{dx} = v cdot 2x + u cdot cos x $$

Вместо $ u $ и $ v $ подставляем функции от $ x $ и записываем ответ:

$$ frac{dz}{dx} = sin x cdot 2x + x^2 cdot cos x = 2x sin x + x^2 cos x $$

Ответ
$$ frac{dz}{dx} = 2x sin x + x^2 cos x $$

Чтобы понять частные производные, сначала нужно разобраться с обычными. И не нужно ничего искать: в нашей отдельной статье мы уже подготовили все для того, чтобы у вас это получилось. А сейчас речь пойдет о частных производных.

Добро пожаловать на наш телеграм-канал за полезной рассылкой и актуальными студенческими новостями.

Функция двух и более переменных

Прежде чем говорить о частных производных, нужно затронуть понятие функции нескольких переменных, без которого нет смысла в частной производной. В школе мы привыкли иметь дело с функциями одной переменной: 

Функция двух и более переменных

Производными таких функций мы и считали раньше. График функции одной переменной представляет собой линию на плоскости: прямую, параболу, гиперболу и т.д.

А что, если добавить еще одну переменную? Получится такая функция:

Функция двух и более переменных

Это – функция двух независимых переменных x и y. График такой функции представляет собой поверхность в трехмерном пространстве: шар, гиперболоид, параболоид или еще какой-нибудь сферический конь в вакууме. Частные производные функции z по иксу и игреку соответственно записываются так:

Функция двух и более переменных

Существуют также функции трех и более переменных. Правда, график такой функции нарисовать невозможно: для этого понадобилось бы как минимум четырехмерное пространство, которое невозможно изобразить.

Частная производная первого порядка

Запоминаем главное правило:

При вычислении частной производной по одной из переменных, вторая переменная принимается за константу. В остальном правила вычисления производной не меняются.

То есть, частная производная по сути ничем не отличается от обычной. Так что, держите перед глазами таблицу производных элементарных функций и правила вычисления обычных производных. Рассмотрим пример, чтобы стало совсем понятно. Допустим, нужно вычислить частные производные первого порядка следующей функции:

Частная производная первого порядка

Сначала возьмем частную производную по иксу, считая игрек обычным числом:

Частная производная первого порядка

Теперь считаем частную производную по игреку, принимая икс за константу:

Частная производная первого порядка

Как видите, ничего сложного в этом нет, а успех с более сложными примерами – лишь дело практики.

Частная производная второго порядка

Как находится частная производная второго порядка? Так же, как и первого. Чтобы найти частные производные второго порядка, нужно просто взять производную от производной первого порядка. Вернемся к примеру выше и посчитаем частные производные второго порядка.

По иксу:

Частная производная второго порядка

По игреку:

Частная производная второго порядка

Частные производные третьего и высших порядков не отличаются по принципу вычисления. Систематизируем правила:

  1. При дифференцировании по одной независимой переменной, вторая принимается за константу.
  2. Производная второго порядка – это производная от производной первого порядка. Третьего порядка – производная от производной второго порядка и т.д.

Частные производные и полный дифференциал функции

Частый вопрос в практических заданиях – нахождение полного дифференциала функции. Для функции нескольких переменных полный дифференциал определяется, как главная линейная часть малого полного приращения функции относительно приращений аргументов.

Определение звучит громоздко, но с буквами все проще. Полный дифференциал первого порядка функции нескольких переменных выглядит так:

Частные производные и полный дифференциал функции

Зная, как считаются частные производные, нет никакой проблемы вычислить и полный дифференциал.

Частные производные – не такая уж и бесполезная тема. Например, дифференциальные уравнения в частных производных второго порядка широко используются для математического описания реальных физических процессов.

Здесь мы дали лишь общее, поверхностное представление о частных производных первого и второго порядка. Вас интересует эта тема или остались конкретные вопросы? Задавайте их в комментариях и обращайтесь к экспертам профессионального студенческого сервиса за квалифицированной и скорой помощью в учебе. С нами вы не останетесь один на один с проблемой!

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Вторая производная

Всё
очень просто. Вторая производная –
это производная
от первой производной

Стандартные
обозначения второй производной:
 

 или 
 (дробь
читается так: «дэ два игрек по дэ икс
квадрат»). Чаще всего вторую производную
обозначают первыми двумя вариантами.
Но третий вариант тоже встречается,
причем, его очень любят включать в
условия контрольных заданий, например:
«Найдите 
 функции…».
А студент сидит и битый час чешет репу,
что это вообще такое.

Рассмотрим
простейший пример. Найдем вторую
производную от функции 
.

Для того чтобы
найти вторую производную, как многие
догадались, нужно сначала найти первую
производную:

Теперь находим
вторую производную:

Готово.

Рассмотрим более
содержательные примеры.

Пример 11

Найти
вторую производную функции 

Найдем
первую производную:

На
каждом шаге всегда смотрим, нельзя ли
что-нибудь упростить? Сейчас нам предстоит
дифференцировать произведение двух
функций, и мы избавимся от этой
неприятности, применив
известную тригонометрическую
формулу
 
.
Точнее говоря, использовать формулу
будем в обратном направлении: 
:

Находим
вторую производную:

Готово.

