§ 17. Цилиндр
17.1. Определение цилиндра и его элементов
Определение. Тело, которое образуется при вращении прямоугольника вокруг прямой, содержащей его сторону, называется цилиндром (рис. 141).
Круги, образованные вращением сторон прямоугольника, перпендикулярных оси вращения, называются основаниями цилиндра (верхним и нижним). Так как противоположные стороны прямоугольника равны, то основаниями цилиндра являются равные круги.
Рис. 141
Поверхность, образованная вращением стороны прямоугольника, параллельной оси вращения, называется боковой поверхностью цилиндра, а её площадь — площадью боковой поверхности цилиндра и обозначается Sбок. Объединение боковой поверхности цилиндра и двух его оснований называется полной поверхностью цилиндра, а её площадь обозначается Sполн. Таким образом,
Sполн = Sбок + 2Sосн.(1)
Высотой цилиндра называется перпендикуляр, проведённый из какой-либо точки одного основания цилиндра к плоскости другого. Длину этого перпендикуляра также называют высотой цилиндра. Отрезок, соединяющий точки окружностей оснований и перпендикулярный к их плоскостям, называется образующей цилиндра вращения. Отрезок оси вращения, заключённый внутри цилиндра, называется осью цилиндра.
Образующие цилиндра вращения перпендикулярны плоскостям его оснований, а в основании цилиндра — круг, поэтому такой цилиндр называется прямым круговым цилиндром (рис. 142, а).
Если основания прямого кругового цилиндра подвергнуть сжатию так, чтобы окружность основания преобразовалась в эллипс, то получим цилиндр, который называется эллиптическим цилиндром (рис. 142, б).
Так как окружность при параллельном проектировании изображается эллипсом, то изображения кругового и эллиптического цилиндров совпадают.
Цилиндр, образующие которого не перпендикулярны плоскостям его оснований, называется наклонным цилиндром (рис. 142, в).
Рис. 142
Рис. 143
Нам предстоит изучать лишь прямой круговой цилиндр, поэтому слова «прямой круговой» опускаем.
Поверхность, образованную вращением прямой, параллельной оси вращения, называют цилиндрической поверхностью вращения (рис. 143).
Уравнение x2 + y2 = r2 (r > 0) задаёт цилиндрическую поверхность вращения с осью вращения Oz и радиусом основания r. Из этого уравнения следует, что цилиндрическая поверхность является поверхностью второго порядка. (Подробнее о поверхностях второго порядка можно прочитать в «Дополнениях» в конце этой книги.)
17.2. Свойства цилиндра
а) Сечения цилиндра плоскостью. Так как цилиндр является телом вращения, то любое его перпендикулярное сечение есть круг, а перпендикулярное сечение боковой поверхности цилиндра — окружность; центры этих окружностей и кругов — точки пересечения секущих плоскостей и оси цилиндра (рис. 144).
Рис. 144
Рис. 145
Рис. 146
Рис. 147
Рис. 148
Если секущая плоскость пересекает ось цилиндра и не перпендикулярна ей, то в сечении может получиться эллипс (рис. 145) или его некоторая часть (рис. 146, 147). Это следует из того, что параллельной проекцией окружности на плоскость, не параллельную плоскости окружности, является эллипс. (Вспомните: наклонив цилиндрический стеклянный сосуд с водой, вы видите на поверхности воды эллипс или его часть.)
Сечение цилиндра плоскостью, проходящей через ось, называется осевым сечением цилиндра. Так как поворот пространства вокруг прямой на угол 180° является осевой симметрией относительно оси вращения, то ось прямого кругового цилиндра является его осью симметрии. Значит, осевым сечением цилиндра вращения является прямоугольник, стороны которого равны диаметру основания и образующей цилиндра (рис. 148). При этом все осевые сечения цилиндра — равные между собой прямоугольники.
Цилиндр, осевое сечение которого — квадрат, называют равносторонним цилиндром (рис. 149).
Так как все образующие цилиндра равны и параллельны друг другу, то любое сечение цилиндра плоскостью, параллельной его оси, есть прямоугольник, высота которого равна образующей цилиндра (рис. 150).
б) Изображение цилиндра. Чтобы построить изображение цилиндра, достаточно построить: 1) прямоугольник AВB1A1 и его ось OO1 (рис. 151); 2) два равных эллипса, центрами которых являются точки O и O1 и осями — отрезки АВ и A1В1. Выделив штрихами невидимые линии, получаем искомое изображение цилиндра.
Рис. 149
Рис. 150
Рис. 151
в) Касательная плоскость к цилиндру.
Определение. Плоскость, проходящая через образующую цилиндра перпендикулярно плоскости осевого сечения, проведённой через эту образующую, называется касательной плоскостью к цилиндру (рис. 152).
Рис. 152
Говорят, что плоскость α касается цилиндра (цилиндрической поверхности) по образующей DD1, каждая точка образующей DD1 является точкой касания плоскости α и данного цилиндра.
Через любую точку боковой поверхности цилиндра проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности цилиндра можно провести лишь одну плоскость, касательную к данному цилиндру в этой точке.
17.3. Развёртка и площадь поверхности цилиндра
Следует заметить, что развёртка поверхности вращения — понятие в определённой мере интуитивное. К тому же не для каждой поверхности тела вращения можно построить её развёртку. Иными словами, не каждую поверхность можно «развернуть» на плоскости. Например, не существует развёртки сферы (см. раздел «Дифференциальная геометрия» в конце этой книги).
Рис. 153
Развёртку цилиндра мы также введём на интуитивном уровне.
Пусть R — радиус основания, h — высота цилиндра.
Рис. 154
Рис. 155
Полная поверхность цилиндра состоит из его боковой поверхности и двух оснований — равных кругов. Если эту поверхность «разрезать» по образующей DD1 (рис. 153) и по окружностям оснований, затем боковую поверхность развернуть на плоскости, то получим развёртку полной поверхности цилиндра (рис. 154), состоящую из прямоугольника и двух равных кругов, касающихся противоположных сторон этого прямоугольника (рис. 155).
