Как найти полосу пропускания контура

Амплитудно-частотная
характеристика последовательного
контура характеризуется тем, что на
резонансной частоте она имеет максимальное
значение. На частотах, отстоящих
значительно от резонансной частоты,
значения амплитудно-частотной
характеристики близки к нулю. Если к
контуру прикладывать сигналы одинаковой
амплитуды, но с разными частотами, то
сигналы с частотой, равной резонансной
частоте, будут создавать большой ток в
контуре и большие напряжения на реактивных
элементах. В этом случае говорят, что
контур пропускает этот сигнал. Если
частота сигнала значительно отличается
от 0,
то в контуре практически отсутствуют
электрические колебания. В этом случае
говорят, что контур такой сигнал
подавляет. Для оценки этих свойств
контура вводится понятие его полосы
пропускания.

Полосой
пропускания

называется интервал частот, включающий
резонансную частоту контура, на границах
которого значение тока контура меньше
значения тока на резонансной частоте
в заданное число раз.

Как
правило, за исключением особой аппаратуры,
требуется, чтобы на границе полосы
пропускания ток контура был меньше тока
на резонансной частоте враз.

На
рис.3.10 показано определение полосы
пропускания с помощью АЧХ. В соответствии
с заданным уровнем подавления на границе
полосы пропускания должно выполняться
условие:

. (3.31)

Значит
на границах полосы пропускания АЧХ
должна иметь значение:

. (3.32)
Исходя из этого, на рис.3.10 найдена полоса
пропускания, границы которой обозначаются
частотами 1
и 2.
Полоса пропускания обозначается как
и измеряется в единицах измерения
частоты. Тогда полоса пропускания будет
равна:

. (3.33)

В
зоне полосы пропускания АЧХ практически
симметрична относительно резонансной
частоты. Поэтому интервалы между
резонансной частотой и границами полосы
пропускания обозначим как ∆.

, .

С
учетом этого выражение для полосы
пропускания (3.33) принимает вид:

. (3.34)

Рассмотренный
способ определения полосы пропускания
возможен только при наличии графика
АЧХ. Это не всегда удобно.

Найдем
аналитическое выражение для определения
полосы пропускания. Для этого воспользуемся
формулой (3.29) определения АЧХ.

. (3.35)

Найдем,
какой имеет вид (3.35) для границ полосы
пропускания. Для этого предварительно
найдем выражение в круглых скобках
формулы (3.35) для 1
и 2.

Для
=1
получаем:

В
контурах радиоаппаратуры полоса
пропускания узкая и составляет единицы
килогерц, а резонансная частота высокая
и составляет сотни килогерц. Это позволяет
пренебречь величиной ∆
в числителе и знаменателе. Тогда
рассматриваемое соотношение принимает
вид:

Для
=2,
с учетом сказанного получаем:

Из
приведенного анализа видно, что
рассматриваемая часть формулы (3.35) на
граничных частотах 1
и 2
имеет
одинаковые выражения, отличающиеся
только знаком. Но так как рассмотренное
соотношение в формуле (3.35) находится в
квадрате, то эта формула для обеих границ
полосы пропускания имеет один и тот же
вид:


(3.36)

При
решении задачи о полосе пропускания в
общем виде вводится понятие коэффициента
неравномерности .
Он показывает, какую часть от резонансного
тока принимает ток контура на границах
полосы пропускания и имеет разные
значения в зависимости от вида аппаратуры
(0.707; 0.1; 0.01 и т. д.) Тогда, в соответствии
с понятием полосы пропускания, приравняем
(3.36) к коэффициенту неравномерности:

Решаем
это уравнение относительно 2∆
и с учетом (3.34) находим:

.

При
коэффициенте неравномерности

полоса пропускания одиночного
последовательного контура определяется
формулой:

(3.37)

На
границах полосы пропускания последовательный
одиночный колебательный контур обладает
рядом свойств, которые полезно знать
при расчете схем с его применением.

1.
Мощность, потребляемая контуром на
границах полосы пропускания, в 2 раза
меньше мощности, потребляемой контуром
на резонансной частоте.

Действительно,
на резонансной частоте мощность,
потребляемая контуром, выражается через
действующее значение тока контура
известным соотношением:

Обозначим
действующее значение тока на границе
полосы пропускания через I. Тогда, с
учетом (3.31), мощность, потребляемая
контуром на каждой из границ полосы
пропускания, равна:

2.
На границах полосы пропускания
сопротивление резистора контура R равно
модулю суммы его реактивных элементов:

На
резонансной частоте ток в контуре равен:

На
границах полосы пропускания ток контура
в общем виде (для =1
и =2)
определяется формулой:

С
учетом (3.31) приравняем эти токи:

После
несложных преобразований находим:

(3.38)

3.
На границах полосы пропускания фаза
тока контура относительно входного
сигнала равна 45.

Комплексное
значение тока контура равно:

.

Фаза
тока равна:

. (3.39)

Исходя
из (3.38), модуль аргумента (3.39) на границах
полосы пропускания равен 1. Исходя из
свойств ФЧХ, на частотах <0
контур имеет емкостные свойства (Х<0)
и, следовательно:

.

На
частотах >0
контур имеет индуктивные свойства (Х >
0), следовательно:

4.
На границах полосы пропускания обобщенная
расстройка
.

Из
(3.36) видно, что обобщенная расстройка,
с учетом ранее выполненного анализа
для 1
и
2
имеет вид:

,

где
“плюс” имеет место для 2,
а “минус” – для 1.

Тогда,
учитывая (3.34) и (3.37), получаем:

.

5.
На границе полосы пропускания модуль
полного сопротивления контура равен:

.

Это
легко проверить, учитывая второе из
рассмотренных свойств (3.38). Из выражения
модуля полного сопротивления контура
находим:

.

  1. Параллельный
    контур
    без
    диссипаций
    в
    реактивных
    ветвях

    полное
    сопротивление,
    резонанс
    в
    контуре,
    напряжение
    на
    контуре
    и
    токи
    в
    ветвях,
    векторная
    диаграмма.

Параллельные
колебательные контура

Параллельные
одиночные колебательные контура
характеризуются тем, что основные
элементы их – конденсатор и индуктивность
соединены между собой параллельно.
Резисторы могут быть включены как
параллельно с реактивными элементами,
так и последовательно. В первом случае
диссипация энергии в параллельных
ветвях, содержащих реактивные элементы,
отсутствует. Во втором случае в этих
ветвях имеют место диссипативные
процессы. Рассмотрим каждый из названных
видов параллельных контуров.

3.3.1.
Параллельный колебательный контур без
диссипации в реактивных ветвях

Общие
соотношения.

В параллельном колебательном контуре
без диссипации в реактивных ветвях
резистор включен параллельно с
конденсатором и индуктивностью, которые
здесь считаются идеальными (рис.3.18). Их
диссипации могут быть учтены в резисторе
по параллельной схеме замещения
(рис.1.4).

Сопротивление
контура
.
Для рассмотрения свойств контура
определим его полное сопротивление
K
(рис.3.18,в). Представим контур в виде
параллельно соединенных реактивных и
резистивного сопротивлений (рис.3.18,б).

Воспользуемся
проводимостями этих элементов:

; ; ; .

Как
известно, эквивалентная проводимость
параллельно соединенных элементов
равна сумме проводимостей этих элементов.
Тогда эквивалентная проводимость
контура имеет вид:

.

Отсюда
находим величину эквивалентного
сопротивления контура, выделяя в нем
вещественную и мнимую составляющие:

(3.50)

Представим
сопротивление контура в показательной
форме:

, (3.51)

где ;.

Напряжение
на контуре
.
В отличие от последовательного контура,
в параллельном контуре входным параметром
является ток контура iК(t),
а выходным – напряжение на контуре uК(t).
Это связано с особенностью функционирования
параллельных контуров в радиотехнических
устройствах, таких как резонансные
усилители, резонансные фильтры и др. В
связи с этим задаем ток с определенной
амплитудой и нулевой фазой, который в
гармонической форме записи и в комплексной
форме имеет виды:

; .

Напряжение
на контуре определяется в соответствии
с законом Ома:

, (3.52)

где , .

Токи
в контуре
.
Определим токи во всех ветвях контура.
Напряжение на контуре, а, значит,
напряжение, приложенное к каждой из
ветвей, имеет вид:

. (3.53)

Токи
в ветвях определяются по закону Ома:

,где.

, где
(3.54)

,где

Резонанс
в контуре
.
Условие резонанса и резонансная частота.
Как отмечалось, признаком резонанса
являются максимальные значения тока и
напряжения в схеме при определенной
частоте сигнала. При этом в полном
сопротивлении цепи мнимая составляющая
равна нулю. Это мы видели в последовательном
одиночном колебательном контуре.
Воспользуемся этим условием. Тогда из
выражения (3.50) видно, что условием
резонанса в контуре является выполнение
следующего равенства:

. (3.55)

Это
значит, что при резонансе сопротивления
конденсатора и катушки индуктивности
равны:

.

Решая
(3.55) относительно частоты, находим
выражение для резонансной частоты
контура:

. (3.56)

Определим
сопротивление контура, напряжение на
контуре и токи в ветвях на резонансной
частоте.

Сопротивление
контура на резонансной частоте можно
определить из (3.51). С учётом условия
резонанса (3.55) видно, что на резонансной
частоте модуль и фаза сопротивления
контура принимают значения:

, .

Напряжение
на контуре при резонансе определяется
из (3.53) с учётом равенства нулю фазы
сопротивления контура на резонансной
частоте

где

,
(3.57)

.

Токи
в ветвях контура при резонансе определяются
из (3.54) с учётом (3.55) и (3.57):

,
где ;

,
где
;
(3.58)

,
где.

В
силу равенства

видно, что токи в ветвях с индуктивностью
и конденсатором равны по величине, а по
фазе отличаются друг от друга на 180.
Это хорошо видно на векторной диаграмме
(рис.3.19). Совершенно очевидно,

что
в соответствии с первым законом Кирхгофа
контурный ток равен сумме токов ветвей
контура:

.

Однако,
как видно из векторной диаграммы, токи

и

при суммировании уничтожают друг друга
и контурный ток определяется током,
протекающим через резистор:

. (3.59)

В
силу рассмотренных свойств параллельного
контура, резонанс в параллельном контуре
еще называют резонансом токов.

Мощности
в контуре
.
Мгновенная мощность контура определяется
как произведение мгновенного тока
контура на мгновенное напряжение:

На
резонансной частоте ,
тогда

.

Средняя
мощность, потребляемая контуром, равна:

.

С
учетом (3.58) выражение для средней мощности
контура принимает вид:

.

В
полученном выражении мгновенной мощности
контура на резонансной частоте отсутствует
реактивная составляющая мощности.
Однако под действием контурного
напряжения через конденсатор и
индуктивность протекают токи. Определим
мгновенные мощности на этих элементах
так, как это делали при анализе идеальных
емкостного и индуктивного двухполюсников.