Можно
было пойти другим путём – понизить
степень функции еще перед дифференцированием,
используя формулу 
:

Если интересно,
возьмите первую и вторую производные
снова. Результаты, естественно, совпадут.

Отмечу,
что понижение степени бывает очень
выгодно при нахождении частных
производных функции
.
Здесь же оба способа решения будут
примерно одинаковой длины и сложности.

Как и
для первой производной, можно
рассмотреть задачу
нахождения второй производной в точке
.

Например:
Вычислим значение найденной второй
производной в точке 
:

Необходимость
находить вторую производную и вторую
производную в точке возникает при
исследовании графика функции на
выпуклость/вогнутость и перегибы.

Пример 12

Найти
вторую производную функции 
.
Найти 

Это пример для
самостоятельного решения.

Аналогично можно
найти третью производную, а также
производные более высоких порядков.
Такие задания встречаются, но встречаются
значительно реже.

Решения
и ответы:

Пример
2: Найдем производную:


Вычислим
значение функции в точке
 
:


Пример
4: Найдем производную:


Вычислим
производную в заданной точке:


Пример
6: Уравнение касательной составим по
формуле
 

1)
Вычислим значение функции в точке
 
:


2)
Найдем производную. Перед дифференцированием
функцию выгодно упростить:


3)
Вычислим значение производной в
точке
 
:


4)
Подставим значения
 
, 
 и 
 в
формулу
 
:



Пример
8: Преобразуем функцию:


Найдем
производную:


Запишем
дифференциал:


Пример
10: Найдем производную:


Запишем
дифференциал:


Вычислим
дифференциал в точке
 
:


Пример
12: Найдем первую производную:


Найдем
вторую производную:


Вычислим: 

4. 2.Частные производные. Примеры решений

На
данном уроке мы познакомимся с понятием
функции двух переменных, а также подробно
рассмотрим наиболее распространенное
задание – нахождение частных
производных
первого
и второго порядка, полного дифференциала
функции. Студенты-заочники, как правило,
сталкиваются с частными производными
на 1 курсе во 2 семестре. Причем, по моим
наблюдениям, задание на нахождение
частных производных практически всегда
встречается на экзамене.

Для
эффективного изучения нижеизложенного
материала Вам необходимо уметь
более или менее уверенно находить
«обычные» производные функции одной
переменной. Научиться правильно
обращаться с производными можно на
уроках Как
найти производную?
 иПроизводная
сложной функции
.
Также нам потребуется таблица производных
элементарных функций и правил
дифференцирования, удобнее всего, если
она будет под рукой в распечатанном
виде. Раздобыть справочный материал
можно на страницеМатематические
формулы и таблицы
.

Начнем
с самого понятия функции двух переменных,
я постараюсь ограничиться минимумом
теории, так как сайт имеет практическую
направленность. Функция двух переменных
обычно записывается как 
,
при этом переменные 

 называются независимыми
переменными
 или аргументами.

Пример: 
 –
функция двух переменных.

Иногда
используют запись 
.
Также встречаются задания, где вместо
буквы 
 используется
буква 
.

Полезно
знать геометрический смысл функций.
Функции одной переменной 
 соответствует
определенная линия на плоскости,
например, 
  –
всем знакомая школьная парабола. Любая
функция двух переменных 
 с
геометрической точки зрения представляет
собой поверхность в трехмерном
пространстве (плоскости, цилиндры, шары,
параболоиды и т.д.). Но, собственно, это
уже аналитическая геометрия, а у нас на
повестке дня математический анализ.

Переходим
к вопросу нахождения частных производных
первого и второго порядков. Должен
сообщить хорошую новость для тех, кто
выпил несколько чашек кофе и настроился
на невообразимо трудный материал: частные
производные – это почти то же самое,
что и «обычные» производные функции
одной переменной.
 

Для
частных производных справедливы все
правила дифференцирования и таблица
производных элементарных функций.
 Есть
только пара небольших отличий, с которыми
мы познакомимся прямо сейчас.

Пример 1

Найти
частные производные первого и второго
порядка функции 

Сначала найдем
частные производные первого порядка.
Их две.

Обозначения:


 или 
 –
частная производная по «икс»


 или 
 –
частная производная по «игрек»

Начнем
с 
Когда
мы находим частную производную по «икс»,
то переменная
 
 считается
константой (постоянным числом).

Решаем. На данном
уроке я буду приводить полное решение
сразу, а комментарии давать ниже.

Комментарии к
выполненным действиям:

(1)
Первое, что мы делаем при нахождении
частной производной – заключаем всю функцию
в скобки под штрих с
подстрочным индексом
.

Внимание,
важно!
 Подстрочные
индексы НЕ ТЕРЯЕМ по ходу решения. В
данном случае, если Вы где-нибудь
нарисуете «штрих» без 
,
то преподаватель, как минимум, может
поставить рядом с заданием 
 (сразу
откусить часть балла за невнимательность).

