Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл… Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие «интеграл»
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
«Интеграл»
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
- Производная от интеграла равна подынтегральной функции:
- Константу можно выносить из-под знака интеграла:
- Интеграл от суммы равен сумме интегралов. Верно также для разности:
Свойства определенного интеграла
- Линейность:
- Знак интеграла изменяется, если поменять местами пределы интегрирования:
- При любых точках a, b и с:
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Интегралы и их решение многих пугает. Давайте избавимся от страхов и узнаем, что это такое и как решать интегралы!
Интеграл – расширенное математическое понятие суммы. Решение интегралов или их нахождение называется интегрированием. Пользуясь интегралом можно найти такие величины, как площадь, объем, массу и другое.
Решение интегралов (интегрирование) есть операция обратная дифференцированию.
Чтобы лучше представлять, что есть интеграл, представим его в следующей форме. Представьте. У нас есть тело, но пока не можем описать его, мы только знаем какие у него элементарные частицы и как они расположены. Для того, чтобы собрать тело в единое целое необходимо проинтегрировать его элементарные частички – слить части в единую систему.
В геометрическом виде для функции y=f(x), интеграл представляет собой площадь фигуры ограниченной кривой, осью х, и 2-мя вертикальными линиями х=а и х=b .
Так вот площадь закрашенной области, есть интеграл от функции в пределах от a до b.
Не верится? Проверим на любой функции. Возьмем простейшую у=3. Ограничим функцию значениями а=1 и b=2. Построим:
Итак ограниченная фигура прямоугольник. Площадь прямоугольника равна произведению длины на ширину. В наше случае длина 3, ширина 1, площадь 3*1=3.
Попробуем решить тоже самое не прибегая к построению, используя интегрирование:
Как видите ответ получился тот же. Решение интегралов – это собирание во едино каких-либо элементарных частей. В случае с площадью суммируются полоски бесконечно малой ширины. Интегралы могут быть определенными и неопределенными.
Решить определенный интеграл значит найти значение функции в заданных границах. Решение неопределенного интеграла сводиться к нахождению первообразной.
F(x) – первообразная. Дифференцируя первообразную, мы получим исходное подынтегральное выражение. Чтобы проверить правильно ли мы решили интеграл, мы дифференцируем полученный ответ и сравниваем с исходным выражением.
Основные функции и первообразные для них приведены в таблице:
Таблица первообразных для решения интегралов
Основные приемы решения интегралов:
Решить интеграл, значит проинтегрировать функцию по переменной. Если интеграл имеет табличный вид, то можно сказать, что вопрос, как решить интеграл, решен. Если же нет, то основной задачей при решении интеграла становиться сведение его к табличному виду.
Сначала следует запомнить основные свойства интегралов:
Знание только этих основ позволит решать простые интегралы. Но следует понимать, что большинство интегралов сложные и для их решения необходимо прибегнуть к использованию дополнительных приемов. Ниже мы рассмотрим основные приемы решения интегралов. Данные приемы охватывают большую часть заданий по теме нахождения интегралов.
Также мы рассмотрим несколько базовых примеров решения интегралов на базе этих приемов. Важно понимать, что за 5 минут прочтения статьи решать все сложные интегралы вы не научитесь, но правильно сформированный каркас понимания, позволит сэкономить часы времени на обучение и выработку навыков по решению интегралов.
Основные приемы решения интегралов
1. Замена переменной.
Для выполнения данного приема потребуется хороший навык нахождения производных.
2. Интегрирование по частям. Пользуются следующей формулой.
Применения этой формулы позволяет казалось бы нерешаемые интегралы привести к решению.
3. Интегрирование дробно-рациональных функций.
– разложить дробь на простейшие
– выделить полный квадрат.
– создать в числителе дифференциал знаменателя.
4. Интегрирование дробно-иррациональных функций.
– выделить под корнем полный квадрат
– создать в числителе дифференциал подкоренного выражения.
5. Интегрирование тригонометрических функций.
При интегрировании выражений вида
применяет формулы разложения для произведения.
Для выражений
m-нечетное, n –любое, создаем d(cosx). Используем тождество sin2+cos2=1
m,n – четные, sin2x=(1-cos2x)/2 и cos2x=(1+cos2x)/2
Для выражений вида:
– Применяем свойство tg2x=1/cos2x – 1
С базовыми приемами на этой всё. Теперь выведем своего рода алгоритм:
Алгоритм обучения решению интегралов:
1. Разобраться в сути интегралов. Необходимо понять базовую сущность интеграла и его решения. Интеграл по сути есть сумма элементарных частей объекта интегрирования. Если речь идет об интегрирование функции, то интеграл есть площадь фигуры между графиком функции, осью х и границами интегрирования. Если интеграл неопределенный, то есть границы интегрирования не указаны, то решение сводиться к нахождению первообразной. Если интеграл определенный, то необходимо подставить значения границ в найденную функцию.