Для
емкостной ветви и индуктивной ветви
получим:

,

. (3.60)

При
резонансе
.
Из (3.60) следует, что мгновенные мощности
на конденсаторе и индуктивности равны
по величине и противоположны по фазе.

Добротность
контура
.
Добротность контура, как и прежде, найдем
из отношения амплитуды реактивной
мощности контура к средней мощности.
Для этого воспользуемся амплитудными
значениями мощностей на конденсаторе
и индуктивности (3.60). После очевидных
преобразований имеем:

. (3.61)

Из
(3.61) видно, что добротность контура без
диссипации в параллельных ветвях
(рис.3.18) тем выше, чем больше величина
R, и тем меньше затухают колебания в
контуре.

С
учетом полученного выражения для
добротности полное сопротивление
контура (3.50) примет вид:

(3.62)

Последнее
выражение для сопротивления контура
позволяет рассмотреть зависимость от
частоты его модуля и фазы:

,. (3.63)

На
рис.3.20 представлены эти зависимости.
Модуль сопротивления контура имеет
наибольшее значение на резонансной
частоте. Если R имеет конечное значение
(присутствует в контуре), то ZК0=R
(график 1). Если R стремится к бесконечности
(резистор отсутствует), то ZК0
также стремится к бесконечности (график
2).

Фазовая
характеристика сопротивления контура
позволяет установить его свойства на
различных частотах. Если воспользоваться
треугольником сопротивления, то видно,
что на низких частотах (слева от
резонансной частоты) контур должен
иметь свойства реального индуктивного
двухполюсника, а на высоких частотах
(справа от резонансной частоты) контур
должен иметь свойства реального
емкостного двухполюсника.

Сравним
амплитуды токов IL
и IC
с
амплитудой тока IR.
Используя соотношения (3.58), находим:

; .

Амплитудно-частотной
характеристикой (АЧХ)

параллельного контура называется
зависимость от частоты модуля напряжения
на контуре.

Как
и для последовательного контура, удобно
АЧХ для параллельного контура рассматривать
в приведенном виде. Для этого необходимо
найти модуль отношения напряжения на
контуре в комплексной форме при
произвольной частоте к напряжению на
контуре при резонансной частоте.

Напряжение
на контуре при произвольной частот и
на резонансной частоте находятся по
закону Ома:

; .

Для
удобства рассмотрения АЧХ здесь
напряжение на контуре и сопротивление
контура на резонансной частоте обозначены,
соответственно как
и.

Берем
отношение этих напряжений и, с учетом
(3.58) и что,
получаем:

. (3.64)

Модуль
полученного выражения (3.60) является
амплитудно-частотной характеристикой
параллельного контура.

. (3.65)

На
рис.3.21 представлены графики АЧХ
параллельного контура для двух значений
добротности. Увеличение добротности
делает график АЧХ более крутым.

Фазо-частотной
характеристикой

параллельного контура называется
зависимость от частоты фазы напряжения
на контуре.

Как
видно из (3.52), фаза напряжения на контуре
равна фазе комплексного сопротивления
контура. Учитывая (3.63), фазо-частотная
характеристика параллельного контура
принимает вид:

. (3.66)

На
рис.3.22 представлен график ФЧХ параллельного
контура. Так как фаза контурного тока
равна нулю, то ФЧХ контура показывает,
в каком фазовом соотношении (опережает,
совпадает, отстает) находится напряжение
по отношению к току. Эта информация
позволяет судить о свойствах контура.
Так, на резонансной частоте фаза
контурного напряжения равна нулю. Значит
на резонансной частоте напряжение
контура и ток совпадают по фазе. Исходя
из теории двухполюсников, этим свойством
обладает резистивный двухполюсник.
Следовательно, на резонансной частоте
контур может быть заменен резистором.
Об этом свойстве контура уже говорилось.

На
низких частотах (слева от резонансной
частоты) фаза контурного напряжения
положительная. Значит, в этом интервале
частот напряжение опережает ток контура.
Из теории двухполюсников известно, что
этим свойством обладает реальный
индуктивный двухполюсник. Следовательно,
на низких частотах параллельный контур
может быть заменен последовательно
соединенными резистором и индуктивностью.
На высоких частотах (справа от резонансной
частоты) фаза контурного напряжения
отрицательная. Значит, в этом интервале
частот контурное напряжение отстает
от контурного тока. Следовательно, на
этом интервале частот контур обладает
свойствами реального емкостного
двухполюсника, и может быть заменен
последовательно соединенными резистором
и конденсатором. Необходимо отметить,
что величины индуктивности и емкости
в схемах замещения контура индуктивным
и емкостным двухполюсниками не равны
значениям индуктивности и ёмкости
контура и на различных частотах будут
иметь различные значения.

Полоса
пропускания
.
Физический смысл полосы пропускания
резонансных контуров рассматривался
для последовательного одиночного
колебательного контура. Для параллельного
контура физический смысл полосы
пропускания совершенно аналогичен.
Отличительная особенность параллельного
контура состоит в том, что выходным
сигналом является контурное напряжение,
и АЧХ отображает его зависимость от
частоты.

Полосой
пропускания параллельного одиночного
колебательного контура называется
интервал частот, включающий резонансную
частоту контура, на границах которого
значение напряжения контура меньше
значения напряжения на резонансной
частоте в

раз.

Это
требование для значения напряжения на
границе полосы пропускания можно
выразить так:

; .

Последнее
соотношение позволяет определить
границы полосы пропускания и ее величину
по АЧХ контура (рис.3.23):

.

Пользуясь
полученными соотношениями для
последовательного колебательного
контура, АЧХ для параллельного контура
на границах полосы пропускания примет
вид, аналогичный (3.36):

.
(3.67)

Приравнивая
(3.67) к коэффициенту неравномерности 
и решая полученное уравнение относительно
2∆ω, находим:

; .

Как
отмечалось, для широкого круга
приемно-передающих устройств коэффициент
неравномерности берется равным:

.

С
учетом этого находим выражение для
полосы пропускания одиночного
параллельного резонансного контура:

. (3.68)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Частотные методы анализа электрических цепей:

Частотные характеристики являются компонентами комплексных функций цепи.

Комплексная функция цепи (КФЦ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-частотная характеристика (АЧХ)

Частотные методы анализа и расчёта электрических цепей

Фазочастотная характеристика (ФЧХ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-фазовая частотная характеристика (АФЧХ) (комплексная функция цепи)

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— вещественная частотная характеристика (ВЧХ); Частотные методы анализа и расчёта электрических цепей— мнимая частотная характеристика (МЧХ).

Комплексные функции простых цепей можно рассчитать непосредственно по закону Ома.

На рис.4.1 показаны АЧХ и ФЧХ, а на рис.4.2 — АФЧХ простейшей интегрирующей цепи (апериодического звена). По АЧХ определяют полосу пропускания

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Полосой пропускания П называется диапазон частот, на границах которого мощность сигнала уменьшается в 2 раза, а амплитуда (действующее значение) напряжения (тока) — в Частотные методы анализа и расчёта электрических цепей раз по сравнению с максимальными значениями.

Полоса пропускания может измеряться в радианах в секунду Частотные методы анализа и расчёта электрических цепей или в герцах (Гц).

Например, для простой интегрирующей цепи полоса пропускания (см. рис. 4.1)

Частотные методы анализа и расчёта электрических цепей

Для сложных цепей КФЦ рассчитывают по MKT или МУН. В табл. 4.1 приведены соотношения для расчета КФЦ, выраженные через определитель и алгебраические дополнения матрицы контурных сопротивлений и узловых проводимостей.
Частотные методы анализа и расчёта электрических цепей

Частотные характеристики цепей с одним реактивным элементом

Примеры решения типовых задач:

Пример 4.2.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего RC-контура (рис.4.3, а), рассчитать и построить графики АЧХ и ФЧХ.

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.3, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим комплексное напряжение на выходе цепи в виде 

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся зa скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей. После преобразований получимЧастотные методы анализа и расчёта электрических цепей
Следовательно.

Частотные методы анализа и расчёта электрических цепей

Введем обозначения:

Частотные методы анализа и расчёта электрических цепей
Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина Частотные методы анализа и расчёта электрических цепей имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей

 С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений АЧХ и ФЧХ запишем комплексную функцию в показательной форме.
Так как выражение (4.2) есть отношение двух полиномов, то удобно числитель и знаменатель записать отдельно в показательной форме, а затем разделить:

Частотные методы анализа и расчёта электрических цепей

3. Из (4.3) запишем АЧХ и ФЧХ соответственно:

Частотные методы анализа и расчёта электрических цепей

4. Построим график АЧХ и ФЧХ качественно по двум точкам. Для этого рассчитаем значения Частотные методы анализа и расчёта электрических цепей для крайних значений частот:

Частотные методы анализа и расчёта электрических цепей

График АЧХ Частотные методы анализа и расчёта электрических цепей (рис. 4.4, а) является кривой, монотонно возрастающей от значения Частотные методы анализа и расчёта электрических цепей

График функции ФЧХ Частотные методы анализа и расчёта электрических цепей можно построить качественно как сумму двух графиков (рис. 4.4). Из рис. 4.4,б видно, что оба слагаемых монотонно увеличиваются: первое от нуля до +90° и вносит опережение по фазе. Второе до -90° и вносит отставание по фазе. Но первое слагаемое растет быстрее, так как Частотные методы анализа и расчёта электрических цепейчто следует из формулы (4.1). Поэтому функция Частотные методы анализа и расчёта электрических цепейследовательно, дифференцирующий -контур вносит опережение по фазе.

Исследуя функцию (4.5) на экстремум, можно показать, что она имеет максимум на частоте

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в (4.5), получим

Частотные методы анализа и расчёта электрических цепей

Графики АЧХ и ФЧХ изображены на рис. 4.4.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.2.

Для электрической цепи, изображенной на рис. 4.5, определить АЧХ Частотные методы анализа и расчёта электрических цепей граничную частоту полосы пропускания. Рассчитать АЧХ, ФЧХ и построить графики, если параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию К(; (/ш) но формуле делителя напряжения
Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду
Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Отсюда: АЧХ
Частотные методы анализа и расчёта электрических цепей

ФЧХ

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем граничную частоту. По определению
Частотные методы анализа и расчёта электрических цепей

Из (4.7) найдем
Частотные методы анализа и расчёта электрических цепей

Следовательно,
Частотные методы анализа и расчёта электрических цепей

Из уравнения (4.9) получаем, что

Частотные методы анализа и расчёта электрических цепей

Отсюда    Частотные методы анализа и расчёта электрических цепей

3. Построим график функций.

Вычислим значения (4.7) и (4.8) для частот с дискретностью Частотные методы анализа и расчёта электрических цепей

Графики и таблицы выполним в среде Mathcad (рис. 4.6).