Далее данный шаг
комментироваться не будет, все сделанные
замечания справедливы для любого примера
по рассматриваемой теме.

(2)
Используем правила дифференцирования 

.
Для простого примера, как этот, оба
правила вполне можно применить на одном
шаге. Обратите внимание на первое
слагаемое: так как 
 считается
константой, а любую константу можно
вынести за знак производной
,
то 
 мы
выносим за скобки. То есть в данной
ситуации
 ничем
не лучше обычного числа. Теперь посмотрим
на третье слагаемое 
:
здесь, наоборот, выносить нечего. Так
как 
 константа,
то 
 –
тоже константа, и в этом смысле она ничем
не лучше последнего слагаемого –
«семерки».

(3)
Используем табличные производные 
 и 
.

(4) Упрощаем, или,
как я люблю говорить, «причесываем»
ответ.

Теперь 
Когда
мы находим частную производную по
«игрек», то переменная
 
 считается
константой (постоянным числом).

(1)
Используем те же правила дифференцирования 

.
В первом слагаемом выносим константу 
 за
знак производной, во втором слагаемом
ничего вынести нельзя поскольку 
 –
уже константа.

(2)
Используем таблицу производным
элементарных функций. Мысленно
поменяем в таблице все «иксы» на «игреки».
То есть данная таблица рАвно справедлива
и для

 (да
и вообще почти для любой буквы).
 В
частности, используемые нами формулы
выглядят так: 
 и 
.

Итак, частные
производные первого порядка найдены

Подведем итог, чем
же отличается нахождение частных
производных от нахождения «обычных»
производных функции одной переменной:

1)
Когда мы находим частную
производную
 
, переменная 
 считается
константой.

2)
Когда мы находим частную
производную
 
, переменная 
 считается
константой.

3)
Правила и таблица производных элементарных
функций справедливы и применимы для
любой переменной (

, 
 либо
какой-нибудь другой), по которой ведется
дифференцирование.

Шаг второй. Находим
частные производные второго порядка.
Их четыре.

Обозначения:


 или 
 –
вторая производная по «икс»


 или 
 –
вторая производная по
«игрек»


 или 
 – смешанная производная
«икс по игрек»


 или 
 – смешанная производная
«игрек по икс»

В
понятии второй производной нет ничего
сложного. Говоря простым языком, вторая
производная – это производная от первой
производной.

Для
наглядности я перепишу уже найденные
частные производные первого порядка:

Сначала
найдем смешанные производные:

Как
видите, всё просто: берем частную
производную 
 и
дифференцируем ее еще раз, но в данном
случае – уже по «игрек».

Аналогично:

Для
практических примеров справедливо
следующее равенство:
 


Таким образом,
через смешанные производные второго
порядка очень удобно проверить, а
правильно ли мы нашли частные производные
первого порядка.

Находим
вторую производную по «икс».

Никаких
изобретений, берем 
 и
дифференцируем её по «икс» еще раз:

Аналогично:

Следует
отметить, что при нахождении 

 нужно
проявить повышенное
внимание
, так как
никаких чудесных равенств для проверки
не существует.

Пример 2

Найти
частные производные первого и второго
порядка функции 

Это
пример для самостоятельного решения
(ответ в конце урока). Если возникли
трудности с дифференцированием корней,
рекомендую ознакомиться уроком Как
найти производную?

При определенном
опыте частные производные из примеров
№№1,2 будут решаться Вами устно.

Переходим к более
сложным примерам.

Пример 3

Найти
частные производные первого порядка
функции 
.
Проверить, что 
.
Записать полный дифференциал первого
порядка 
.

Решение:
Находим частные производные первого
порядка:

Обратите
внимание на подстрочный индекс: 
,
рядом с «иксом» не возбраняется в скобках
записывать, что 
 –
константа. Данная пометка может быть
очень полезна для начинающих, чтобы
легче было ориентироваться в решении.

Дальнейшие
комментарии:

(1)
Выносим все константы за знак производной.
В данном случае 
 и 
,
а, значит, и их произведение 
 считается
постоянным числом.

(2) Не забываем, как
правильно дифференцировать корни.

(1)
Выносим все константы за знак производной,
в данной случае константой является


.

(2) Под
штрихом у нас осталось произведение
двух функций, следовательно, нужно
использовать правило дифференцирования
произведения 
.

(3) Не
забываем, что

– это сложная функция (хотя и простейшая
из сложных). Используем соответствующее
правило:

.

Теперь находим
смешанные производные второго порядка:

,
значит, все вычисления выполнены верно.

Запишем
полный дифференциал 
.
В контексте рассматриваемого задания
не имеет смысла рассказывать, что такое
полный дифференциал функции двух
переменных. Важно, что этот самый
дифференциал очень часто требуется
записать в практических задачах.