Попробуйте изготовить развёртку цилиндра и склеить из неё цилиндр.
За площадь боковой поверхности цилиндра принимается площадь её развёртки, т. е. площадь боковой поверхности цилиндра равна площади прямоугольника, у которого одна сторона равна длине окружности основания цилиндра, а другая сторона — высоте цилиндра:
Sбок = 2πRh.
Таким образом, доказана следующая теорема.
Теорема 26. Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту. ▼
Площадь круга радиуса R равна πR2, поэтому Sосн = πR2. Тогда для нахождения площади полной поверхность цилиндра справедливо:
Sполн = Sбок + 2Sосн = 2πRh + 2πR2 = 2πR(R + h).
Следствие. Пусть цилиндр образован вращением прямоугольника ABCD вокруг его высоты AD (рис. 156). Тогда
Sбок = 2πDC•BC. (1)
Рис. 156
Если EF — серединный перпендикуляр к образующей BC, проведённый из точки F оси l цилиндра, то EF = CD. Учитывая, что ВС = AD, получаем: Sбок = 2πEF•AD, т. е. боковая поверхность цилиндра равна произведению высоты цилиндра на длину окружности, радиус которой равен длине серединного перпендикуляра его образующей, проведённого из точки оcu цилиндра.
Это следствие найдёт своё применение в п. 19.7.
17.4. Призмы, вписанные в цилиндр и описанные около цилиндра
Нам предстоит решать задачи, в которых рассматриваются многогранники, вписанные в фигуры вращения и описанные около них.
Для правильного и наглядного изображения конфигураций из таких многогранников и фигур вращения необходимо верно изображать правильные многоугольники, вписанные в окружность (круг) или описанные около неё.
Определение. Призма называется вписанной в цилиндр, если основания призмы вписаны в основания цилиндра (рис. 157).
Рис. 157
Цилиндр в этом случае называют описанным около призмы.
Боковые рёбра призмы соединяют соответственные вершины её оснований, вписанных в основания цилиндра. Эти вершины лежат на окружностях оснований цилиндра. Образующие цилиндра соединяют соответственные точки окружностей его оснований и параллельны боковым рёбрам призмы. Следовательно, боковые рёбра вписанной в цилиндр призмы — образующие цилиндра.
Определение. Призма называется описанной около цилиндра, если основания призмы описаны около оснований цилиндра.
Рис. 158
Цилиндр при этом называют вписанным в призму (рис. 158).
Так как соответственные стороны оснований призмы параллельны друг другу и перпендикулярны радиусам оснований цилиндра, проведённым в точки касания, то плоскости боковых граней призмы являются касательными плоскостями к цилиндру: эти плоскости касаются поверхности цилиндра по образующим, соединяющим точки, в которых стороны оснований призмы касаются окружностей оснований цилиндра.
При изображении правильных призм, вписанных в цилиндр, следует руководствоваться алгоритмами построений изображений правильных многоугольников, вписанных в окружность.
Итак, для построения изображения правильной призмы, вписанной в цилиндр: 1) строим изображение цилиндра; 2) строим изображение правильного многоугольника, вписанного в верхнее основание цилиндра; 3) через вершины построенного вписанного многоугольника проводим образующие цилиндра; 4) в нижнем основании цилиндра последовательно соединяем концы этих образующих; 5) выделяем видимые и невидимые линии (отрезки) изображаемых фигур.
Рис. 159
На рисунке 159 изображены вписанные в цилиндр: призма, в основании которой прямоугольный треугольник (рис. 159, а); правильная четырёхугольная призма (рис. 159, б); правильная треугольная призма (рис. 159, в); правильная шестиугольная призма (рис. 159, г).
ЗАДАЧА (3.029). Диагональ осевого сечения равностороннего цилиндра равна a. Найти площади боковой и полной поверхностей правильной призмы, вписанной в этот цилиндр, если призма: а) треугольная; б) четырёхугольная; в) шестиугольная.
Рис. 160
Решение. Рассмотрим случай а). Пусть в равносторонний цилиндр вписана правильная призма ABCA1B1C1 (рис. 160); CDD1C1 — осевое сечение; OO1 = h — высота цилиндра; ОС = R — радиус основания цилиндра.
Так как цилиндр — равносторонний, то CDD1C1 — квадрат, значит, высота цилиндра равна диаметру его основания. Тогда в квадрате СDD1С1 находим CD = = a = h.
Далее, △ АВС — правильный, вписанный в основание, радиус которого R = = . Значит, сторона АВ и высота СЕ этого треугольника равны: АВ = R = , СЕ = R = a. Откуда
Sосн = = ;
S
бок = 3SABB1A1 = 3AB•BB1 = 3••a = .
Тогда
Sполн = Sбок + 2Sосн = + 2• = .
Ответ: a) ; .
Рис. 161
ЗАДАЧА (3.032). В равносторонний цилиндр, высота которого равна a, вписана правильная призма. Найти расстояние и угол между диагональю боковой грани призмы и осью цилиндра, если призма: а) треугольная; б) четырёхугольная; в) шестиугольная.
Решение. Рассмотрим случай б). Пусть ABCDA1B1C1D1 — вписанная в цилиндр правильная призма (рис. 161). Найдём расстояние и угол между осью OO1 цилиндра и скрещивающейся с ней (почему?) диагональю АB1 боковой грани ABB1A1 данной призмы.
Расстояние между скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проведёнными через эти прямые.
Если точка Е — середина отрезка AD, то расстояние между скрещивающимися прямыми AB1 и OO1 равно расстоянию между плоскостью грани ABB1A1 и параллельной ей (почему?) плоскостью сечения EFF1E1. Это расстояние равно длине отрезка ОK (где точка K — середина АВ), так как OK ⟂ (ABB1) и (ABB1) || (EFF1).
Поскольку данный цилиндр — равносторонний, то BDD1B1 — квадрат со стороной BD = ВВ1 = a. Тогда АВ = = . Значит, ОK = АЕ = = — искомое расстояние между прямыми ОО1 и АВ1.