Пример 4.2.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.7, а), используя метод контурных токов. Построить в среде Mathcad график АЧХ, определить полосу пропускания.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Представим цепь комплексной схемой замещения (рис. 4.7, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направления контурных токов выбираем одинаковыми.

2.Составим матрицы контурных сопротивлений для двух независимых контуров
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки равно Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем 

Частотные методы анализа и расчёта электрических цепей

или Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей С ростом частоты емкостное сопротивление уменьшается. ЕслиЧастотные методы анализа и расчёта электрических цепей то Частотные методы анализа и расчёта электрических цепей и шунтирует сопротивление Частотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей    = 0.

По полученным выражениям строим график АЧХ (рис. 4.8) и среде Mathcad.

Частотные методы анализа и расчёта электрических цепей

5. Определяем полосу пропускания. По определению
Частотные методы анализа и расчёта электрических цепей

Поэтому из (4.11) имеем
Частотные методы анализа и расчёта электрических цепей

После преобразований уравнения (4.12) получаем

Частотные методы анализа и расчёта электрических цепей

откуда

Частотные методы анализа и расчёта электрических цепей

или

Частотные методы анализа и расчёта электрических цепей

Следовательно, цепь имеет полосу пропускания 

Частотные методы анализа и расчёта электрических цепей

На рис. 4.8 указана граничная частота Частотные методы анализа и расчёта электрических цепей

Данная цепь представляет собой фильтр нижних частот с полосой пропускания Частотные методы анализа и расчёта электрических цепей сигналы на частотах Частотные методы анализа и расчёта электрических цепей проходят с большим затуханием.

Пример 4.2.4.

Найти комплексную передаточную проводимость Частотные методы анализа и расчёта электрических цепей для цепи, изображенной на рис. 4.9, а методом узловых напряжений.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить АЧХ и ФЧХ, построить их графики в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.9, б). Схема имеет два независимых узла. В данном случае Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

2. Составим матрицу узловых проводимостей. При определении собственной проводимости узлов необходимо помнить, что собственная проводимость ветви, состоящей  из последовательно включенных пассивных элементов, находится из соотношения Частотные методы анализа и расчёта электрических цепей, гдеЧастотные методы анализа и расчёта электрических цепей — эквивалентное сопротивление ветви. Как найти проводимость ветви с последовательно включенными Частотные методы анализа и расчёта электрических цепей

В начале рассчитывают комплексное сопротивление этой ветви, Частотные методы анализа и расчёта электрических цепей, а затем комплексную проводимость

Частотные методы анализа и расчёта электрических цепей

Составим матрицу проводимостей цепи 1 2
Частотные методы анализа и расчёта электрических цепей

Как видим, общие проводимости узлов взяты со знаком минус, так как узловые напряжения Частотные методы анализа и расчёта электрических цепей направлены одинаково, к базисному yзлy.

3.Определим комплексную передаточную проводимость по соотношению, приведенному в табл. 4.1

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-комплексная проводимость ветви, по которой протекает ток Частотные методы анализа и расчёта электрических цепей,так как по определению

Частотные методы анализа и расчёта электрических цепей

Найдем алгебраические дополнения:

Частотные методы анализа и расчёта электрических цепей

После подстановки найденных значений получим

Частотные методы анализа и расчёта электрических цепей

Для определении АЧХ и ФЧХ запишем выражения для модуля и аргумента Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем значения Частотные методы анализа и расчёта электрических цепей на частотах Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Примечание. Эти значения можно найти без вывода аналитического выражения для Частотные методы анализа и расчёта электрических цепей Для этого достаточно воспользоваться эквивалентными схемами цепи на рассматриваемых частотах.

Учитывая, что Частотные методы анализа и расчёта электрических цепей получим две схемы, показанные на рис. 4.10. а, б, соответственно.
Частотные методы анализа и расчёта электрических цепей

Для первой схемы:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Аналогично для второй схемы получим 

Частотные методы анализа и расчёта электрических цепей

При расчете сложных схем такой прием можно применять для проверки правильности полученного аналитического выражения КФЦ.

Из (4.13) видно, что функция наметен монотонной, но для качественного построения графика АЧХ (рис. 4.11) необходимо воспользоваться ПЭВМ, например построить функцию в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.5.

Для интегрирующего -контура (рис.4.12,а) определить комплексный коэффициент передачи по напряжению, рассчитать АЧХ, ФЧХ, ВЧХ, МЧХ. Построить графики АЧХ, ФЧХ. АФЧХ, если

Частотные методы анализа и расчёта электрических цепей

Решение

1. Составим комплексную схему замещения цепи (рис. 4.12, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим Частотные методы анализа и расчёта электрических цепей из соотношения Частотные методы анализа и расчёта электрических цепей где

Частотные методы анализа и расчёта электрических цепей

Следовательно.

Частотные методы анализа и расчёта электрических цепей

3. Для нахождения АЧХ и ФЧХ комплексную функцию Частотные методы анализа и расчёта электрических цепейпредставленную в виде отношения двух полиномов мнимой частоты Частотные методы анализа и расчёта электрических цепей записывают в показательной форме

Частотные методы анализа и расчёта электрических цепей

Найдем модуль (АЧХ) и аргумент (ФЧХ) комплексной функции;

Частотные методы анализа и расчёта электрических цепей

Для определения вещественной и мнимой частотных характеристик запишем КФЦ в алгебраической форме. Для этого умножим и разделим (4.14) на комплексно-сопряженный знаменатель:

Частотные методы анализа и расчёта электрических цепей

4. Для приближенного построения графиков АЧХ, ФЧХ. АФХ найдем значения Частотные методы анализа и расчёта электрических цепей для трех значений частот: Частотные методы анализа и расчёта электрических цепейРезультаты расчетов для удобства построения графиков сведем в табл. 4.2.

Частотные методы анализа и расчёта электрических цепей

Для более точного и наглядного представления графиков воспользуемся ПЭВМ и математической средой Mathcad.

 Графики характеристик приведены на рис. 4.13.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

АЧХ представляет монотонно убывающую функцию (рис. 4.13, а).

ФЧХ принимает отрицательные значения, т.е. контур вносит фазовое отставание, а на частоте Частотные методы анализа и расчёта электрических цепей ФЧХ имеет экстремум (рис.4.13, б). Найдем из соотношения

Частотные методы анализа и расчёта электрических цепей

Взяв производную, получим

Частотные методы анализа и расчёта электрических цепей

Решая полученное уравнение относительно Частотные методы анализа и расчёта электрических цепей, найдем

Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в выражение Частотные методы анализа и расчёта электрических цепей определим максимальное значение фазовой частотной характеристики.

Частотные методы анализа и расчёта электрических цепей

АФХ (рис. 4.13, в) представляет собой полуокружность, расположенную в 4-м квадрате. Центр окружности находится на оси Частотные методы анализа и расчёта электрических цепей в точке с абсциссой, равной

Частотные методы анализа и расчёта электрических цепей

Радиус окружности нетрудно определить из соотношения:

Частотные методы анализа и расчёта электрических цепей

МЧХ:

Частотные методы анализа и расчёта электрических цепей

Отрицательное значение Частотные методы анализа и расчёта электрических цепей свидетельствует о том, что 

Частотные методы анализа и расчёта электрических цепей принимает отрицательное значения, т.е. интегрирующий контур вносит запаздывание по фазе.

5. Проверка расчетов АЧХ. Воспользуемся эквивалентными схемами цепи для  частот Частотные методы анализа и расчёта электрических цепей(рис. 4.14).

На частоте Частотные методы анализа и расчёта электрических цепей цепь разомкнута (рис. 4.14, а), поэтому

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей схема представляет собой резистивный делитель напряжения (рис. 4.14, б) с коэффициентом передачи

Частотные методы анализа и расчёта электрических цепей

Подставляя эти значения частот в аналитическое выражение (4.14) для Частотные методы анализа и расчёта электрических цепейполучаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, расчет АЧХ выполнен верно.

Частотные характеристики последовательного колебательного контура

Основные теоретические сведения:

В последовательном колебательном контуре (рис. 4.21) возникает резонанс напряжений, если выполняется условие    

Частотные методы анализа и расчёта электрических цепей

 т. е. Частотные методы анализа и расчёта электрических цепей                     

Частотные методы анализа и расчёта электрических цепей

Резонансная частота

Частотные методы анализа и расчёта электрических цепей

Волновое сопротивление контура Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе Частотные методы анализа и расчёта электрических цепей

Собственная добротность контура  Частотные методы анализа и расчёта электрических цепей

Добротность нагруженного контура Частотные методы анализа и расчёта электрических цепей

Затухание контура  Частотные методы анализа и расчёта электрических цепей

Абсолютная расстройка   Частотные методы анализа и расчёта электрических цепей

Относительная расстройка   Частотные методы анализа и расчёта электрических цепей

Обобщенная расстройка

Частотные методы анализа и расчёта электрических цепей

Фактор расстройки:  Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.22)
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Для нагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Комплексные коэффициенты передачи по напряжению:

на активном сопротивлении
Частотные методы анализа и расчёта электрических цепей
на индуктивности
Частотные методы анализа и расчёта электрических цепей

на емкости 

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.3.1.

Последовательный колебательный контур (рис. 4.23) подключен к источнику напряжению. Контур настроен в резонанс.

Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить резонансную частоту, волновое сопротивление. добротность и полосу пропускания, ток и напряжения на элементах контура.

Построить АЧХ и ФЧХ по напряжению на конденсаторе в среде Mathcad.    

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определяем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

2. Находим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

3. Вычисляем добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

4. Определяем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

5. Рассчитываем ток и напряжения на элементах контура при резонансе

Частотные методы анализа и расчёта электрических цепей

Напряжение на R равно

Частотные методы анализа и расчёта электрических цепей

Напряжения на реактивных элементах

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем АЧХ и ФЧХ комплексного коэффициента передачи напряжения с емкости.

Учитывая (4.22), из (4.29) получим:

Частотные методы анализа и расчёта электрических цепей

Для построения графиков АЧХ и ФЧХ, выполнения расчетов используем среду Mathcad. АЧХ, ФЧХ в виде графиков и таблиц приведены на рис. 4.24.

Следует заметить, что максимум А11Х достигается на частоте

Частотные методы анализа и расчёта электрических цепей

т.е. при Частотные методы анализа и расчёта электрических цепей смещение максимума мало, тогда Частотные методы анализа и расчёта электрических цепей

Задача 4.3.2.

К последовательному колебательному контуру (рис. 4.25) с параметрами Частотные методы анализа и расчёта электрических цепей подключена нагрузка Частотные методы анализа и расчёта электрических цепей

Определить собственную добротность и добротность нагруженного контура, полосу пропускания нагруженного и ненагруженного контура.

Решение

1. Рассчитаем вторичные параметры ненагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2.Определим вторичные параметры наруженного контура. Так как сопротивление нагрузки активное, причем Частотные методы анализа и расчёта электрических цепей то согласно (4.15) и (4.16) резонансная частота и волновое сопротивление не изменяются.