Полный
дифференциал первого порядка функции
двух переменных имеет вид:

В данном случае:

То
есть, в формулу нужно просто подставить
уже найденные частные производные
первого порядка. Значки дифференциалов 
 и 
 в
этой и похожих ситуациях по возможности
лучше записывать в числителях:

Пример 4

Найти
частные производные первого порядка
функции 
.
Проверить, что 
.
Записать полный дифференциал первого
порядка 
.

Это пример для
самостоятельного решения. Полное решение
и образец оформления задачи – в конце
урока.

Рассмотрим серию
примеров, включающих в себя сложные
функции.

Пример 5

Найти
частные производные первого порядка
функции

.

Записать
полный дифференциал 
.

Решение:

(1)
Применяем правило дифференцирования
сложной функции 
.
С урока Производная
сложной функции

следует помнить
очень важный момент: когда мы по таблице
превращаем синус (внешнюю функцию) в
косинус, то вложение

 (внутренняя
функция) у нас не
меняется
.

(2)
Здесь используем свойство корней:

,
выносим константу

за знак производной, а корень

представляем в нужном для дифференцирования
виде.

Аналогично:

Запишем
полный дифференциал первого порядка:

Пример 6

Найти
частные производные первого порядка
функции 
.

Записать
полный дифференциал 
.

Это пример для
самостоятельного решения (ответ в конце
урока). Полное решение не привожу, так
как оно достаточно простое

Довольно часто
все вышерассмотренные правила применяются
в комбинации.

Пример 7

Найти
частные производные первого порядка
функции 
.

(1) Используем
правило дифференцирования суммы

(2)
Первое слагаемое  в данном случае
считается константой, поскольку в
выражении

нет ничего, зависящего от «икс» – только
«игреки».

(Знаете,
всегда приятно, когда дробь удается
превратить в ноль).

Для
второго слагаемого применяем правило
дифференцирования произведения. Кстати,
в этом смысле ничего бы не изменилось,
если бы вместо

была дана функция

– важно, что здесь произведение
двух функций,
КАЖДАЯ
из которых зависит от

«икс»,
а поэтому, нужно использовать правило
дифференцирования произведения. Для
третьего слагаемого применяем правило
дифференцирования сложной функции.

(1) В
первом слагаемом и в числителе и в
знаменателе содержится «игрек»,
следовательно, нужно использовать
правило дифференцирования частного: 

Второе слагаемое зависит ТОЛЬКО от
«икс», значит, 
 считается
константой и превращается в ноль. Для
третьего слагаемого используем правило
дифференцирования сложной функции.

Для тех читателей,
которые мужественно добрались почти
до конца урока, расскажу старый
мехматовский анекдот для разрядки:

Однажды
в пространстве функций появилась злобная
производная и как пошла всех
дифференцировать. Все функции разбегаются
кто куда, никому не хочется превращаться!
И только одна функция никуда не убегает.
Подходит к ней производная и спрашивает:

– А
почему это ты от меня никуда не убегаешь?

– Ха.
А мне всё равно, ведь я «е в степени икс»,
и ты со мной ничего не сделаешь!

На
что злобная производная с коварной
улыбкой отвечает:

– Вот
здесь ты ошибаешься, я тебя продифференцирую
по «игрек», так что быть тебе нулем.

(Кто
понял анекдот, тот освоил производные,
минимум, на «тройку»).

Пример 8

Найти
частные производные первого порядка
функции

.

Это пример для
самостоятельного решения. Полное решение
и образец оформления задачи – в конце
урока.

Ну вот почти и всё.
Напоследок не могу не обрадовать
любителей математики еще одним примером.
Дело даже не в любителях, у всех разный
уровень математической подготовки –
встречаются люди (и не так уж редко),
которые любят потягаться с заданиями
посложнее. Хотя, последний на данном
уроке пример не столько сложный, сколько
громоздкий с точки зрения вычислений.

Пример 9

Дана
функция двух переменных 
.
Найти все частные производные первого
и второго порядков.

Это пример для
самостоятельного решения. Полное решение
и образец оформления где-то рядом.

Ответы:

Пример
2:


,


,


,





Пример
4: Ссылка для просмотра ниже.

Пример
6:


,


,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #

    08.02.20157.31 Mб91.rtf

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как найти производную второго порядка функции

Содержание

  • Производная по определению (через предел). Примеры решений
  • Определение производных высших порядков
  • Полезные формулы производных n-го порядка
  • Пример 1
  • Пример 2
  • Пример 3
  • Пример 4
  • Пример 5

Чтобы найти вторую производную (это тоже самое, что и производная второго порядка), то надо воспользоваться онлайн калькулятором по вычислению производных первого порядка.

Этот сервис вычисляет первые производные (тоже что и производные первого порядка).