Обозначим ∠ (OO1; AB1) = ϕ, M = AB1 ∩ A1B. Для нахождения угла ϕ проведём в грани ABB1A1 прямую KK1 || OO1. Тогда ϕ = ∠ (OO1; AB1) = ∠ (KK1; AB1). Так как KK1 || OO1, OO1 ⟂ (ABC), то MK ⟂ AB. Поэтому △ АKМ — прямоугольный. В этом треугольнике АK = , KМ = . Значит, tg ϕ = = , откуда ϕ = arctg .
Ответ: б) , arctg .
Во многих пособиях по геометрии за площадь боковой поверхности цилиндра принимают предел последовательности площадей боковых поверхностей правильных вписанных в цилиндр (или описанных около цилиндра) n-угольных призм при n → +∞.
Действительно, Sбок. пов. призм = h•Pосн. призм, где Росн. призм — периметр основания призмы, h — длина её высоты. Для правильных вписанных в цилиндр призм h — постоянная величина, равная длине высоты цилиндра, а предел последовательности периметров правильных многоугольников, вписанных в окружность (основание цилиндра), равен длине этой окружности. Таким образом, мы вновь получаем: Sбок = 2πRh.
17.5. Объём цилиндра
Напомним принятое нами соглашение, основанное на принципе Кавальери.
«Пусть даны два тела и плоскость. Если каждая плоскость, параллельная данной плоскости и пересекающая одно из данных тел, пересекает также и другое, причём площади сечений, образованных при пересечении обоих тел, относятся как m : n, то и объёмы этих тел относятся как m : n».
Рис. 162
Расположим цилиндр, имеющий высоту h и радиус основания R, и прямоугольный параллелепипед с рёбрами h, R, R так, чтобы их основания находились на двух параллельных плоскостях, расстояние между которыми равно h (рис. 162). Каждая плоскость, параллельная данным плоскостям и пересекающая цилиндр, пересекает также прямоугольный параллелепипед, причём площади образованных при пересечении обоих тел сечений относятся как π•R2 : R2 = π : 1. Тогда и для объёмов этих тел справедливо: Vцил : Vпарал = π : 1 или Vцил : (R2•h) = π : 1, откуда
Vцил = π•R2•h.
Если цилиндр высотой h пересечь плоскостью, параллельной его оси, то этот цилиндр разобьётся на два тела (рис. 163). Объёмы этих тел относятся как площади сегментов, образовавшихся в основании цилиндра (докажите это на основании принципа Кавальери). Следовательно, объём каждого из этих тел может быть вычислен по формуле
V = Sсегм•h.
Рис. 163
Рис. 164
Любая плоскость, проведённая через середину оси цилиндра, разбивает этот цилиндр на два равновеликих тела (рис. 164), объём V каждого из которых равен половине объёма данного цилиндра, т. е. V = π•R2•h.
Попробуйте, исходя из этой формулы, доказать, что в таком случае объём каждой части цилиндра (см. рис. 164) может быть вычислен по формуле:
V= π •R2•(a + b),
где a и b — длины отрезков, на которые образующая цилиндра делится секущей плоскостью.
Геометрические тела. Цилиндр.
Цилиндр − это геометрическое тело, которое ограничено цилиндрической поверхностью и 2-мя плоскостями, которые параллельны и пересекают ее.
ABCDEFG и abcdefg — это основания цилиндра. Расстояние между основаниями (KM) – высота цилиндра.
Цилиндрические сечения боковой поверхности кругового цилиндра.
Сечения, которые идут параллельно к основанию, будут являться кругами одного радиуса. Сечения, которые параллельны образующим цилиндра — это пары параллельных прямых (AB || CD). Сечения, не параллельные ни основанию, ни образующим, являются эллипсами.
Цилиндрическая поверхность образуется посредством движения прямой параллельно самой себе. Точка прямой, которая выделена, перемещается вдоль заданной плоской кривой – направляющей. Эта прямая называется образующей цилиндрической поверхности.
Прямой цилиндр – это такой цилиндр, в котором образующие перпендикулярны основанию. Если образующие цилиндра не перпендикулярны основанию, то это будет наклонный цилиндр.
Круговой цилиндр – цилиндр, основанием которого является круг.
Круглый цилиндр – такой цилиндр, который одновременно и прямой, и круговой.
Прямой круговой цилиндр определяется радиусом основания R и образующей L, которая равна высоте цилиндра H.
Призма – это частный случай цилиндра.
Формулы нахождения элементов цилиндра.
Площадь боковой поверхности прямого кругового цилиндра:
Площадь полной поверхности прямого кругового цилиндра:
Объем прямого кругового цилиндра:
Прямой круговой цилиндр со скошенным основанием либо кратко скошенный цилиндр определяют с помощью радиуса основания R, минимальной высоты h1 и максимальной высоты h2.
Определение цилиндра: его основание и высота, разновидности
Разбираемся в особенностях трехмерного геометрического тела под названием цилиндр. Смотрим виды цилиндров, его свойства, какие бывают развертки, а также даем определения составным частям этой фигуры.
Что такое цилиндр в геометрии
Цилиндр — это трехмерное геометрическое тело, которое ограничено цилиндрической поверхностью и двумя параллельными плоскостями.
Цилиндрическая поверхность — это поверхность, которая образуется за счет движения в пространстве прямой (образующей) параллельно самой себе, пересекающей данную линию (направляющую).
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Основания — это одинаковые круги, которые ограничивают цилиндр и находятся параллельно друг другу.
Образующая — отрезок, который соединяет точки окружностей оснований цилиндра и перпендикулярный плоскостям этих оснований. Она равна высоте цилиндра или расстоянию от одного его основания до другого.
Виды цилиндров
Классификация цилиндров может быть разной в зависимости от тех или иных параметров:
- по наклону образующей;
- по форме основания.
У прямого цилиндра образующие строго перпендикулярны основаниям фигуры.
В случае, когда этот угол не равен (90^circ) , цилиндр называют наклонным.