Для определения добротности рассчитаем сопротивление Частотные методы анализа и расчёта электрических цепей, вносимое в контур за счет нагрузки, и построим эквивалентную схему нагруженного контура (рис. 4.25, б). Так как Частотные методы анализа и расчёта электрических цепейто
Частотные методы анализа и расчёта электрических цепей
Следовательно,

Частотные методы анализа и расчёта электрических цепей

Вывод. Подключение нагрузки ухудшает добротность контура, что приводит к расширению полосы пропускания.

Пример 4.3.3.

На рис. 4.26, а изображена входная цепь приемника, а на рис. 4.26, б — ее эквивалентная схема. Известны входное сопротивление и входная емкость транзистора входного каскада УВЧ: Частотные методы анализа и расчёта электрических цепей. На резонансной частоте антенна наводит в контуре ЭДС Частотные методы анализа и расчёта электрических цепей Емкость конденсатора Частотные методы анализа и расчёта электрических цепейкатушка индуктивности имеет Частотные методы анализа и расчёта электрических цепей

Определить абсолютную полосу пропускания и ток в контуре на резонансной частоте.

Решение

1. Определяем эквивалентную емкость контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитываем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

3. Находим волновое сопротивление и сопротивление, вносимое в контур за счет транзистора усилителя (рис. 4.26, в):

Частотные методы анализа и расчёта электрических цепей

4. Определяем добротность нагруженного контура
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем абсолютную полосу пропускания нагруженного контура

Частотные методы анализа и расчёта электрических цепей

6. Находим ток в контуре

Частотные методы анализа и расчёта электрических цепей

Пример 4.3.4.

Рассчитать емкость последовательного колебательного контура, если резонансная частота контура Частотные методы анализа и расчёта электрических цепей полоса пропускания Частотные методы анализа и расчёта электрических цепейпри сопротивлении потерь 0,5 Ом.

Построить АЧХ и ФЧХ комплексного коэффициента передачи напряжения с индуктивности в среде Mаthcad.

Решение

1. Определим требуемую добротность контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем емкость конденсатора. Из формулы Частотные методы анализа и расчёта электрических цепейнайдем

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем АЧХ и ФЧХ.

Воспользуемся комплексным коэффициентом передачи напряжения с индуктивности по формуле (4.28). Учитывая 4.22), запишем:

Частотные методы анализа и расчёта электрических цепей

Вычислим значения функций на частотах:

Частотные методы анализа и расчёта электрических цепей

Определим частоту, при которой АЧХ имеет максимум

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Смещением частоты Частотные методы анализа и расчёта электрических цепей можно пренебречь.

Результаты расчетов АЧХ и ФЧХ б графическом и табличном видах приведены на рис. 4.27.

Частотные методы анализа и расчёта электрических цепей

Частотные характеристики параллельного колебательного контура

Основные теоретические сведения:

Параллельный колебательный контур образуется путем параллельного соединения катушки индуктивности и конденсатора. Оба элемента, кроме основного эффекта (запасания энергии), имеют потери энергии. В расчетной схеме (рис. 4.29, а) тепловые потери в элементах учтены включением условных сопротивлений Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

где резонансная частота колебанийЧастотные методы анализа и расчёта электрических цепей

Для реального контура Частотные методы анализа и расчёта электрических цепей поэтому при расчете можно полагать, что

Частотные методы анализа и расчёта электрических цепей

При резонансе сопротивление контура является активным, поэтому ток Частотные методы анализа и расчёта электрических цепей в цепи и напряжение Частотные методы анализа и расчёта электрических цепей в контуре синфазны. Эквивалентные схемы цепи в режиме резонанса токов показаны на рис. 4.31, а, б.

Сопротивление параллельного колебательного контура при резонансе максимально и равно (без учета внешней цепи)
Частотные методы анализа и расчёта электрических цепей
где  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Добротность Частотные методы анализа и расчёта электрических цепей нагруженного контура меньше собственной добротности Частотные методы анализа и расчёта электрических цепей Ее можно выразить через сопротивления элементов цепи

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

или через их проводимости

Частотные методы анализа и расчёта электрических цепей

Важными параметрами цепи при резонансе являются токи в ветвях и напряжение на контуре. Ток в обшей ветви (ток источника) при резонансе минимален и равен (см. рис. 4.31)

Частотные методы анализа и расчёта электрических цепей

При этом напряжение на контуре максимально и равно

Частотные методы анализа и расчёта электрических цепей

Токи в индуктивности и в емкости при резонансе равны по значению и противоположны по направлению. Они образуют замкнутый ток в контуре, равный

Частотные методы анализа и расчёта электрических цепей

Частотные свойства параллельного колебательного контура обычно оценивают по нормированной АЧХ

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-обобщенная расстройка контура без учета внешних цепей; Частотные методы анализа и расчёта электрических цепей — фактор расстройки.

Параллельный контур, показанный на рис. 4.29, имеет по одной реактивности в ветвях. Такой контур называется простым или контуром I вида. Для уменьшения шунтирующего действия внешних цепей часто применяют сложные параллельные контуры.

На рис. 4.32, а, б, в показаны контуры II, (III и IV) видов, соответственно.

Частотные методы анализа и расчёта электрических цепей

Главной особенностью этих контуров является то, что их резонансное сопротивление меньше резонансного сопротивления простого контура с такими же параметрами.

Сопротивление контуров (рис.4.32) при резонансе рассчитывается по формулам, соответственно:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — коэффициенты включения:

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.4.1.

Параллельный контур (см. рис. 4.29, а) подключен к источнику с параметрами Частотные методы анализа и расчёта электрических цепей Контур настроен в резонанс на длину волны, равную 1000 м.

Параметры катушки индуктивности: Частотные методы анализа и расчёта электрических цепей

Определить действующие значения тока в контуре, тока на входе цепи и напряжения на контуре при резонансе, абсолютную и относительную полосы пропускания контура, добавочное сопротивление необходимое для расширения полосы пропускания в 2 раза.

Решение

1. Определим резонансную частоту колебания

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем волновое сопротивление

Частотные методы анализа и расчёта электрических цепей

3. Определим сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Найдем действующее значение тока на входе контура (см. рис. 4.31, а) при резонансе

Частотные методы анализа и расчёта электрических цепей

5. Определим соответственную добротность контура

Частотные методы анализа и расчёта электрических цепей

6. Найдем ток в контуре и напряжение на нем:

Частотные методы анализа и расчёта электрических цепей

7.  Определим добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

8. Рассчитаем абсолютную и относительную полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

9.  Определяем добавочное cопротивление Частотные методы анализа и расчёта электрических цепей из (4.31)

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.2.

Рассчитать полосу пропускания колебательного контура (см. рис. 4.30, а).

Дано: Частотные методы анализа и расчёта электрических цепей

Определить сопротивление Частотные методы анализа и расчёта электрических цепей шунта, необходимого для расширения полосы пропускания до 10 кГц.

Решение

1. Рассчитаем волновое сопротивление и резонансную частоту контура:

Частотные методы анализа и расчёта электрических цепей

2.Рассчитаем добротность цепи без шунта. Воспользуемся трехветвевой эквивалентной схемой цепи и соотношением (4.32). Найдем проводимость элементов схемы:

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

3. Определим полосу пропускания

Частотные методы анализа и расчёта электрических цепей

4. Найдем сопротивление шунта, необходимою для расширения полосы до 10 кГц,

В этом случае добротность цепи должна быть равна

Частотные методы анализа и расчёта электрических цепей

Тогда из (4.32) получаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, сопротивление шунта должно быть равно

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.3.

Параллельный колебательный контур с параметрами: Частотные методы анализа и расчёта электрических цепей подключен к источникуЧастотные методы анализа и расчёта электрических цепей

Определить собственную добротность контура, добротность нагруженного контура, абсолютную полосу пропускания и граничные частоты полосы пропускания. Построить резонансную кривую по напряжению на ЭВМ.

Решение

1. Определим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем собственную добротность контура

Частотные методы анализа и расчёта электрических цепей

3. Найдем сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим добротность нагруженного контура по формуле (4.31)

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем резонансную частоту

Частотные методы анализа и расчёта электрических цепей

6. Найдем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

7. Определим граничные частоты полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

8. Построим резонансную характеристику контура но напряжению. Из выражения (4.33) запишем

Частотные методы анализа и расчёта электрических цепей

Напряжение па контуре при резонансе 

Частотные методы анализа и расчёта электрических цепей

Для построения резонансной характеристики задаемся характерными значениями частот: Частотные методы анализа и расчёта электрических цепей Результаты расчетов в графическом виде представлены на рис. 4.33.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.4.

Определить резонансную частоту, эквивалентное сопротивление при резонансе и добротность сложного контура (рис. 4.32, а), подключенного к источнику напряжения.

Дано: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим резонансную частоту и сопротивление параллельного контура при резонансе:

Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем эквивалентное сопротивление сложного контура II вида

Частотные методы анализа и расчёта электрических цепей

3. Найдем добротность нагруженного контура II  вида

Частотные методы анализа и расчёта электрических цепей

Сравним значения Частотные методы анализа и расчёта электрических цепей с добротностью простого нагруженного контура

Частотные методы анализа и расчёта электрических цепей

Вывод. За счет неполного включения индуктивности Частотные методы анализа и расчёта электрических цепей уменьшилось шунтирующее действие источника. Поэтому добротность сложного контура больше, чем простого с теми же параметрами элементов.

Частотные характеристики связанных колебательных контуров

Основные теоретические сведения:

С целью повышения коэффициента прямоугольности АЧХ контуров применяют связанные контуры последовательного и параллельного питания (рис. 4.37, а, б).

Частотные характеристики связанных контуров рассмотрим на примере системы из двух контуров.
Частотные методы анализа и расчёта электрических цепей

Эквивалентные схемы связанных контуров

Во всех случаях систему связанных контуров можно представить в виде Т- или П-образной эквивалентной схемы (рис. 4.38).

Количественной характеристикой связи является сопротивление связи Частотные методы анализа и расчёта электрических цепей в Т-образной эквивалентной схеме (рис. 4.38,а) или проводимость связи Частотные методы анализа и расчёта электрических цепей в П-образной эквивалентной схеме (рис. 4.38, б).

Удобным параметром для оценки связи является коэффициент связи

В случае реактивной связи для Т-образной схемы

Для П-образной схемы

где — сопротивление (проводимость) связи;Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей— сопротивления (проводимости) контуров, однотипные элементу связи. Для анализа связанных контуров удобно применять схемы, приведенные к первичному (рис. 4.39, а) или ко вторичному (рис. 4.39, б) контуру.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для этого используют понятия вносимого сопротивления Частотные методы анализа и расчёта электрических цепей и вносимой проводимости Частотные методы анализа и расчёта электрических цепей Эти схемы представляют собой одиночные последовательные (параллельные) контуры с параметрами:

Частотные методы анализа и расчёта электрических цепей

Резонансы в связанных контурах:

При настройке контуров в резонанс добиваются максимального тока (напряжения) во вторичном контуре.