Приведем пример, как найти производную второго порядка от функции x*sin(x):

  1. В вышеуказанном калькуляторе вводим x*sin(x) — этим самым мы вычисляем производную первого порядка (должно получиться x*cos(x) + sin(x), копируем найденное )
  2. Теперь выполняем аналогичные операции в калькуляторе, но с найденной первой производной, а именно вводим функцию (вставляем из копированного) x*cos(x) + sin(x)
  3. Получаем ответ (но это только наш пример!): 2*cos(x) — x*sin(x)

Чтобы найти производную третьего порядка (тоже самое что и третья производная функции), то надо проделать первые два пункта выше, в третьем же пункте опять подставить в калькулятор.

Для нашего примера, надо подставить 2*cos(x) — x*sin(x) и получим ответ для третьей производной (опять же это наш пример): -3.0*sin(x) — x*cos(x)

© Контрольная работа РУ — калькуляторы онлайн

Всё очень просто. Вторая производная – это производная от первой производной:

Стандартные обозначения второй производной: , или (дробь читается так: «дэ два игрек по дэ икс квадрат»). Чаще всего вторую производную обозначают первыми двумя вариантами. Но третий вариант тоже встречается, причем, его очень любят включать в условия контрольных заданий, например: «Найдите функции…». А студент сидит и битый час чешет репу, что это вообще такое.

Рассмотрим простейший пример. Найдем вторую производную от функции .

Для того чтобы найти вторую производную, как многие догадались, нужно сначала найти первую производную:

Теперь находим вторую производную:

Рассмотрим более содержательные примеры.

Найти вторую производную функции

Найдем первую производную:

На каждом шаге всегда смотрим, нельзя ли что-нибудь упростить? Сейчас нам предстоит дифференцировать произведение двух функций, и мы избавимся от этой неприятности, применив известную тригонометрическую формулу . Точнее говоря, использовать формулу будем в обратном направлении: :

Находим вторую производную:

Можно было пойти другим путём – понизить степень функции еще перед дифференцированием, используя формулу :

Если интересно, возьмите первую и вторую производные снова. Результаты, естественно, совпадут.

Отмечу, что понижение степени бывает очень выгодно при нахождении частных производных функции. Здесь же оба способа решения будут примерно одинаковой длины и сложности.

Как и для первой производной, можно рассмотреть задачу нахождения второй производной в точке.

Например: Вычислим значение найденной второй производной в точке :

Необходимость находить вторую производную и вторую производную в точке возникает при исследовании графика функции на выпуклость/вогнутость и перегибы.

Найти вторую производную функции . Найти

Это пример для самостоятельного решения.

Аналогично можно найти третью производную, а также производные более высоких порядков. Такие задания встречаются, но встречаются значительно реже. Можно рассказать о специфических приемах, формуле Лагранжа, и по мере наличия времени я обязательно напишу отдельный методический материал.

Решения и ответы:

Пример 2: Найдем производную:

Вычислим значение функции в точке :

Пример 4: Найдем производную:

Вычислим производную в заданной точке:

Пример 6: Уравнение касательной составим по формуле
1) Вычислим значение функции в точке :

2) Найдем производную. Перед дифференцированием функцию выгодно упростить:


3) Вычислим значение производной в точке :

4) Подставим значения , и в формулу :



Пример 8: Преобразуем функцию:

Найдем производную:

Запишем дифференциал:

Пример 10: Найдем производную:

Запишем дифференциал:

Вычислим дифференциал в точке :

Пример 12: Найдем первую производную:

Найдем вторую производную:

Вычислим:

Автор: Емелин Александр

Производная по определению (через предел). Примеры решений

Когда человек сделал первые самостоятельные шаги в изучении математического анализа и начинает задавать неудобные вопросы, то уже не так-то просто отделаться фразой, что «дифференциальное исчисление найдено в капусте». Поэтому настало время набраться решимости и раскрыть тайну появления на свет таблицы производных и правил дифференцирования. Начало положено в статье о смысле производной, которую я настоятельно рекомендую к изучению, поскольку там мы как раз рассмотрели понятие производной и начали щёлкать задачи по теме.

Этот же урок носит ярко выраженную практическую направленность, более того, рассматриваемые ниже примеры, в принципе, можно освоить и чисто формально (например, когда нет времени/желания вникать в суть производной). Также крайне желательно (однако опять не обязательно) уметь находить производные «обычным» методом – хотя бы на уровне двух базовых занятий: Как найти производную? и Производная сложной функции.

Но без чего-чего сейчас точно не обойтись, так это без пределов функций. Вы должны ПОНИМАТЬ, что такое предел и уметь решать их, как минимум, на среднем уровне. А всё потому, что производная функции в точке задаётся формулой:

Напоминаю обозначения и термины:
называют приращением аргумента;
приращением функции;
– это ЕДИНЫЕ символы («дельту» нельзя «отрывать» от «икса» или «игрека»).

Очевидно, что является «динамической» переменной, – константой и результат вычисления предела – ЧИСЛОМ. И в самом деле, ведь производная в точке – это число (см. практикум Простейшие задачи дифференцирования).

В качестве точки можно рассмотреть ЛЮБОЕ значение , принадлежащее области определения функции , в котором существует производная.