Помимо кругов, в основаниях фигуры могут быть еще и эллипсы или другие замкнутые фигуры. Однако, кроме замкнутых форм, основании цилиндру может служить и парабола, и гипербола, и любая друга открытая функция. Такой цилиндр будет называться развернутым.
Как найти высоту цилиндра
Рассмотрим варианты нахождения высоты фигуры, а также длины ее образующей (которая равна этой высоте).
- Первым делом взглянем на формулу: (V=pi R^2times H) , где V — объем цилиндра, R — радиус основания, H — высота фигуры.
Через эту формулу можем выразить высоту:
Таким образом мы можем узнать H данного геометрического тела, если нам известен его объем и радиус. Если же вместо радиуса мы знаем диаметр, формула расчета будет выглядеть так:
В случае, когда нам известен диаметр и площадь фигуры, мы так же можем найти высоту. Следует обратить внимание, что в зависимости от того, будет ли известна площадь боковой или полной поверхности, формула будет меняться.
Для расчета S боковой поверхности (часть, ограниченная цилиндрической поверхностью) цилиндра мы используем формулу:
выражаем H и получаем:
Если известна S полной поверхности (включает в себя площадь оснований фигуры), используем формулу:
(S=2pi R(H+R)=2pi Rtimes H+2pi R^2)
выражаем H и получаем:
- Для третьего способа нужно будет провести прямоугольное сечение, ширина которого должна будет совпадать с диаметрами оснований, а длина — с образующими цилиндра.
Таким образом, получается прямоугольный треугольник САВ. А так как высота равна образующей, мы можем вычислить ее по теореме Пифагора:
Развертка
Как уже было упомянуто выше, всего существует две площади поверхности цилиндра: боковой поверхности и полной поверхности. У каждой из них также есть и своя развертка. Разберемся, как они выглядят.
Развертка боковой поверхности
Легче всего представить себе развертку боковой поверхности цилиндра, посмотрев на этикетку пластиковой бутылки. Когда вы ее отклеиваете, то видите прямоугольник. То же самое и с цилиндрическим геометрическим телом: развёрткой его боковой поверхности является прямоугольник. Его длина соответствует длине окружности, лежащей в основании, а ширина — высоте самой трехмерной фигуры.
Развертка полной поверхности
Если развернуть полную поверхность цилиндра, получится примерно то же самое, только с двумя дополнительными элементами в виде окружностей оснований. Выглядит это так:
Как найти образующую цилиндра
Если секущая плоскость пересекает ось цилиндра и не перпендикулярна ей, то в сечении может получиться эллипс (рис. 145) или его некоторая часть (рис. 146, 147). Это следует из того, что параллельной проекцией окружности на плоскость, не параллельную плоскости окружности, является эллипс. ( Вспомните : наклонив цилиндрический стеклянный сосуд с водой, вы видите на поверхности воды эллипс или его часть. )
Сечение цилиндра плоскостью, проходящей через ось, называется осевым сечением цилиндра. Так как поворот пространства вокруг прямой на угол 180 ° является осевой симметрией относительно оси вращения, то ось прямого кругового цилиндра является его осью симметрии. Значит, осевым сечением цилиндра вращения является прямоугольник, стороны которого равны диаметру основания и образующей цилиндра (рис. 148). При этом все осевые сечения цилиндра — равные между собой прямоугольники .
Цилиндр, осевое сечение которого — квадрат, называют равносторонним цилиндром (рис. 149).
Так как все образующие цилиндра равны и параллельны друг другу, то любое сечение цилиндра плоскостью, параллельной его оси, есть прямоугольник, высота которого равна образующей цилиндра (рис. 150).
б) Изображение цилиндра. Чтобы построить изображение цилиндра, достаточно построить: 1) прямоугольник AВB 1 A 1 и его ось OO 1 (рис. 151); 2) два равных эллипса, центрами которых являются точки O и O 1 и осями — отрезки АВ и A 1 В 1 . Выделив штрихами невидимые линии, получаем искомое изображение цилиндра.
в) Касательная плоскость к цилиндру.
Определение. Плоскость, проходящая через образующую цилиндра перпендикулярно плоскости осевого сечения, проведённой через эту образующую, называется касательной плоскостью к цилиндру (рис. 152).
Говорят, что плоскость α касается цилиндра ( цилиндрической поверхности ) по образующей DD 1 , каждая точка образующей DD 1 является точкой касания плоскости α и данного цилиндра.
Через любую точку боковой поверхности цилиндра проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности цилиндра можно провести лишь одну плоскость, касательную к данному цилиндру в этой точке.
17.3. Развёртка и площадь поверхности цилиндра
Следует заметить, что развёртка поверхности вращения — понятие в определённой мере интуитивное. К тому же не для каждой поверхности тела вращения можно построить её развёртку. Иными словами, не каждую поверхность можно «развернуть» на плоскости. Например, не существует развёртки сферы (см. раздел «Дифференциальная геометрия» в конце этой книги).
Развёртку цилиндра мы также введём на интуитивном уровне.
Пусть R — радиус основания, h — высота цилиндра.
Полная поверхность цилиндра состоит из его боковой поверхности и двух оснований — равных кругов. Если эту поверхность «разрезать» по образующей DD 1 (рис. 153) и по окружностям оснований, затем боковую поверхность развернуть на плоскости, то получим развёртку полной поверхности цилиндра (рис. 154), состоящую из прямоугольника и двух равных кругов, касающихся противоположных сторон этого прямоугольника (рис. 155).
Попробуйте изготовить развёртку цилиндра и склеить из неё цилиндр.
За площадь боковой поверхности цилиндра принимается площадь её развёртки , т. е. площадь боковой поверхности цилиндра равна площади прямоугольника, у которого одна сторона равна длине окружности основания цилиндра, а другая сторона — высоте цилиндра:
Таким образом, доказана следующая теорема.