Настройка связанных контуров может производиться различными способами, поэтому различают шесть резонансов. В табл. 4.3, 4.4 приведены виды и условия резонансов, способы настройки и соотношения для токов (напряжений) в связанных контурах последовательного (параллельного) питания.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Резонансные характеристики связанных контуров:

Для двух неидентичных связанных контуров: последовательного питания

Частотные методы анализа и расчёта электрических цепей

где   Частотные методы анализа и расчёта электрических цепей

параллельного питания:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— параметр связи. 

Если контуры идентичны, то обобщенная расстройка Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

На рис. 4.40 приведены резонансные характеристики при различных факторах связи.

Относительная полоса пропускания:

а) связь слабая Частотные методы анализа и расчёта электрических цепей

б) связь критическая Частотные методы анализа и расчёта электрических цепей

в) связь сильная Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей достигается максимально возможная полоса пропускания Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.5.1.

В системе двух индуктивно связанных контуров (см. рис.4.37,а) известны следующие параметры: коэффициент связи

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить емкость Частотные методы анализа и расчёта электрических цепей при которой в системе наступает первый частный резонанс, если частота источника равна 500 кГц.

Решение

Емкость конденсатора Частотные методы анализа и расчёта электрических цепей определим но реактивному сопротивлению первого контура:

Частотные методы анализа и расчёта электрических цепей

отсюда

Частотные методы анализа и расчёта электрических цепей

Определим реактивное сопротивление Частотные методы анализа и расчёта электрических цепей, первого контура из условия первого частного резонанса (см. табл. 4.3)

Частотные методы анализа и расчёта электрических цепей

Peaктивное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Рассчитаем полное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепей

Определим сопротивление связи контуров

Частотные методы анализа и расчёта электрических цепей

Следовательно

Частотные методы анализа и расчёта электрических цепей

Находим емкость первого контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.2.

Рассчитать емкости связанных контуров (см. рис. 4.37,а) и оптимальное сопротивление связи, если система настроена и полный резонанс. Определить токи, мощности в контурах при этом режиме, а также КПД системы.

Дано: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим емкость конденсатора Частотные методы анализа и расчёта электрических цепей, полагая, что

Частотные методы анализа и расчёта электрических цепей

Отсюда

Частотные методы анализа и расчёта электрических цепей

2.  Сопротивление оптимальной связи при полном резонансе

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем токи в первом и втором контурах при полном резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим активные мощности в первом и втором контурах и КПД связанных контуров:

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.3.

На рис. 4.37, а показана система из двух идентичных связанных контуров с параметрами: Частотные методы анализа и расчёта электрических цепей Рассчитать полосы пропускания одиночного контура и связанных контуров при различной связи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим полосу пропускания одиночного контура 

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем полосу пропускания системы связанных контуров:

1)  определим параметр связи для Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Таким образом при Частотные методы анализа и расчёта электрических цепей связь меньше критической Частотные методы анализа и расчёта электрических цепей При этом относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.41, резонансная кривая А = 0,5)

Частотные методы анализа и расчёта электрических цепей

2) при Частотные методы анализа и расчёта электрических цепей параметр связи Частотные методы анализа и расчёта электрических цепей Таким образом, коэффициент связи является оптимальным, а связь критическая, система настроена в полный резонанс. Полоса пропускания в этом случае

Частотные методы анализа и расчёта электрических цепей

3) если Частотные методы анализа и расчёта электрических цепей то параметр связи Частотные методы анализа и расчёта электрических цепей следовательно, связь больше критической.

Рассчитаем полосу пропускания для этого случая.

Частотные методы анализа и расчёта электрических цепей

Вид резонансных кривых по току и полоса пропускания для критической и сильной связи показаны на рис. 4.41, кривые А = 1 и А = 2.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.4.

Антенный контур (см. рис. 4.37,б) индуктивно связан с входным контуром усилителя высокой частоты. Оба контура настроены в резонанс на частоту Частотные методы анализа и расчёта электрических цепей принимаемого сигнала. В антенном контуре наводится Частотные методы анализа и расчёта электрических цепей

Дано: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Входное сопротивление УВЧ считать бесконечно большим.

Определить емкости и добротности контуров, их взаимную индуктивность, а также ток и напряжение на емкости во вторичном контуре.

Решение

1.Емкости контуров определим из формулы резонансной частоты. Емкость конденсатора первого контура

Частотные методы анализа и расчёта электрических цепей

Емкость конденсатора второго контура

Частотные методы анализа и расчёта электрических цепей
2. Рассчитаем волновое сопротивление контуров:

Частотные методы анализа и расчёта электрических цепей
3. Рассчитаем добротности контуров и параметр связи:

Частотные методы анализа и расчёта электрических цепей
4. Определим взаимную индуктивность двух связанных контуров

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем ток во вторичном контуре. Известно (см. табл. 4.3), что при полном резонансе Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс, то из (4.34) получаем

Частотные методы анализа и расчёта электрических цепей

Оба контура по условию настроены в резонанс, поэтому расстройки равны нулю:

Частотные методы анализа и расчёта электрических цепей

С учетом этого рассчитаем ток во втором контуре

Частотные методы анализа и расчёта электрических цепей

6. Найдем напряжение на конденсаторе вторичного контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.5.

На рис. 4.42 приведена схема одного каскада УПЧ радиоприемника, в котором избирательность обеспечивается двумя связанными контурами с емкостной связью. Оба контура настроены в резонанс на промежуточную частоту Частотные методы анализа и расчёта электрических цепей

Эквивалентная схема этого каскада (рис. 4.43) имеет следующие параметры: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить емкости и добротности контуров, емкость связи, напряжение на емкости во вторичном контуре, а также полосу пропускания каскада УПЧ.

Решение

1. Из формулы резонансной частоты найдем емкость первого контура. С учетом влияния выходной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа получаем

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Емкость второго контура с учетом влияния входной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа

Частотные методы анализа и расчёта электрических цепей

2. Определим емкость связи

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем добротности нагруженных контуров при отсутствии связи между ними. Для расчета воспользуемся формулой (4.31)
Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем параметр связи Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем напряжение на втором контуре. Известно (см. табл. 4.4), что при полном резонансе

Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс Частотные методы анализа и расчёта электрических цепейиз (4.35) получаем

Частотные методы анализа и расчёта электрических цепей

Найдем проводимость контуров

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем полосу пропускания каскадов УПЧ. учитывая, что А = 1,2.

Частотные методы анализа и расчёта электрических цепей

Частотные методы расчета и построения переходных и установившихся процессов в электрических цепях

Основные теоретические сведения:

Зная частотную характеристику электрической цепи Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей можно определить ее выходную величину при подаче на вход синусоидального (гармонического) сигнала. Действительно, если на вход цепи подано синусоидальное напряжение комплексное изображение которого Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей то в установившемся режиме комплексное изображение выходного напряжения

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей амплитуда и сдвиг по фазе выходных колебаний соответственно.

С помощью частотной характеристики электрической цели можно не только определить выходную величину цепи в установившемся режиме при гармоническом входном воздействии, но и найти реакцию цепи в переходном процессе на произвольное воздействие Частотные методы анализа и расчёта электрических цепей. Действительно, представляя это воздействие в зависимости от того, является оно периодической или непериодической функцией, в виде ряда или интеграла Фурье, т.е. в виде бесконечной суммы гармонических колебаний. По частотной характеристике можно определить реакцию электрической цепи на каждое из этих элементарных колебаний, а затем, просуммировав все реакции, найти результирующую реакцию в виде суммы или интеграла [4].

Найдем реакцию цепи на единичную ступенчатую функцию (т.е. найдем переходную функцию цепи), используя ее частотную характеристику. Как известно, интеграл Фурье для единичной ступенчатой функции имеет вид

Частотные методы анализа и расчёта электрических цепей

т.е. единичная ступенчатая функция может быть представлена как бесконечная сумма элементарных колебаний вида Частотные методы анализа и расчёта электрических цепей

Каждому из этих колебаний соответствует выходное колебание Частотные методы анализа и расчёта электрических цепей а реакция системы на единичную ступенчатую функцию выражается интегралом

Частотные методы анализа и расчёта электрических цепей

Представляя Частотные методы анализа и расчёта электрических цепей в алгебраической форме Частотные методы анализа и расчёта электрических цепей и преобразуя выражение (4.37), получаем следующую формулу для переходной функции |4, 6|:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная частотная характеристика (ВЧХ) КФ электрической цепи. Полученное выражение связывает ВЧХ КПФ цепи с ее переходной функцией. Таким образом, при частотном методе анализа косвенной характеристикой переходной функции является вещественная частотная характеристика КФ электрической цепи.

Построение переходной функции с помощью вещественной частотной характеристики методами численного интегрирования:

Выражение (4.38) позволяет вычислить переходную функцию ЭЦ и определить качество переходного процесса. Однако интегрирование этого выражения аналитическими методами — задача весьма трудоемкая, а чаще всего просто практически невыполнимая. С применением современных ЭВМ и методов численного интегрирования (метод прямоугольников, трапеций, метод Симпсона и др.) эта задача существенно упрощается, ее решение сводится к составлению программы для ПЭВМ. В инженерной практике интегрирование достаточно осуществлять в области существенных частот от Частотные методы анализа и расчёта электрических цепей В области частот Частотные методы анализа и расчёта электрических цепей влияние ВЧХ Частотные методы анализа и расчёта электрических цепей на переходную функцию (4.38) мало и им можно пренебречь. В dtom случае используют модифицированное выражение от (4.38) [4]

Частотные методы анализа и расчёта электрических цепей

В результате интегрирования получают совокупность значений Частотные методы анализа и расчёта электрических цепейпереходной функции системы и исследуемом интервале времени и строят график переходной функции, по которой определяют показатели качества переходного процесса.