! Примечание: оговорка «в котором существует производная» – в общем случае существенна! Так, например, точка хоть и входит в область определения функции , но производной там не существует. Поэтому формула не применима в точке , и укороченная формулировка без оговорки будет некорректна. Это же замечание следует делать для некоторых других функций с «обрывами» графика, в частности, для арксинуса, арккосинуса, а также у функций, графики которых содержат «плохие» остриё и изломы. Данные моменты подробнее разъясняются в статье Интервалы монотонности и экстремумы функции.

Таким образом, после замены , получаем вторую рабочую формулу:

Обратите внимание на коварное обстоятельство, которое может запутать чайника: в данном пределе «икс», будучи сам независимой переменной, исполняет роль статиста, а «динамику» задаёт опять же приращение . Результатом вычисления предела является производная функция .

Исходя из вышесказанного, сформулируем условия двух типовых задач:

– Найти производную в точке, используя определение производной.

– Найти производную функцию, используя определение производной. Эта версия, по моим наблюдениям, встречается заметно чаще и ей будет уделено основное внимание.

Принципиальное отличие заданий состоит в том, что в первом случае требуется найти число, а во втором – функцию.

Не нашли то, что искали? Воспользуйтесь поиском:

Определение производных высших порядков

Здесь мы рассматриваем случай, когда переменная y зависит от переменной x явным образом:
.
Дифференцируя функцию по переменной x , получаем производную первого порядка, или просто производную:
.
В результате получаем новую функцию , которая является производной функции . Дифференцируя эту новую функцию по переменной x , получаем производную второго порядка:
.
Дифференцируя функцию , получаем производную третьего порядка:
.
И так далее. Дифференцируя исходную функцию n раз, получаем производную n -го порядка или n-ю производную:
.

Производные могут обозначаться штрихами, римскими цифрами, арабскими цифрами в скобках или дробью из дифференциалов. Например, производные третьего и четвертого порядков могут обозначаться так:
;
.

Ниже приведены формулы, которые могут быть полезными при вычислении производных высших порядков.

Полезные формулы производных n-го порядка

Производная суммы функций:
,
где – постоянные.

Формула Лейбница производной произведения двух функций:
,
где
– биномиальные коэффициенты.

Пример 1

Найти производные первого и второго порядка следующей функции:
.

Находим производную первого порядка. Выносим постоянную за знак производной и применяем формулу из таблицы производных:
.
Применяем правило дифференцирования сложной функции:
.
Здесь .
Применяем правило дифференцирования сложной функции и используем найденные производные:
.
Здесь .

Итак, мы нашли производную первого порядка:
.
Чтобы найти производную второго порядка, нам нужно найти производную от производной первого порядка, то есть от функции:
.
Чтобы не путаться с обозначениями, обозначим эту функцию буквой :
(П1.1) .
Тогда производная второго порядка от исходной функции является производной от функции :
.

Находим производную от функции . Это проще сделать с помощью логарифмической производной. Логарифмируем (П1.1):
.
Теперь дифференцируем:
(П1.2) .
Но – это постоянная. Ее производная равна нулю. Производную от мы уже нашли. Находим остальнве производные по правилу дифференцирования сложной функции.
;
;
.
Подставляем в (П1.2):

.
Отсюда
.

Пример 2

Найти производную третьего порядка:
.

Находим производную первого порядка. Для этого выносим постоянную за знак производной, используем таблицу производных и применяем правило нахождения производной сложной функции .

.
Здесь .
Итак, мы нашли производную первого порядка:
.

Находим производную второго порядка. Для этого находим производную от . Применяем формулу производной дроби.
.
Производная второго порядка:
.

Теперь находим искомую производную третьего порядка. Для этого дифференцируем .
;
;

.

Производная третьего порядка равна
.

Пример 3

Найти производную шестого порядка следующей функции:
.

Если раскрыть скобки, то будет ясно, что исходная функция является многочленом степени . Запишем ее в виде многочлена:
,
где – постоянные коэффициенты.

Далее применим формулу n-й производной степенной функции:
.
Для производной шестого порядка ( n = 6 ) имеем:
.
Отсюда видно, что при . При имеем:
.

Используем формулу производной суммы функций:

.
Таким образом, чтобы найти производную шестого порядка исходной функции, нам надо найти только коэффициент многочлена при старшей степени . Находим его, перемножая старшие степени в произведениях сумм исходной функции:

.
Отсюда . Тогда
.

Пример 4

Найти n-ю производную функции
.

Пример 5

Найти n-ю производную следующей функции:
,
где и – постоянные.

В этом примере вычисления удобно выполнять с использованием комплексных чисел. Пусть мы имеем некоторую комплексную функцию
(П5.1) ,
где и – функции от действительной переменной x ;
– мнимая единица, .
Дифференцируя (П.1) n раз, имеем:
(П5.2) .
Иногда проще найти n-ю производную от функции . Тогда n-е производные функций и определяются как действительная и мнимая части от n-й производной :
;
.