Теорема 26. Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту. ▼
Площадь круга радиуса R равна π R 2 , поэтому S осн = π R 2 . Тогда для нахождения площади полной поверхность цилиндра справедливо:
S полн = S бок + 2 S осн = 2 π Rh + 2 π R 2 = 2 π R ( R + h ) .
Следствие. Пусть цилиндр образован вращением прямоугольника ABCD вокруг его высоты AD (рис. 156) . Тогда
S бок = 2 π DC • BC . (1)
Если EF — серединный перпендикуляр к образующей BC, проведённый из точки F оси l цилиндра, то EF = CD. Учитывая, что ВС = AD, получаем: S бок = 2 π EF • AD, т. е. боковая поверхность цилиндра равна произведению высоты цилиндра на длину окружности, радиус которой равен длине серединного перпендикуляра его образующей, проведённого из точки оcu цилиндра.
Это следствие найдёт своё применение в п. 19.7.
17 . 4 . Призмы, вписанные в цилиндр и описанные около цилиндра
Нам предстоит решать задачи, в которых рассматриваются многогранники, вписанные в фигуры вращения и описанные около них.
Для правильного и наглядного изображения конфигураций из таких многогранников и фигур вращения необходимо верно изображать правильные многоугольники, вписанные в окружность (круг) или описанные около неё.
Определение. Призма называется вписанной в цилиндр, если основания призмы вписаны в основания цилиндра (рис. 157).
Цилиндр в этом случае называют описанным около призмы.
Боковые рёбра призмы соединяют соответственные вершины её оснований, вписанных в основания цилиндра. Эти вершины лежат на окружностях оснований цилиндра. Образующие цилиндра соединяют соответственные точки окружностей его оснований и параллельны боковым рёбрам призмы. Следовательно, боковые рёбра вписанной в цилиндр призмы — образующие цилиндра.
Определение. Призма называется описанной около цилиндра, если основания призмы описаны около оснований цилиндра.
Цилиндр при этом называют вписанным в призму (рис. 158).
Так как соответственные стороны оснований призмы параллельны друг другу и перпендикулярны радиусам оснований цилиндра, проведённым в точки касания, то плоскости боковых граней призмы являются касательными плоскостями к цилиндру: эти плоскости касаются поверхности цилиндра по образующим , соединяющим точки, в которых стороны оснований призмы касаются окружностей оснований цилиндра.
При изображении правильных призм, вписанных в цилиндр, следует руководствоваться алгоритмами построений изображений правильных многоугольников, вписанных в окружность.
Итак, для построения изображения правильной призмы, вписанной в цилиндр: 1) строим изображение цилиндра; 2) строим изображение правильного многоугольника, вписанного в верхнее основание цилиндра; 3) через вершины построенного вписанного многоугольника проводим образующие цилиндра; 4) в нижнем основании цилиндра последовательно соединяем концы этих образующих; 5) выделяем видимые и невидимые линии (отрезки) изображаемых фигур.
На рисунке 159 изображены вписанные в цилиндр: призма, в основании которой прямоугольный треугольник (рис. 159, а ); правильная четырёхугольная призма (рис. 159, б ); правильная треугольная призма (рис. 159, в ); правильная шестиугольная призма (рис. 159, г ).
ЗАДАЧА (3.029). Диагональ осевого сечения равностороннего цилиндра равна a . Найти площади боковой и полной поверхностей правильной призмы, вписанной в этот цилиндр, если призма: а) треугольная; б) четырёхугольная; в) шестиугольная.
Решени е. Рассмотрим случай а). Пусть в равносторонний цилиндр вписана правильная призма ABCA 1 B 1 C 1 (рис. 160); CDD 1 C 1 — осевое сечение; OO 1 = h — высота цилиндра; ОС = R — радиус основания цилиндра.
Так как цилиндр — равносторонний, то CDD 1 C 1 — квадрат, значит, высота цилиндра равна диаметру его основания. Тогда в квадрате СDD 1 С 1 находим CD = = a = h.
Далее, △ АВС — правильный, вписанный в основание, радиус которого R = = . Значит, сторона АВ и высота СЕ этого треугольника равны: АВ = R = , СЕ = R = a. Откуда
S осн = = ;
S бок = 3 S ABB 1 A 1 = 3 AB • BB 1 = 3 • • a = .
S полн = S бок + 2 S осн = + 2 • = .
Ответ: a) ; .
ЗАДАЧА (3.032). В равносторонний цилиндр, высота которого равна a, вписана правильная призма. Найти расстояние и угол между диагональю боковой грани призмы и осью цилиндра, если призма: а) треугольная; б) четырёхугольная; в) шестиугольная.
Решени е. Рассмотрим случай б). Пусть ABCDA 1 B 1 C 1 D 1 — вписанная в цилиндр правильная призма (рис. 161). Найдём расстояние и угол между осью OO 1 цилиндра и скрещивающейся с ней (почему?) диагональю АB 1 боковой грани ABB 1 A 1 данной призмы.
Расстояние между скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проведёнными через эти прямые.
Если точка Е — середина отрезка AD, то расстояние между скрещивающимися прямыми AB 1 и OO 1 равно расстоянию между плоскостью грани ABB 1 A 1 и параллельной ей (почему?) плоскостью сечения EFF 1 E 1 . Это расстояние равно длине отрезка ОK (где точка K — середина АВ ), так как OK ⟂ ( ABB 1 ) и ( ABB 1 ) || ( EFF 1 ) .
Поскольку данный цилиндр — равносторонний, то BDD 1 B 1 — квадрат со стороной BD = ВВ 1 = a. Тогда АВ = = . Значит, ОK = АЕ = = — искомое расстояние между прямыми ОО 1 и АВ 1 .
Обозначим ∠ ( OO 1 ; AB 1 ) = ϕ , M = AB 1 ∩ A 1 B. Для нахождения угла ϕ проведём в грани ABB 1 A 1 прямую KK 1 || OO 1 . Тогда ϕ = ∠ ( OO 1 ; AB 1 ) = ∠ ( KK 1 ; AB 1 ) . Так как KK 1 || OO 1 , OO 1 ⟂ ( ABC ) , то MK ⟂ AB. Поэтому △ АKМ — прямоугольный. В этом треугольнике АK = , KМ = . Значит, tg ϕ = = , откуда ϕ = arctg .