В качестве примера построения алгоритма численного интегрирования рассмотрим интегрирование с точки зрения простоты вычислений и точности результата. Сущность метода заключается в следующем. Пусть необходимо вычислить определенный интеграл

Частотные методы анализа и расчёта электрических цепей

Вид подынтегральной функции, соответствующей выражению

Частотные методы анализа и расчёта электрических цепей

при фиксированном времени Частотные методы анализа и расчёта электрических цепей приведен на рис. 4.47, кривая Частотные методы анализа и расчёта электрических цепей для t = 10 с, кривая 2 для Частотные методы анализа и расчёта электрических цепей, а кривая 3 изображает ВЧХ электрической цепи. Функция Частотные методы анализа и расчёта электрических цепей представляет функцию Частотные методы анализа и расчёта электрических цепей модулированную «замечательным» синусом. Известно, что интеграл (4.40) численно равен площади под кривой функции Частотные методы анализа и расчёта электрических цепей Если интервал аргумента Частотные методы анализа и расчёта электрических цепей разбить на Частотные методы анализа и расчёта электрических цепей равных частей, то длина одного интервала будет равна Частотные методы анализа и расчёта электрических цепей Площадь под кривой можно аппроксимировать суммой площадей прямоугольных трапеций с основаниями Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей и высотой Частотные методы анализа и расчёта электрических цепейТогда интеграл (4.40) можно представить как сумму площадей прямоугольных трапеций:

Частотные методы анализа и расчёта электрических цепей

Очевидно, что погрешность численного интегрирования зависит и от выбора числа интервалов Частотные методы анализа и расчёта электрических цепей разбиения аргумента Частотные методы анализа и расчёта электрических цепей при конкретном времени Частотные методы анализа и расчёта электрических цепей При увеличении времени , как видно из рис. 4.47, период подынтегральной функции уменьшается. Следовательно, необходимо увеличивать число интервалов, которое определился выражением
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При этом одно полное колебание подынтегральной функции представляется не менее чем шестнадцатью трапециями.

В качестве примера для построения переходной функции возьмем электрическую цепь, ВЧХ которой была построена и приведена на рис. 4.47 (кривая 3). На рис. 4.48 приведена переходная функция этой сложной электрической цепи.

Переходная функция на рис. 4.48 получена с помощью пакета ПП «Сигнал» [5].

Для вычисления интеграла (4.39) необходимо определить значение частоты для верхнего предела интегрирования Частотные методы анализа и расчёта электрических цепей Это значение легко может быть определено из кривой вещественной частотной характеристики (ВЧХ) КФ электрической цепи. В качестве примера возьмем простую интегрирующую цепь (см. рис. 4.1), КФ которой имеет вид

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Алгебраическая форма КФ
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная и мнимая части КФ. Построим кривуюЧастотные методы анализа и расчёта электрических цепей (рис. 4.49) в среде Mathcad, если Частотные методы анализа и расчёта электрических цепей.

Из графика ВЧХ видно, что при Частотные методы анализа и расчёта электрических цепей Влияние ВЧХ в области больших частот на переходную функцию несущественно, поэтому за частоту Частотные методы анализа и расчёта электрических цепейможно принять частоту, при которой ВЧХ принимает значение Частотные методы анализа и расчёта электрических цепей Эту частоту принято называть «существенной частотой» и обозначать Частотные методы анализа и расчёта электрических цепей. В нашем примере Частотные методы анализа и расчёта электрических цепей Переходная функция, вычисленная по выражению (4.39), приведена на рис. 4.49.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для случая электрических цепей с дифференцирующими свойствами может оказаться, что при Частотные методы анализа и расчёта электрических цепей ВЧХ КФ этой цепи Частотные методы анализа и расчёта электрических цепейТогда для расчета переходной функции необходимо использовать мнимую частотную характеристику (МЧХ) в соответствии с выражением

Частотные методы анализа и расчёта электрических цепей

Приведенный пример наглядно показывает, что использование частотных характеристик для построения временных характеристик с помощью ЭВМ существенно расширяет возможности частотных методов анализа электрических цепей.

Спектральный метод расчета и построения выходных величин электрических цепей при сложных входных воздействиях:

Применение частотных методов при анализе и синтезе электрических цепей с требуемыми динамическими характеристиками и использованием ЭВМ позволяет не только строить переходные характеристики, но и строить реакцию цепи на любые детерминированные воздействия, оценивать их в установившихся режимах.

Математической основой частотных методов анализа электрических цепей и систем автоматического управления является обратное преобразование Фурье, позволяющее получать изображение выходного сигнала системы y(t) с помощью вещественной и мнимой частотных характеристик систем. В свою очередь, по вещественной или мнимой частотным характеристикам можно построить переходный процесс выходной величины и оценить реакцию цепи в переходном и установившемся режимах.

Как известно, реакция системы определяется по формуле обратного преобразования Фурье [4]

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

После соответствующих преобразований выражение (4.46) примет вид:

I) для ступенчатой входной функции Частотные методы анализа и расчёта электрических цепей спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2) для линейной входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей
Частотные методы анализа и расчёта электрических цепей
y{t) = vP(0)t+±l
2 r0(
Л» И
(4.48)
О)
3) для параболической входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
4) для полиномиального воздействия видаЧастотные методы анализа и расчёта электрических цепей 

Частотные методы анализа и расчёта электрических цепей

Применение ЭВМ и численных методов интегрирования позволяет отказаться от графических и табличных методов построения переходных и других необходимых функций в электрических цепях.

Примеры решения типовых задач:

Пример 4.6.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего Частотные методы анализа и расчёта электрических цепей-контура (рис. 4.50,а), рассчитать и построить переходную функцию контура с помощью ВЧХ.

Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.50, б).

2. Определим комплексное напряжение на выходе цепи в виде

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся за скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей После преобразований получим
Частотные методы анализа и расчёта электрических цепей
Следовательно
Частотные методы анализа и расчёта электрических цепей
Введем обозначения:

Частотные методы анализа и расчёта электрических цепей

Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина k имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Примем:Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.51).

Из частотных характеристик КПФ принимаем Частотные методы анализа и расчёта электрических цепей Для построения переходной функции воспользуемся выражением (4.45). Построение проведем также в среде Mathcad.Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Переходная функция, показанная на рис.4.52, соответствует дифференцирую щему фазоопережающему контуру, который широко применяется в электронных и радиотехнических устройствах, системах автоматического управления.

Пример 4.6.2.

Для электрической цепи, изображенной на рис, 4.53, определить КПФ Частотные методы анализа и расчёта электрических цепей построить ВЧХ Частотные методы анализа и расчёта электрических цепей и МЧХ Частотные методы анализа и расчёта электрических цепей. Рассчитать и построить график переходной функции. Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию Частотные методы анализа и расчёта электрических цепей по формуле делителя напряжения

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду 

Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.54).

По виду ВЧХ и МЧХ определяем, что для построения переходной функции необходимо применить МЧХ. Примем из графика МЧХ Частотные методы анализа и расчёта электрических цепей Переходная функция и программа для ее вычисления и построения приведена на рис. 4.55.

Из рис. 4.55 видно, что переходная функция соответствует интегрирующему контуру.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.6.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.56, а), используя метод контурных токов. Построить в среде Mathcad графики АЧХ, ВЧХ, МЧХ. Рассчитать и построить эпюру входного и выходного напряжения, если на вход цепи поступает напряжение вида Частотные методы анализа и расчёта электрических цепей где Частотные методы анализа и расчёта электрических цепей

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1.Представим цепь комплексной схемой замещения (рис. 4.56, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направление контурных тиков выбираем одинаковым.

2.Составим матрицы контурных сопротивлений для двух независимых контуров

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

т.е.  Частотные методы анализа и расчёта электрических цепей

где  Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепей = = 0,75. С ростом частоты емкостное сопротивление уменьшается. Если Частотные методы анализа и расчёта электрических цепей   тоЧастотные методы анализа и расчёта электрических цепей и шунтирует сопротивлениеЧастотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей

5.Определим выражения для АЧХ, ВЧХ, МЧХ. Представим КГ1Ф (4.55) в алгебраической форме

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей вещественная частотная характеристика:

Частотные методы анализа и расчёта электрических цепей — мнимая частотная характеристика.
Амплитудно-частотную характеристику запишем в виде

Частотные методы анализа и расчёта электрических цепей

6. В среде Mathcad построим частотные характеристики и определим Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

По ВЧХ на рис. 4.57 определяем, что существенная частота Частотные методы анализа и расчёта электрических цепей

7. Построим переходную функцию электрической цепи, которая представлена на рис. 4.58.

Переходная функция электрической цепи соответствует апериодическому звену.

Частотные методы анализа и расчёта электрических цепей

8. Построим реакцию электрической цепи на напряжение, изменяющееся но линейному закону (рис. 4.59).

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

  • Операторные передаточные функции
  • Свободные колебания в пассивных электрических цепях
  • Цепи с распределёнными параметрами
  • Волновые параметры длинной линии
  • Энергетические характеристики двухполюсников
  • Комплексные функции электрических цепей
  • Гармонические колебания в колебательном контуре
  • Частотные характеристики линейных электрических цепей

Во время передачи тех или иных сигналов ток высокой частоты в антенне радиопередатчика состоит из нескольких токов различной частоты. Такой же сложный характер имеют электромагнитные волны, распространяющиеся от антенны передатчика, и токи, возникающие под действием радиоволн в приемной антенне.

Для каждого вида передачи (радиотелефония, радиотелеграфия, телевизионная передача и т. д.) частоты этих токов занимают определенную полосу. При радиовещании на средних волнах она составляет примерно 9 кГц, т. е. радиовещательный передатчик создает сложный ток, состоящий из нескольких токов, у которых наиболее высокая частота на 9 кГц больше наиболее низкой частоты. Например, для радиовещательного передатчика, работающего на частоте 173 кГц (? =1734 м), это будут частоты от 168,5 до 177,5 кГц. В случае служебной радиотелефонной связи полоса частот не больше 2 — 2,5 кГц, а для радиотелеграфной передачи она еще меньше. Зато при телевизионной передаче полоса частот расширяется до нескольких мегагерц.

При воздействии на контур электродвижущих сил различной частоты наиболее сильные колебания получаются в случае, когда эдс имеет резонансную частоту или частоту, близкую к ней. А при значительном отклонении частоты внешней эдс от резонансного значения, т. е. когда контур расстроен относительно частоты внешней эдс, амплитуда колебаний получается сравнительно малой.

Можно сказать, что каждый контур хорошо пропускает колебания в пределах некоторой полосы частот, располагающейся по обе стороны от резонансной частоты. Ее называют полосой пропускания контура Ппр и условно определяют по резонансной кривой на уровне 0,7 от максимального значения тока или напряжения, соответствующего резонансной частоте (рис.1).

Графическое изображение полосы пропускания колебательного контура

Рис.1 — Полоса пропускания контура

Иначе говоря, считают, что контур хорошо пропускает колебания тогда, когда их амплитуда уменьшается не более, чем на 30% по сравнению с амплитудой при резонансе. Полосу пропускания контура иногда называют также шириной кривой резонанса. Качество контура влияет на форму резонансной кривой. Из этого рисунка видно, что чем ниже качество контура, тем больше его полоса пропускания. Кроме того, полоса пропускания получается больше при более высокой резонансной частоте контура.

Зависимость полосы пропускания контура от его затухания или добротности Q дается следующей простой формулой

Зависимость полосы пропускания контура от его затухания или добротности

Например, контур, настроенный на частоту fо = 2000 кГц и обладающий затуханием ? = 0,01, имеет полосу пропускания Ппр =0,01 * 2000 = 20 кГц.