2. Отработать использование таблицы первообразных и основным свойства интегралов. Необходимо научиться пользоваться таблицей первообразных. По множеству функций первообразные найдены и занесены в таблицу. Если мы имеем интеграл, которые есть в таблице, можно сказать, что он решен.
3. Разобраться в приемах и наработать навыки решения интегралов.Если интеграла не табличного вида, то его решение сводиться к приведению его к виду одного из табличных интегралов. Для этого мы используем основные свойства и приемы решения. В случае, если на каких то этапах применения приемов у вас возникают трудности и непонимания, то вы более подробно разбираетесь именно по этому приему, смотрите примеры подобного плана, спрашиваете у преподавателя.
Дополнительно после решения интеграла на первых этапах рекомендуется сверять решение. Для этого мы дифференцируем полученное выражение и сравниваем с исходным интегралом.
Отработаем основные моменты на нескольких примерах:
Примеры решения интегралов
Пример 1:
Решить интеграл:
Интеграл неопределенный. Находим первообразную.
Для этого интеграл суммы разложим на сумму интегралов.
Каждый из интегралов табличного вида. Смотрим первообразные по таблице.
Решение интеграла:
Проверим решение(найдем производную):
Пример 2. Решаем интеграл
Интеграл неопределенный. Находим первообразную.
Сравниваем с таблицей. В таблице нет.
Разложить, пользуясь свойствами, нельзя.
Смотрим приемы. Наиболее подходит замена переменной.
Заменяем х+5 на t5. t5 = x+5 . Получаем.
Но dx нужно тоже заменить на t. x= t5 – 5, dx = (t5 – 5)’ = 5t4. Подставляем:
Интеграл из таблицы. Считаем:
Подставляем в ответ вместо t ,
Решение интеграла:
Пример 3. Решение интеграла:
Для решения в этом случае необходимо выделить полный квадрат. Выделяем:
В данном случае коэффициент 1/2 перед интегралом получился в результате замены dx на 1/2*d(2x+1). Если вы найдете производные x’ = 1 и 1/2*(2x+1)’= 1, то поймете почему так.
В результате мы привели интеграл к табличному виду.
Находим первообразную.
В итоге получаем:
Для закрепления темы интегралов рекомендуем также посмотреть видео.
В нем мы на примере физики показываем практическое применение интегрирования, а также решаем еще несколько задач.
Надеюсь вопрос, как решать интегралы для вас прояснился. Мы дорабатываем статью по мере поступления предложений. Поэтому если у вас появились какие то предложения или вопросы по теме решения интегралов, пишите в комментариях.
Рекламная заметка: Для особо пытливых умов советуем Видео-лекции по математическому программированию. Программирование одна из дочек математики!
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
ПОЛНЫЙ ИНТЕГРАЛ
- ПОЛНЫЙ ИНТЕГРАЛ
-
– решение и ( х, а). x=(x1, . . ., х n), a=(a1 . . ., an), дифференциального уравнения с частными производными 1-го порядка
(1)
к-рое зависит от ппараметров a1, . . ., а n и в рассматриваемой области удовлетворяет условию
Если и( х, а).рассматривать как n-параметрическое семейство решений, то огибающая любого его ( п-1)-параметрического подсемейства, выделяемого условием
является решением уравнения (1). При этом линии касания поверхностей, задаваемых полным интегралом, и огибающей являются характеристиками (1). С помощью П. и. можно описать решения характеристич. системы обыкновенных дифференциальных уравнений, отвечающей уравнению (1), и, следовательно, обратить метод Коши, к-рый сводит решение уравнения (1) к решению характеристич. системы. Этот подход применяется в аналитич. механике, где требуется найти решение канонич. системы обыкновенных дифференциальных уравнений
(2)
Эта система является характеристической для уравнения Я коби
(3)
Если для уравнения (3) П. и. u=u(x1, . . . , х n, t. al ,…. an)+a0 известен, то 2n интегралов канонич. системы (2) даются равенствами ,
, где ai,bi – произвольные постоянные.
А. П. Солдатов.
Математическая энциклопедия. — М.: Советская энциклопедия.
.
1977—1985.