Ответ: б) , arctg .
Во многих пособиях по геометрии за площадь боковой поверхности цилиндра принимают предел последовательности площадей боковых поверхностей правильных вписанных в цилиндр (или описанных около цилиндра) n- угольных призм при n → + ∞ .
Действительно, S бок. пов. призм = h • P осн. призм , где Р осн. призм — периметр основания призмы, h — длина её высоты. Для правильных вписанных в цилиндр призм h — постоянная величина, равная длине высоты цилиндра, а предел последовательности периметров правильных многоугольников, вписанных в окружность (основание цилиндра), равен длине этой окружности. Таким образом, мы вновь получаем: S бок = 2 π Rh.
17.5. Объём цилиндра
Напомним принятое нами соглашение, основанное на принципе Кавальери.
«Пусть даны два тела и плоскость. Если каждая плоскость, параллельная данной плоскости и пересекающая одно из данных тел, пересекает также и другое, причём площади сечений, образованных при пересечении обоих тел, относятся как m : n, то и объёмы этих тел относятся как m : n ».
Расположим цилиндр, имеющий высоту h и радиус основания R, и прямоугольный параллелепипед с рёбрами h, R, R так, чтобы их основания находились на двух параллельных плоскостях, расстояние между которыми равно h (рис. 162). Каждая плоскость, параллельная данным плоскостям и пересекающая цилиндр, пересекает также прямоугольный параллелепипед, причём площади образованных при пересечении обоих тел сечений относятся как π • R 2 : R 2 = π : 1. Тогда и для объёмов этих тел справедливо: V цил : V парал = π : 1 или V цил : ( R 2 • h ) = π : 1, откуда
V цил = π • R 2 • h.
Если цилиндр высотой h пересечь плоскостью, параллельной его оси, то этот цилиндр разобьётся на два тела (рис. 163). Объёмы этих тел относятся как площади сегментов, образовавшихся в основании цилиндра (докажите это на основании принципа Кавальери). Следовательно, объём каждого из этих тел может быть вычислен по формуле
Любая плоскость, проведённая через середину оси цилиндра, разбивает этот цилиндр на два равновеликих тела (рис. 164), объём V каждого из которых равен половине объёма данного цилиндра, т. е. V = π • R 2 • h.
Попробуйте, исходя из этой формулы, доказать, что в таком случае объём каждой части цилиндра (см. рис. 164) может быть вычислен по формуле:
V= π • R 2 • ( a + b ),
где a и b — длины отрезков, на которые образующая цилиндра делится секущей плоскостью.
Онлайн-урок: Однородный цилиндр массой M и радиусом R(рис.) вращается без трения вокруг горизонтальной оси под действием веса груза Р, прикрепленного к легкой нити ,намотанной на цилиндр. Найти угол ф поворота цилиндра в зависимости от времени, если t=0 ф=0
Дано:
М – масса цилиндра
R – радиус цилиндра
Р – вес груза
Найти:
Решение:
Согласно условию задачи выполним чертеж (Рис.1):
Рис. 1
Основное уравнение динамики вращательного движения имеет вид:
М = I·E
Где:
I – момент инерции системы
E – угловое ускорение системы
В свою очередь:
M = P·R
Тогда:
Уравнение угла поворота от времени в общем виде:
По условию задачи, в начальный момент времени
Получаем:
Есть вопросы по теме урока? Запишитесь на урок к этому репетитору
Возможно, вас еще заинтересует:
The equation of a cylinder in the upright position (i.e. with its axis along the vertical $z$ axis, is given by
$ mathbf{p}^T Q mathbf{p} = r^2 $
where $mathbf{p} = [x, y, z]^T $ , and $r$ is the radius of the cylinder, and the $3 times 3$ matrix is given by
$ Q = begin{bmatrix} 1 && 0 && 0 \ 0 && 1 && 0 \ 0 && 0 && 0 end{bmatrix} $
Now, if we rotate the axis of this center about an rotation axis $mathbf{u}$ that passes through the origin by an angle $theta$, then the rotation matrix $R$ will be
$ R = mathbf{u u}^T + (I – mathbf{u u}^T ) cos(theta) + S_u sin(theta) $
$S_u = begin{bmatrix} 0 && – u_z && u_y \ u_z&& 0 && – u_x \ -u_y && u_x && 0 end{bmatrix} $
The above formula is called the Rodrigues’ rotation matrix formula.
The image of a point on the cylinder $mathbf{p}$ is the point $mathbf{p’}$ given by
$ mathbf{p’} = R mathbf{p} $
From this, we have
$mathbf{p} = R^{-1} mathbf{p’} = R^T mathbf{p’} $
Substitute this in the equation of the cylinder, gives you,
$ mathbf{p’}^T R Q R^T mathbf{p’} = r^2 $
And this is the desired equation of the rotated cylinder.