Применим этот прием для решения нашего примера. Рассмотрим функцию
.
Здесь мы применили формулу Эйлера
,
и ввели обозначение
.
Тогда n-я производная исходной функции определяется по формуле:
.

Найдем n-ю производную функции
.
Для этого применим формулу:
.
В нашем случае
.
Тогда
.

Итак, мы нашли n-ю производную комплексной функции :
,
где .
Найдем действительную часть функции .
Для этого представим комплексное число в показательной форме:
,
где ;
; .
Тогда
;

.

Пусть , .
Тогда ;
.
При ,
,
,
.
И мы получаем формулу n-й производной косинуса:
.

Автор: Олег Одинцов . Опубликовано: 16-12-2016

Автор статьи

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение 1

Функция $z$, заданная уравнением

[z=F(u,v),]

в котором $u$ и $v$ – функции независимых переменных $x$ и $y$, называется сложной функцией от аргументов $x,y$.

Замечание 1

Запись функции $z$ через переменные $x,y$ выглядит следующим образом:

[z=F[varphi (x,y),psi (x,y)].]

Пример 1

Записать $z(u,v)$ и виде $z(x,y)$, если:

[z=u^{2} v+u, u=x+1, v=x+e^{y} .]

Решение:

Подставим в выражение для $z(u,v)$ выражения $u=x+1$ и $v=x+e^{y} $, получим:

$begin{array}{l} {z=u^{2} v+u=(x+1)^{2} cdot (x+e^{y} )+x+1=(x+1)cdot ((x+1)cdot (x+e^{y} )+1)=} \ {=(x+1)cdot (x^{2} +x+xcdot e^{y} +e^{y} +1)=(x+1)cdot (x^{2} +xcdot (1+e^{y} )+e^{y} +1)=(x+1)cdot (x^{2} +(x+1)cdot (1+e^{y} ))} end{array}$ Таким образом,

[z=(x+1)cdot (x^{2} +(x+1)cdot (1+e^{y} )).]

Пусть функции $F(u,v),varphi (x,y),psi (x,y)$ имеют непрерывные частные производные по все своим аргументам. Тогда:

  • $frac{partial z}{partial x} =frac{partial F}{partial u} cdot frac{partial u}{partial x} +frac{partial F}{partial v} cdot frac{partial v}{partial x} $ – частная производная функции $z$ по аргументу $x$;

  • $frac{partial z}{partial y} =frac{partial F}{partial u} cdot frac{partial u}{partial y} +frac{partial F}{partial v} cdot frac{partial v}{partial y} $ – частная производная функции $z$ по аргументу $y$.

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

Пример 2

Найти частные производные заданной функции $z(u,v)$, если:

[z=u^{2} v+u, u=x+1, v=x+e^{y} .]

Решение:

Частные производные $frac{partial z}{partial u} ,frac{partial z}{partial v} $ имеют вид:

[frac{partial z}{partial u} =2uv+1,frac{partial z}{partial v} =u^{2} .]

Частные производные $frac{partial u}{partial x} ,frac{partial u}{partial y} $ имеют вид:

[frac{partial u}{partial x} =1,frac{partial u}{partial y} =0.]

Частные производные $frac{partial v}{partial x} ,frac{partial v}{partial y} $ имеют вид:

[frac{partial v}{partial x} =1,frac{partial v}{partial y} =e^{y} .]

Частные производные заданной функции $z(u,v)$ имеют вид:

[begin{array}{l} {frac{partial z}{partial x} =(2uv+1)cdot 1+u^{2} cdot 1=u^{2} +2uv,} \ {frac{partial z}{partial y} =(2uv+1)cdot 0+u^{2} cdot e^{y} =u^{2} cdot e^{y} } end{array}]

Пусть функция $w$ задана уравнением

[w=F(z,u,v,s),]

в котором $z,u,v,s$ – функции независимых переменных $x$ и $y$, называется сложной функцией от аргументов $x,y$.

Тогда формулы для нахождения частных производных запишутся следующим образом:

  • $frac{partial w}{partial x} =frac{partial w}{partial z} cdot frac{partial z}{partial x} +frac{partial w}{partial u} cdot frac{partial u}{partial x} +frac{partial w}{partial v} cdot frac{partial v}{partial x} +frac{partial w}{partial s} cdot frac{partial s}{partial x} $ – частная производная функции $z$ по аргументу $x$;

  • $frac{partial w}{partial y} =frac{partial w}{partial z} cdot frac{partial z}{partial y} +frac{partial w}{partial u} cdot frac{partial u}{partial y} +frac{partial w}{partial v} cdot frac{partial v}{partial y} +frac{partial w}{partial s} cdot frac{partial s}{partial y} $ – частная производная функции $z$ по аргументу $y$.

«Производная сложной функции, полная производная и полный дифференциал сложной функции» 👇

Пример 3

Найти частные производные заданной функции $w=F(z,u,v)$, если:

[w=zuv, z=x^{2} +y, u=x+1, v=x+e^{y} .]