Полезное
Смотреть что такое “ПОЛНЫЙ ИНТЕГРАЛ” в других словарях:
-
Интеграл Зиверта — (интегральный секанс) специальная функция, возникающая в задачах о распространении излучения от протяжённого источника. Назван по имени шведского физика Рольфа Зиверта, который ввёл его в 1921 году.[1] Она представляет собой неберущийся интеграл … Википедия
-
интеграл — Латинское – integralis, integer (целый, полный). В русском языке слово «интеграл» как математический термин появилось в 50–70 х гг. XVIII в. из французского языка. Впервые его ввел в обиход швейцарский математик Я. Бернулли, опираясь на латинское … Этимологический словарь русского языка Семенова
-
интеграл — Заимств. во второй половине XVIII в. из франц. яз., где оно является неологизмом швейцарского математика Я. Бернулли на базе лат. integralis, суф. производного от integer «целый, полный» … Этимологический словарь русского языка
-
Эллиптический интеграл — В интегральном исчислении, эллиптический интеграл появился в связи с задачей вычисления длины дуги эллипса и был впервые исследован Джулио Фаньяно и Леонардом Эйлером. В современном представлении, эллиптический интеграл это некоторая… … Википедия
-
ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера
-
ВАРИАЦИОННЫЕ ПРИНЦИПЫ КЛАССИЧЕСКОЙ МЕХАНИКИ — основные, исходные положения аналитич. механики, математически выраженные в форме вариационных соотношений, из к рых как логпч. следствия вытекают дифференциальные уравнения движения, а также все положения и законы механики. В В. п. к. м.… … Математическая энциклопедия
-
ГАМИЛЬТОНА – ЯКОБИ ТЕОРИЯ — раздел классического вариационного исчисления и аналитич. механики, в к ром задача нахождения экстремалей (или задача интегрирования гамильтоновой системы уравнений) сводится к интегрированию нек рого уравнения с частными производными 1 го… … Математическая энциклопедия
-
ГАМИЛЬТОНОВА СИСТЕМА — система обыкновенных дифференциальных уравнений для 2га неизвестных ( обобщенные импульсы ) и ( обобщенные координаты ), имеющая вид: где Н нек рая функция от наз. Гамильтона функцией, или гамильтонианом, системы (1). Г. с. наз. также… … Математическая энциклопедия
-
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА — уравнение, к рое содержит хотя бы одну производную 2 го порядка от неизвестной функции и(х)и не содержит производных более высокого порядка. Напр., линейное уравнение 2 го порядка имеет вид где точка х ( х 1, х 2, …, х п )принадлежит нек рой… … Математическая энциклопедия
-
ЧЕТАЕВА УРАВНЕНИЯ — общие канонич. уравнения механики голономных систем, представимые с помощью нек рой группы Ли бесконечно малых преобразований и эквивалентные Пуанкаре уравнениям. Если вместо независимых переменных определяющих действительные перемещения, ввести… … Математическая энциклопедия
В настоящей статье научимся вычислять криволинейный интеграл от полного дифференциала.
Схема решения:
- сначала нужно убедиться, что подынтегральная функция является полным дифференциалом
- дальше найти интеграл между заданными точками.
Формула Ньютона-Лейбница для криволинейного интеграла от полного дифференциала
Криволинейный интеграл имеет одно полезное для вычислений свойство, он не зависит от формы кривой, по которой интегрируем.
Поэтому вместо интегрировать по прямой между двумя точками строят ломаную параллельно осям координат и интегрируют по ней.
За счет этого один из дифференциалов в интеграле превращается в нуль, таким образом упрощаются вычисления.
Детальнее алгоритм проверки подынтегрального выражения на полный дифференциал и вычисление криволинейных интегралов приведены в следующих 6 примерах.
Пример 1 Убедившись, что подынтегральное выражение является полным дифференциалом, вычислить криволинейный интеграл int[(x+y)dx+(x-y)dy]
Решение: Подынтегральные функции являются первобытными для полного дифференциала
(x+y)dx+(x-y)dy.
Выпишем P=P(x, y)=x+y, Q=Q(x, y)=x-y.
но найдем частичные производные первого порядка функций P(x, y) и Q(x, y):
Сравнением убеждаемся, что частичные производные равны
поэтому подынтегральное выражение (x+y)dx+(x-y)dy является полным дифференциалом.
Криволинейный интеграл от точки (0,1) к точке (2,3) будем вычислять вдоль прямых y=1 и x=2.
Так верно выполнять, поскольку на каждом интервале один из дифференциалов равен нулю, следовательно, интеграл упрощается.
Вычислим заданный криволинейный интеграл:
Пример 2 Убедившись, что подынтегральное выражение является полным дифференциалом, вычислить криволинейный интеграл
Решение: Имеем подынтегральное выражение:
xdy+ydx.
Выпишем значение при дифференциалах
P=P(x, y)=y, Q=Q(x, y)=x.
Найдем частичные производные первого порядка функций P, Q:
Сравнением значений убеждаемся, что подынтегральное выражение является полным дифференциалом.
Заданный криволинейный интеграл от точки (- 1,2) к точке (2,3) будем вычислять вдоль прямых y=2 и x=2.