For example, if the cylinder is rotate about the $y$ axis by $45^circ$, then the rotation matrix will be
$ R = dfrac{1}{sqrt{2}} begin{bmatrix} 1 && 0 && 1 \ 0 && sqrt{2} && 0 \ -1 && 0 && 1 end{bmatrix} $
The matrix we want is $ Q’ = R Q R^T$, and equals,
$ Q’ = R Q R^T = frac{1}{2}begin{bmatrix} 1 && 0 && 1 \ 0 && sqrt{2} && 0 \ -1 && 0 && 1 end{bmatrix} begin{bmatrix} 1 && 0 && 0 \ 0 && 1 && 0 \ 0 && 0 && 0 end{bmatrix} begin{bmatrix} 1 && 0 && -1 \ 0 && sqrt{2} && 0 \ 1 && 0 && 1 end{bmatrix} $
Multiplying the first two matrix from the left
$Q’ = dfrac{1}{2} begin{bmatrix} 1 && 0 && 0 \ 0 && sqrt{2} && 0 \ – 1 && 0 && 0 end{bmatrix} begin{bmatrix} 1 && 0 && -1 \ 0 && sqrt{2} && 0 \ 1 && 0 && 1 end{bmatrix} $
Multiplying these two matrices, gives us $Q’$
$Q’ = dfrac{1}{2} begin{bmatrix} 1 && 0 && – 1 \ 0 && 2 && 0 \ -1 && 0 && 1 end{bmatrix} $
Now the equation of the rotated cylinder is
$ mathbf{p’}^T Q’ mathbf{p’} = r^2 $
And since $mathbf{p’} = [x, y, z]^T $, then the equation is
$ x^2 + 2 y^2 + z^2 – 2 x z = 2 r^2 $
EDIT: However, there is an easier way to write the equation of a rotated cylinder, using its rotated axis. Note that
$ Q = (I – mathbf{kk}^T ) $
where $ mathbf{k} $ is the unit vector along the $z$ axis ($mathbf{k} = [0, 0, 1]^T$). Therefore, the matrix for the rotated cylinder as given above is
$ Q’ = R Q R^T = R (I – mathbf{k k}^T ) R^T = I – mathbf{a a}^T $
where $ mathbf{a} = R mathbf{k} $ is the rotated axis unit vector, i.e. it is the vector resulting from applying the rotation matrix to the original unit axis vector $k$.
So, now for our example, instead of all that derivation, just compute the rotated cylinder axis unit vector. Since we’re rotating the cylinder about the $y$ axis by $45^circ$, then the new axis is
$ mathbf{a} = R mathbf{k} =dfrac{1}{sqrt{2}} [1, 0, 1]^T $
Hence,
$Q’ = I – mathbf{a a}^T = I – dfrac{1}{2} begin{bmatrix} 1 && 0&& 1 \ 0 && 0 && 0 \ 1 && 0 && 1 end{bmatrix} = dfrac{1}{2} begin{bmatrix} 1 && 0 && -1 \ 0 && 2 && 0 \ -1 && 0 && 1 end{bmatrix} $
which is what we got earlier. And the same equation in $x,y,z$ follows.
EDIT 2
As another example (a general one), suppose you rotated the vector $mathbf{k}$ using the rotation matrix $R$, or you know the orientation of the final axis $mathbf{a}$ in space, then you can express this vector is cylindrical coordinates as follows
$ mathbf{a} = begin{bmatrix} sin(theta) cos(phi) \ sin(theta) sin(phi) \ cos(theta) end{bmatrix}$
Then the matrix $Q’$ is
$ Q’ = I – mathbf{a a}^T = begin{bmatrix} a && d && e \ d && b && f \ e && f && c end{bmatrix} $
And the equation of the cylinder will be
$ a x^2 + b y^2 + c y^2 + 2 d x y + 2 e x z + 2 f y z = r^2 $
На этой странице вы узнаете
- Как вода в кружке иллюстрирует сечение цилиндра?
- Как лист бумаги превратить в цилиндр?
Что общего у джентльмена 19 века, Вилли Вонка из «Чарли и шоколадная фабрика», Шерлока Холмса в экранизации «Безобразная невеста» и некоторых сценических костюмов? Цилиндр! О нем, вернее о фигуре цилиндра и поговорим в статье.
Понятие цилиндра
Сейчас мы говорим про мужской головной убор, который был популярен в 19 веке и стал достаточно узнаваем в массовой культуре. Оказывается, в математике также существует цилиндр. И они похожи по форме.
Цилиндр — тело вращения, полученное при вращении прямоугольника вокруг одной из его сторон.
Возможно, для уточнения некоторых терминов вам захочется заглянуть в статью «Тела вращения».
Если посмотреть на форму шляпы, то она действительно будет похожа на геометрическую фигуру. Встретить цилиндр можно и в наше время. Обычная кружка является цилиндром.
Прямая, вокруг которой мы крутили прямоугольник, чтобы получить цилиндр, — это ось цилиндра.
Также, как у Земли есть ось вращения, она есть и у цилиндра.
Наша кружка стоит на круглом дне. Это дно, как и самый верх кружки, будут называться основаниями цилиндра.
Снова посмотрим на стенки кружки. В цилиндре эта поверхность будет называться цилиндрической поверхностью. Ее также могут называть боковой поверхностью цилиндра.
Представим, что наша кружка раскрашена вертикальными линиями. Эти линии будут лежать на цилиндрической поверхности и перпендикулярны основаниям. У них есть название:
Образующая цилиндра — отрезок, соединяющий точки окружностей основания и перпендикулярный плоскостям оснований.
Все образующие, — а в цилиндре их очень-очень много, —лежат только на цилиндрической поверхности. Эта поверхность и состоит из множества образующих.
Узнаем ширину кружки. Для этого нужно измерить радиус дна. Этот же радиус будет радиусом основания, а в цилиндре он называется радиусом цилиндра.
Теперь найдем высоту кружки. Для этого нужно измерить расстояние от дна до самого верха кружки.
В математике это будет расстоянием между плоскостями, а ищется оно как длина перпендикуляра, опущенного из одной плоскости на другую. Подробнее про это можно прочесть в статье «Расстояния между фигурами».
Высота цилиндра — перпендикуляр, опущенный из плоскости одного основания на плоскость второго основания.
Свойства цилиндра
Рассмотрим, какими свойствами обладает цилиндр.
Свойство 1. Основания цилиндра равны и параллельны.
Это всегда два равных круга, лежащих в параллельных плоскостях.
Свойство 2. Образующие цилиндра равны и параллельны.
Поскольку все образующие перпендикулярны основаниям, то они параллельны между собой по свойству прямой и перпендикулярной ей плоскости. Подробнее про это свойство можно прочесть в статье «Углы в пространстве».
А равны они потому, что являются перпендикуляром к основаниям, то есть равны высоте цилиндра.
Свойство 3. Сечение цилиндра, проходящее через ось цилиндра, является прямоугольником. Такое сечение в цилиндре будет называться осевым сечением цилиндра.