Решение:

Частные производные $frac{partial w}{partial z} ,frac{partial w}{partial u} ,frac{partial w}{partial v} $ имеют вид:

[frac{partial w}{partial z} =uv,frac{partial w}{partial u} =zv,frac{partial w}{partial v} =zu.]

Частные производные $frac{partial z}{partial x} ,frac{partial z}{partial y} $ имеют вид:

[frac{partial z}{partial x} =2x,frac{partial z}{partial y} =1.]

Частные производные $frac{partial u}{partial x} ,frac{partial u}{partial y} $ имеют вид:

[frac{partial u}{partial x} =1,frac{partial u}{partial y} =0.]

Частные производные $frac{partial v}{partial x} ,frac{partial v}{partial y} $ имеют вид:

[frac{partial v}{partial x} =1,frac{partial v}{partial y} =e^{y} .]

Частные производные заданной функции $w=F(z,u,v)$ имеют вид:

[frac{partial w}{partial x} =uvcdot 2x+zvcdot 1+zucdot 1=2uvx+zv+zu,] [frac{partial w}{partial y} =uvcdot 1+zvcdot 0+zucdot e^{y} =uv+zucdot e^{y} =ucdot (v+ze^{y} )]

Рассмотрим функцию $z=F(x,y,u,v)$, в которой $y,u,v$ зависят от одного аргумента $x$, т.е.

[y=f(x),u=varphi (x),v=psi (x).]

Данная функция является функцией одного аргумента $x$. Значит, можно рассматривать вопрос о поиске производной $frac{dz}{dx} $.

Определение 2

Полной производной заданной функции $z=F(x,y,u,v)$ нескольких переменных одного аргумента $x$ называется производная, вычисляемая по следующей формуле:

[frac{dz}{dx} =frac{partial z}{partial x} +frac{partial z}{partial y} cdot frac{dy}{dx} +frac{partial z}{partial u} cdot frac{du}{dx} +frac{partial z}{partial v} cdot frac{dv}{dx} .]

Пример 4

Найти полную производную заданной функции $z(y,u,v)$, если:

[z=u^{2} v+uy, y=x^{2} , u=x+1, v=ln x.]

Решение:

Частные производные $frac{partial z}{partial y} ,frac{partial z}{partial u} ,frac{partial z}{partial v} $ имеют вид:

[frac{partial z}{partial x} =0,frac{partial z}{partial y} =u,frac{partial z}{partial u} =2uv+y,frac{partial z}{partial v} =u^{2} .]

Производные $frac{dy}{dx} ,frac{du}{dx} ,frac{dv}{dx} $ имеют вид:

[frac{dy}{dx} =2x,frac{du}{dx} =1,frac{dv}{dx} =frac{1}{x} .]

Полная производная заданной функции $z(y,u,v)$ имеет вид:

[frac{dz}{dx} =ucdot 2x+(2uv+y)cdot 1+u^{2} cdot frac{1}{x} =2ux+2uv+y+frac{u^{2} }{x} .]

Определение 3

Полным дифференциалом заданной функции $z=F(u,v)$ нескольких переменных аргументов $x$ и $y$ называется запись вида:

[dz=frac{partial z}{partial u} cdot du+frac{partial z}{partial v} cdot dv, ]

где $du=frac{partial u}{partial x} cdot dx+frac{partial u}{partial y} cdot dy$ и $dv=frac{partial v}{partial x} cdot dx+frac{partial v}{partial y} cdot dy$.

Пример 5

Найти полный дифференциал заданной функции $z(u,v)$, если:

[z=u^{2} v+v, u=x+y^{2} , v=ln x+e^{y} .]

Решение:

Частные производные $frac{partial z}{partial u} ,frac{partial z}{partial v} $ имеют вид:

[frac{partial z}{partial u} =2uv+1,frac{partial z}{partial v} =u^{2} +1.]

Частные производные $frac{partial u}{partial x} ,frac{partial u}{partial y} $ имеют вид:

[frac{partial u}{partial x} =1,frac{partial u}{partial y} =2y.]

Частные производные $frac{partial v}{partial x} ,frac{partial v}{partial y} $ имеют вид:

[frac{partial v}{partial x} =frac{1}{x} ,frac{partial v}{partial y} =e^{y} .]

Дифференциалы $du,dv$ имеют вид:

[du=1cdot dx+2ydy=dx+2ydy,] [dv=frac{1}{x} cdot dx+e^{y} cdot dy.]

Полный дифференциал заданной функции $z(u,v)$ имеет вид:

[dz=(2uv+1)cdot (dx+2ydy)+(u^{2} +1)cdot (frac{1}{x} cdot dx+e^{y} dy)=] [=left(2uv+1+frac{u^{2} +1}{x} right)cdot dx+left((2uv+1)cdot 2y+(u^{2} +1)cdot e^{y} right)dy.]

Таким образом,

[dz=left(2uv+1+frac{u^{2} +1}{x} right)cdot dx+left((2uv+1)cdot 2y+(u^{2} +1)cdot e^{y} right)dy.]

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Добавить комментарий