Как видно, для получения узкой полосы пропускания необходимо применять контур с высокой добротностью, а для широкой полосы добротность, либо работать на весьма высокой резонансной частоте.

Из приведенной формулы следует, что fo = Q * Ппp. Так как у контура среднего качества Q не менее 20, то рабочая частота должна не менее, чем в 20 раз, превышать полосу пропускания. Например, телевизионную передачу, для которой Ппр составляет несколько мегагерц, нужно вести на частотах не ниже нескольких десятков мегагерц, т.е. на ультракоротких волнах.

Желательно, чтобы контур имел полосу пропускания соответствующую полосе частот, которая характерна для данного вида передачи. Если полоса пропускания меньше, то получатся искажения за счет плохого пропускания некоторых колебаний. Более широкая полоса нежелательна, так как могут быть помехи от сигналов радиостанций, работающих на соседних частотах.

Если необходима широкая полоса пропускания, то приходится часто применять контуры с низкой добротностью. Добротность контура снижается, а полоса пропускания увеличивается, если параллельно контуру присоединяют активное сопротивление R, называемое шунтирующим (рис.2). Действительно, переменное напряжение U, имеющееся на контуре, приложено к сопротивлению R и создает в нем ток. Следовательно, в этом сопротивлении будет расходоваться мощность. Чем меньше сопротивление R, тем больше в нем потери мощности и тем больше затухание контура. Если сопротивление R будет очень малым, то оно замкнет накоротко один из элементов контура (конденсатор на (рис.2 а) или весь контур (рис.2 б). Тогда контур вообще не сможет работать как колебательная система и проявлять свои резонансные свойства.

Шунтирование контура активным сопротивлением

Рис.1 — Шунтирование контура активным сопротивлением

Шунтирование контура активным сопротивлением делают иногда специально с целью расширения полосы пропускания. Кроме того, подобное шунтирование существует вследствие того, что контур соединен с другими деталями и цепями. За счет этого происходит нежелательное ухудшение качества контура.

Внутреннее сопротивление генератора, питающего параллельный контур, также влияет на добротность контура и его полосу пропускания. Это можно легко объяснить следующим образом.

Пусть генератор в какой-то момент прекратил свое действие. Тогда колебания в контуре станут затухать, а внутреннее сопротивление генератора, присоединенного к контуру, будет играть роль шунтирующего сопротивления, увеличивающего затухание.

Чем больше Ri генератора, тем слабее его влияние, а значит, кривая резонанса контура острее и его полоса пропускания меньше, т.е. резонансные свойства контура выражены резче. При малом Ri генератора добротность контура настолько снижается и полоса пропускания становится такой широкой, что резонансные свойства у контура практически отсутствуют.

К подобному выводу о влиянии Ri генератора мы пришли уже ранее при рассмотрении работы параллельного контура.

Другой разновидностью линейных цепей являются колебательные контуры. С их помощью решается одна из важнейших задач радиотехники – осуществление частотной селекции (избирательности). Из множества несущих частот различных радиостанций, поступающих в антенну радиоприемника, необходимо выбрать узкую полосу частот интересующей нас радиостанции. Для решения этой задачи нужны частотно–избирательные цепи в виде колебательных контуров. Колебательный контур – это линейная электрическая цепь, составленная из конденсатора и катушки индуктивности

3.4.1.Свободные колебания в идеальном контуре

Рассмотрим вначале колебательный контур, в котором отсутствуют потери электрической энергии, то есть контур из идеальной катушки индуктивности и идеального конденсатора. Зарядим однократно конденсатор от внешней батареи до напряжения . При этом электрическая энергия, запасенная конденсатором, будет равна

(3.45)

За счет разряда конденсатора через катушку индуктивности происходит преобразование электрической энергии в магнитную энергию. При этом магнитная энергия, запасенная катушкой индуктивности, становится равной

. (3.46)

Затем происходит обратное преобразование магнитной энергии в электрическую энергию. В результате в контуре происходит колебательный процесс на некоторой частоте , Которая называется резонансной частотой. Такие колебания называются свободными. Найдем частоту свободных колебаний из равенства электрической и магнитной энергий:

. (3.47)

Учитывая, что , подставим значение В предыдущее выражение:

(3.48)

Отсюда резонансная частота колебаний

, (3.49)

А период колебаний

. (3.50)

Из равенства энергий найдем волновое (характеристическое) сопротивление контура :

. (3.51)

На резонансной частоте модуль реактивного сопротивления катушки индуктивности равен модулю реактивного сопротивления конденсатора:

(3.52)

Подставляя значение резонансной частоты в выражения для модулей реактивных сопротивлений, получим:

, (3.53)

= (3.54)

Таким образом, на резонансной частоте сопротивления реактивных элементов контура равны волновому сопротивлению. В идеальном контуре колебания будут незатухающими.

3.4.2.Свободные колебания в реальном контуре

Рассмотрим физические процессы в реальном контуре, состоящем из последовательно соединенных катушки индуктивности, конденсатора и некоторого активного сопротивления потерь . Сопротивление эквивалентно омическому сопротивлению катушки индуктивности и сопротивлению потерь электрической энергии в конденсаторе.

описание: последовательныйконтур
Рис. 3.11. Последовательный колебательный контур

Если зарядить однократно от внешней батареи конденсатор, то в контуре возникнет колебательный процесс. На основе второго закона Кирхгофа можно записать:

. (3.55)

Или:

(3.56)

Продифференцируем все слагаемые уравнения (2.55) по времени и разделим на :

(3.57)

Обозначим , Где — коэффициент затухания.

Учитывая, что , перепишем уравнение в следующем виде:

(3.58)

Ищем решение этого уравнения в виде: .

Подставим это решение в уравнение:

(3.59)

Или:

, (3.60)

Где: .

— резонансная частота реального контура.

Решение последнего уравнения имеет вид:

(3.61)

Отсюда ток в контуре равен:

. (3.62)

Полагая начальную фазу j=0, ток в контуре будет равен:

(3.63)

Если a=0, то колебания не затухают. При этом:

(3.64)

(3.65)

В реальном контуре , поэтому колебания на частоте Будут затухающими.

описание: затухающиеколебанияконтура

Рис. 3.12. Затухающие колебания в контуре с потерями

Период колебаний реального контура:

(3.66)

Если , то период колебаний . При этом колебательный процесс невозможен, а имеет место апериодический разряд конденсатора через катушку индуктивности и сопротивление потерь.

Колебательный процесс возможен только, когда или .

Отсюда: или .

У радиотехнических контуров волновое сопротивление .

Поэтому с большой степенью точности можно считать, что период колебаний и резонансная частота в реальном контуре определяются следующими выражениями:

(3.67)

(3.68)

По степени затухания колебательного процесса можно судить о качестве контура, которое оценивается добротностью:

(3.69)

Для радиотехнических контуров добротность

Добротность контура равна отношению напряжения на индуктивности или на емкости к напряжению на активном сопротивлении при резонансе:

(3.70)

В этом выражении Ток в контуре на резонансной частоте.

Умножим числитель и знаменатель на :


. (3.71)

Добротность равна умноженному на 2 отношению энергии, запасенной в контуре, к энергии, теряемой за один период колебаний.

Величина обратная добротности называется затуханием контура:

. (3.72)

3.4.3.Последовательный контур. Вынужденные колебания.

На рис. 3.13 представлен последовательный колебательный контур, к которому подключен генератор гармонических сигналов , внутреннее сопротивление которого равно нулю.

описание: последовательныйконтурсгенератором

Рис3.13. Последовательный контур с внешним генератором

На основании второго закона Кирхгофа запишем:

. (3.73)

Ток в контуре будет равен:

(3.74)

Входное сопротивление

. (3.75)

Реактивная составляющая входного сопротивления

. (3.76)

В зависимости от расстройки контура относительно резонансной частоты возможны три случая:

При этом реактивная составляющая входного сопротивления носит индуктивный характер;

При этом реактивная составляющая входного сопротивления носит емкостный характер;

при этом реактивная составляющая входного сопротивления равна нулю. Реактивные сопротивления будут равны на резонансной частоте.

На резонансной частоте входное сопротивление контура равно активному сопротивлению и ток в контуре равен значению .

Эквивалентная схема контура при резонансе приведена на рисунке.

описание: последовательныйконтуррезонансэквивалентнаясхема

Рис. 3.14. Эквивалентная схема последовательного контура на

Резонансной частоте.

Амплитуды напряжений на реактивных элементах на резонансной частоте равны по величине и противоположны по фазе.

. (3.77)

Из этого выражения найдем резонансную частоту:

. (3.78)

Оценим величину отношения напряжений на реактивных элементах на резонансной частоте к напряжению внешнего генератора:

, (3.79)

. (3.80)

Таким образом, на резонансной частоте в последовательном контуре напряжения на реактивных элементах равны по абсолютной величине и в Q раз превышают напряжение внешнего генератора. Такой резонанс называется резонансом напряжений.

3.4.4.Амплитудно-частотная характеристика последовательного контура.

Зависимость тока в контуре или напряжения на реактивных элементах от частоты питающего генератора при постоянном по величине напряжении генератора называется резонансной кривой или амплитудно-частотной характеристикой контура.

Для сравнения различных контуров резонансные кривые строят в относительном масштабе. Амплитудно-частотная характеристика в относительном масштабе контура, представленного на рис. 2.14, запишется как отношение тока в контуре на любой частоте к току в контуре на резонансной частоте:

=. (3.81)

Реактивная составляющая входного сопротивления контура равна:

(3.82)

Здесь

(3.83)

— относительная расстройка контура.

Для небольших абсолютных расстроек контура (в пределах полосы пропускания)

(3.84)

С учетом этого амплитудно-частотная характеристика контура

, (3.85)

Где: — обобщенная расстройка контура.

Окончательно уравнение амплитудно-частотной характеристики контура запишется в виде:

. (3.86)

Фазовая характеристика контура

(3.87)

При настройке контура в резонанс , обобщенная расстройка , реактивная составляющая входного сопротивления равна нулю и эквивалентное сопротивление контура равно . Характер зависимости свидетельствует о том, что колебательный контур обладает свойством избирательности. Количественно избирательность контура оценивается коэффициентом прямоугольности , который равен отношению ширины резонансной кривой на уровне 0,7 к ширине на уровне 0,1. Чем больше значение добротности, тем лучше избирательность контура. Для одиночных колебательных контуров . АЧХ последовательного контура в относительном масштабе представлена на рис. 3.15.

Рис.2.15 АЧХ последовательного контура

Найдем выражение для полосы пропускания колебательного контура. Полоса пропускания оценивается по уменьшению тока в контуре или напряжений на реактивных элементах в раз по сравнению с их значениями на резонансной частоте. Из формулы для АЧХ контура найдем полосу пропускания:

. (3.88)

Отсюда полоса пропускания контура на уровне Будет равна:

(3.89)

Зная резонансную частоту и полосу пропускания, можно рассчитать добротность контура:

(3.90)

Фазовая характеристика последовательного контура, построенная по выражению (2.98), приведена на рис. 3.16.