Например, если разрезать тортик по диаметру, то место среза как раз будет прямоугольником.
Подробности про сечения фигур можно найти в статье «Сечения».
Свойство 4. Сечение цилиндра, проходящее параллельно оси цилиндра и перпендикулярно его основаниям, будет являться прямоугольником.
Свойство 5. Сечение цилиндра, перпендикулярное оси цилиндра, является кругом с радиусом, равным радиусу цилиндра. Такое сечение в цилиндре называется перпендикулярным сечением цилиндра.
Если налить в кружку воду, то ее поверхность примет круглую форму. При этом совершенно без разницы, сколько воды наливать: поверхность останется кругом.
Поскольку поверхность воды параллельна дну кружки, то есть основаниям цилиндра, то она является перпендикулярным сечением цилиндра.
Этим опытом можно подтвердить свойство 5.
Заметим, что все вышеописанные свойства относятся к прямому цилиндру.
Цилиндр также может быть наклонным. В этом случае ось цилиндра и его образующие не будут перпендикулярны основаниям.
Если мы разрежем поверхность цилиндра по одной из его образующих и как бы “развернем” ее, у нас получится прямоугольник.
Это также легко увидеть, если вспомнить художников с тубусами. Тубус имеет форму цилиндра, и свернутый прямоугольный лист принимает такую же форму.
Развертка боковой поверхности цилиндра — прямоугольник, одна сторона которого равна высоте цилиндра, а вторая — длине окружности его основания.
Поскольку развертка боковой поверхности цилиндра — это прямоугольник, то любой лист бумаги можно превратить в цилиндр. Для этого достаточно скрутить его в трубочку. При этом чем тоньше будет трубочка, тем меньше будет радиус цилиндра.
Формулы цилиндра
А если это прямоугольник, то мы знаем, как найти его площадь. Нам нужно умножить его длину на высоту. Так мы получаем площадь боковой поверхности цилиндра.
(S_{бок.} = 2 pi RH)
В этой формуле 2R — длина окружности основания, где R — его радиус, а Н — образующая (или высота) цилиндра. Подробнее про площадь прямоугольника и длину окружности (а также про площадь круга) можно прочесть в статьях «Параллелограмм» и «Окружность и круг».
Мы нашли площадь боковой поверхности. Как же теперь найти площадь полной поверхности?
Для этого нужно сложить площади боковой поверхности и оснований. Следовательно, мы получаем следующую формулу.
(S = S_{бок.} + 2S_{осн.} = 2 pi RH+2 pi R^2 = 2 pi R(H + R))
Допустим, мы решили сделать чашку очень вкусного чая, но чтобы правильно его заварить нам нужно знать точный объем воды. Для этого вычислим объем цилиндра. Воспользуемся следующей формулой:
(V = S_{осн.}H = pi R^2H)
В этой формуле R — радиус цилиндра, Н — высота.
Часто формулу объема можно применить для решения жизненных задач. Например, чтобы найти объем детали, погруженной в воду.
Пример 1. В цилиндрическом сосуде налито 1650 см3 жидкости. В этот сосуд опустили деталь. При этом уровень жидкости увеличился в 1,2 раза. Найдите объем детали. Ответ выразите в см3.
Решение.
Шаг 1. Выразим высоту жидкости в первый и второй раз. Пусть вначале уровень жидкости был равен х, значит после того, как в нее опустили деталь, он стал равен 1,2х.
Шаг 2. Вспомним физику и заметим, что объем жидкости в сосуде после того, как в него опустили деталь, будет равен сумме объемов жидкости и детали: V = Vж + Vд.
Шаг 3. С помощью объема жидкости выразим площадь основания сосуда:
Vж = Sосн.H
1650 = Sосн.x
(S_{осн} = frac{1650}{x})
Шаг 4. Подставим площадь основания в формулу объема жидкости после того, как в нее опустили деталь:
(V = S_{осн.}H = frac{1650}{x} * 1,2x = 1980)
Шаг 5. Тогда объем детали будет равен:
Vд = V — Vж
Vд = 1980 — 1650 =330
Ответ: 330 см3
Фактчек
- Цилиндр — тело вращения, полученное при вращении прямоугольника вокруг одной из его сторон. Цилиндр может быть прямым и наклонным. В наклонном цилиндре ось не перпендикулярна основаниям цилиндра.
- Цилиндр состоит из двух оснований и цилиндрической поверхности (боковой поверхности цилиндра). Основания имеют форму кругов, равны между собой и лежат в параллельных плоскостях. Развертка боковой поверхности имеет форму прямоугольника.
- Образующая цилиндра — отрезок, соединяющий точки окружностей основания и перпендикулярный плоскостям оснований. В прямом цилиндре образующая равна высоте цилиндра. Образующие равны и параллельны друг другу, а также образуют боковую поверхность цилиндра.
- Осевое сечение цилиндра проходит через его ось и является прямоугольником. Любое сечение, параллельное осевому, также будет являться прямоугольником. Перпендикулярное сечение проходит перпендикулярно оси цилиндра и параллельно его основаниям. Перпендикулярное сечение имеет форму круга.
Проверь себя
Задание 1.
Что такое образующая цилиндра?
- Ось вращения, с помощью которой получен цилиндр.
- Диаметр оснований цилиндра.
- Любой перпендикуляр, проведенный от одного основания к другому.
- Отрезок, соединяющий точки окружности основания.
Задание 2.
Площадь боковой поверхности цилиндра равняется 44. Его радиус равен 8. Найдите высоту цилиндра.
- 2,75
- 5,5
- (2,75 pi)
- 2
Задание 3.
Площадь основания цилиндра равна 16. Его высота равна 4. Найдите площадь полной поверхности цилиндра.
- 64
- (64 pi)
- 32
- (32 pi)
Задание 4.
Объем цилиндра равен 28, а его высота равняется 7. Найдите диаметр основания.
- 4
- 2
- 16
- 8
Ответы: 1. – 4 2. – 1 3. – 2 4. – 1