На графике направление и контур интегрирования имеют вид
Выпишем как буду изменяться координаты и дифференциалы на каждом интервале
Найдем криволинейный интеграл через сумму двух:
Пример 3 Убедившись, что подынтегральное выражение является полным дифференциалом, вычислить криволинейный интеграл
где f(u) непрерывная функция.
Решение: Выписываем подынтегральное выражение:
f(x+y)(dx+dy)=f(x+y)dx+f(x+y)dy.
Отсюда P=P(x, y)=f(x+y), Q=Q(x, y)=f(x+y).
Поскольку P, Q симметрично содержат переменные, то их частичные производные
равны, а это значит что подынтегральное выражение является полным дифференциалом.
Криволинейный интеграл от точки (0,0) к точке (a, b) будем вычислять вдоль прямых y=0 и x=a.
Выпишем пределы интеграла и дифференциалы
Криволинейный интеграл упрощаем с помощью замены переменных:
здесь f(u) заданная непрерывная функция.
Пример 4 Убедившись, что подынтегральное выражение является полным дифференциалом, вычислить криволинейный интеграл
Пример 5 Убедившись, что подынтегральное выражение является полным дифференциалом, вычислить криволинейный интеграл
вдоль путей, которые не пересекают ось Oy.
Решение: Имеем подынтегральное выражение:
Отсюда P=P(x, y)=y/x2, Q=Q(x, y)=-1/x.
Вычислим частичные производные функций P(x, y), Q(x, y):
они равны между собой, поэтому подынтегральное выражение является полным дифференциалом.
Криволинейный интеграл от точки (2,1) к точке (1,2) будем вычислять вдоль прямых x=2 и y=2.
Запишем диапазон изменения пределов интеграла и дифференциалы
Вычислим заданный криволинейный интеграл:
Пример 6 Убедившись, что подынтегральное выражение является полным дифференциалом, вычислить криволинейный интеграл
вдоль кривых, что не проходят через начала координат.
Решение: Подынтегральное выражение разобьем на сумму двух:
Выписываем производные при дифференциалах
Найдем частичные производные первого порядка функций P, Q:
Сравнением значений делаем вывод что имеем полный дифференциал под интегралом.
Заданный криволинейный интеграл от точки (1,0) к точке (6,8) будем вычислять вдоль прямых y=0 и x=6, то есть на двух интервалах
В декартовой плоскости контур интегрирования имеет вид
Криволинейный интеграл равен 9
Приведенных примеров на вычисление криволинейного интеграла от полного дифференциала вполне достаточно, чтобы выучить алгоритм проверки подынтегральной функции на полный дифференциал.
Разбивать участок между точками на промежутки параллельные осям тоже не трудно.
Интегрировать Вы должны уметь хорошо прежде чем браться за подобные примеры.
Если имеете трудности в интегрировании обращайтесь к нам за помощью, думаю, договоримся!
Полный интеграл
Cтраница 1
Полный интеграл содержит в себе все частные интегралы; все они могут быть легко образованы из полного интеграла. Обратно же из частных интегралов полный интеграл не становится известным. Но, как будет видно в дальнейшем, в ряде случаев существует способ нахождения полного интеграла по частному.
[1]
Полный интеграл этого уравнения ищется методом разделения переменных в виде суммы функций, зависящих от различных переменных.
[2]
Полные интегралы с обобщенным разделением переменных допускают также некоторые нелинейные уравнения более сложного, чем ( 5), вида ( см. пример 1 в разд.
[3]
Полный интеграл ( 18) производит общий интеграл, если ввести п произвольных функций ал.
[4]
Полный интеграл его будет заключать в себе п произвольных постоянных, одна из которых является аддитивной и может быть опущена.
[5]
Полный интеграл теперь находится сразу.
[6]
Полный интеграл этого уравнения имеет два решения.
[7]
Полный интеграл столкновений с учетом взаимодействия электронов друг с другом и уравнение Больцмана. Как уже отмечалось [ см. формулу (7.13) ], при учете взаимодействия электронов друг с другом формула (7.85) сильно усложняется.
[8]
Полные интегралы вида ( 8) симметричны по аир.
[9]
Полный интеграл W находится обычным, хорошо разработанным методом.
[10]
Полный интеграл отключения W & определяется для каждого типа выключателей опытным путем в цепи с определенными заданными параметрами.
[12]
Найти полный интеграл, если имеем [ уравнение ] a2 dzy – f у dx О и полагаем dx постоянным.
[13]
Найти полный интеграл, если имеем [ уравнение ] сРу fay da 2 где полагаем dx постоянным.
[14]
Если полный интеграл известен, то можно принять фигурирующие в нем п произвольных постоянных за новые ( постоянные в силу Я 0) импульсы, а частные производные по ним – за новые ( постоянные.
[15]
Страницы:
1
2
3
4