(3.91)

описание: фазоваях-капоследоватконтура

Рис.3.16. Фазовая характеристика последовательного контура

3.4.5. Параллельный колебательный контур.

Параллельный колебательный контур состоит из параллельно включенных катушки индуктивности и конденсатора, как показано на рис. 3.17. Активное сопротивление катушки индуктивности равно , а потери электромагнитной энергии в конденсаторе эквивалентны некоторому активному сопротивлению . Контур питается идеальным генератором тока.

описание: параллельныйконтур

Рис. 3.17. Параллельный колебательный контур.

Входное сопротивление контура равно:

. (3.92)

Для высокодобротных контуров в области резонансной частоты и . Учитывая это, можно записать:

(3.93)

Где: ; .

Таким образом, входное сопротивление зависит от частоты. Токи в ветвях контура также зависят от частоты. На резонансной частоте сопротивление катушки индуктивности по модулю становится равным модулю сопротивления конденсатора и токи в ветвях контура будут равны по абсолютной величине и противоположны по фазе. При этом ток в общей ветви в случае идеального контура был бы равен 0. На резонансной частоте в контуре протекает ток

. (3.94)

Входное сопротивление контура при резонансе становится активным и равно:

(3.95)

Следовательно, ток в контуре на резонансной частоте равен:

(3.96)

Таким образом, токи в ветвях контура при резонансе в раз превышают ток внешнего генератора. Поэтому говорят, что в параллельном контуре имеет место резонанс токов.

Зависимость отношения амплитуды напряжения на контуре на текущей частоте к амплитуде напряжения на контуре на резонансной частоте от частоты называют амплитудно-частотной характеристикой параллельного контура.

Запишем выражение для амплитудно-частотной характеристики параллельного контура:

(3.97)

Входное сопротивление контура равно:

(3.98) Умножим числитель и знаменатель этого выражения на ():

. (3.99)

Найдем модуль входного сопротивления:

. (3.100)

Подставив модуль входного сопротивления в выражение (3.97), окончательно получим:

. (3.101)

Таким образом, АЧХ параллельного и последовательного контуров описываются одним и тем же выражением.

Фазовая характеристика параллельного контура (рис. 2.18) построена на основании выражения

(3.102)

описание: 2

Рис. 3.18. Фазовая характеристика параллельного контура

3.4.6. Методы измерения добротности колебательных контуров

Существует несколько методов измерения добротности колебательных контуров.

Если подключить к контуру генератор гармонических сигналов и, изменяя частоту генератора, снять резонансную кривую контура, то добротность можно рассчитать по формуле:

, (3.103)

Где: — резонансная частота;

— полоса пропускания контура на уровне 0,7 от максимального значения коэффициента передачи.

Добротность контура можно также измерить по затухающим колебаниям в контуре, если подключить к контуру генератор прямоугольных импульсов. При этом прямоугольные импульсы должны быть достаточно короткими и с большим периодом, чтобы к моменту прихода следующего импульса колебания в контуре уже успели закончится (рис. 3.19).

описание: добротностьпозатухающимколебаниямконтура

Рис. 3.19. Определение добротности по затухающим колебаниям

Если обозначить начальную амплитуду затухающих колебаний , то, отсчитав число периодов колебаний, через которое начальная амплитуда уменьшится в раз, можно рассчитать добротность, исходя из следующих выражений:

, (3.104)

, (3.105)

. (3.106)

Таким образом, добротность равна умноженному на числу периодов, в течение которых начальная амплитуда колебаний уменьшается в Раз.

Кроме названных методов измерения добротности существуют специальные приборы — измерители добротности колебательных контуров.

3.4.7. Связанные контуры.

Недостатком одиночных колебательных контуров является их плохая избирательность. Количественно избирательность оценивается коэффициентом прямоугольности, который равен отношению ширины полосы пропускания на уровне 0,7 к ширине полосы пропускания на уровне 0,1 (иногда на уровне 0,01):

. (3.107)

Чем ближе значение коэффициента прямоугольности к 1, тем лучше избирательность контура.

Коэффициент прямоугольности одиночного контура = 0,1, а двух одиночных контуров, настроенных на одну частоту, примерно 0,21. При неограниченном числе одиночных контуров, настроенных на одну частоту, их коэффициент прямоугольности не превзойдет величину 0,39. Четыре одиночных взаимно расстроенных контура дадут приемлемую прямоугольность АЧХ, но при этом в приемнике надо иметь четыре каскада усиления.

Ценным свойством связанных контуров является возможность осуществить АЧХ по форме, близкую к прямоугольной. Связанные контуры взаимно влияют друг на друга. Степень влияния зависит от сопротивления связи. В качестве элементов связи используют конденсаторы и индуктивности. Чаще всего используют индуктивную (трансформаторную) связь. В этом случае степень связи определяется коэффициентом взаимной индукции . В общем виде два индуктивно связанных контура и их эквивалентная схема представлены на рис. 3.20, где — коэффициент взаимной индукции, – сопротивление связи.

описание: связанныеконтуры описание: связанныеконтуры

Рис. 3.20. Связанные контуры и их эквивалентная схема

Коэффициент взаимной индукции равен:

, (3.108)

Где: — магнитный поток, создаваемый током первого контура, сквозь поверхность, охватываемую витками катушки индуктивности второго контура;

— магнитный поток, создаваемый током второго контура, сквозь поверхность, охватываемую витками катушки индуктивности первого контура.

Для неферромагнитной среды .

Эдс, индуцируемая во втором контуре, равна:

(3.109)

Сопротивление связи равно

. (3.110)

Степень связи между контурами оценивается коэффициентом связи , который зависит от коэффициентов передачи напряжения от одного контура к другому. Под коэффициентом передачи понимают отношение напряжения (тока или энергии), переданного из первого контура во второй, к тому максимальному напряжению (току или энергии), которое можно было бы передать из первого контура во второй контур.

Коэффициент передачи напряжения из первого контура во второй равен:

(3.111)

Если включить генератор во второй контур, то получим коэффициент передачи напряжения из второго контура в первый:

. (3.112)

Коэффициент связи между контурами равен среднему геометрическому из коэффициентов передачи:

(3.113)

Коэффициент связи выражает отношение общего магнитного потока, пронизывающего обе катушки индуктивности, к полному магнитному потоку. Величина () характеризует поток рассеяния.

Выясним характер и форму амплитудно-частотной характеристики системы из двух индуктивно связанных контуров, представленных на рис.2.20. Для упрощения предположим, что контуры состоят из одинаковых элементов и поэтому имеют одинаковую резонансную частоту . АЧХ связанных контуров зависит от степени связи между ними. При слабой связи (катушки далеки друг от друга) степень взаимного влияния контуров мала и на резонансной кривой будет один максимум. По мере сближения катушек взаимное влияние контуров возрастает и при некотором коэффициенте связи резонансная кривая становится двугорбой и на ней появляются два максимума (рис.2.22). Максимальная связь, при которой АЧХ остается с одним максимумом, называется критической связью. При связи больше критической АЧХ связанных контуров имеет три экстремальные точки. Одна из них соответствует минимуму коэффициента передачи и будет на резонансной частоте частоте . Две другие соответствуют максимуму коэффициента передачи и будут на частотах

, (3.114)

. (3.115) .

Частоты зависят от коэффициента связи и величины затухания контуров и называются частотами связи. Чем больше коэффициент связи, тем больше разнос между частотами связи. — быстрая частота связи, а — медленная частота связи. Зависимость частот связи от коэффициента связи показана на рисунке 3.21.

описание: 2

Рис. 3.21. Зависимость частот связи от коэффициента связи

При критической связи и на резонансной кривой будет один максимум на частоте .

При связи меньше критической формулы для частот связи и не имеют смысла и на АЧХ будет только один максимум на частоте .

При связи больше критической () на АЧХ появляются два максимума на частотах и .

описание: 2

Рис. 3.22. АЧХ одиночного и двух связанных контуров ().

Полоса пропускания связанных контуров определяется, как ширина АЧХ на уровне 0,7 от максимальной ординаты при этом минимум АЧХ также должен быть на уровне 0,7. Можно показать, что при одинаковом затухании и Относительная ширина полосы пропускания для связанных контуров получается в 3,1 раза больше, чем для одиночного контура. Коэффициент прямоугольности двух связанных контуров при критической связи равен 0,32. При связи выше критической для системы из двух каскадов связанных контуров коэффициент прямоугольности = 0,6 , а для трёх – 0,65.

В серийно выпускаемой радиоаппаратуре в качестве элементов, обеспечивающих высокую избирательность используют пъезофильтры, созданные на основе пьезоэлектриков. Пьезоэлектрики – кристаллические вещества, в которых при сжатии или растяжении в определенных направлениях возникает электрическая поляризация (прямой пьезоэффект). Следствием прямого пьезоэффекта является обратный пьезоэффект – появление механической деформации под действием электрического поля. Пьезофильтр состоит из отдельных, объединенных в группы пьезоэлементов (стержней, пластинок) с нанесенными на определенные поверхности электродами, к которым подводится электрическое напряжение, для создания деформации в результате обратного пьезоэффекта. Пьезофильтр обеспечивает хорошую прямоугольность АЧХ. Добротность керамических пьезофильтров составляет несколько тысяч, а затухание вне полосы составляет -60дБ.

4. Последовательный колебательный контур

4.1. Схема последовательного колебательного контура

Последовательным колебательным контуром называют электрическую цепь, представляющую собой последовательное соединение катушки индуктивности и конденсатора. Его возможные варианты включения как четырехполюсника показа- ны на  рис. 4.1 (выход-

ное  напряжение  сни-                             Рис. 4.1

мается с конденсатора

или с катушки индуктивности).

 Конденсатор и катушка индуктивности имеют внутренние потери энергии, которые учитываются последовательно соединенными с ними эквивалентными сопротивлениями потерь  и  соответственно. На практике в керамических конденсаторах всегда  и потерями в них пренебрегают, тогда эквивалентные схемы последовательных колебательных контуров рис. 4.1 примут вид, показанный на рис. 4.2.

Рис. 4.2

Рекомендуемые материалы

В дальнейшем будем рассматривать схему на рис. 4.2а, в которой выходное напряжение  снимается  с  емкости, а  схему

71

на рис. 4.2б аналогично рассмотрите самостоятельно.

4.2. Входное сопротивление последовательного

        колебательного контура

Определим входное сопротивление последовательного колебательного контура показанного на рис. 4.3. Полное комплексное сопротивление  равно

.      (4.1)

     Рис. 4.3                 Его модуль , аргумент  , активная

                                    и реактивная  составляющие соответственно равны:

Зависимости этих функций от частоты сигнала при Ом, мГн, нФ показаны на рис. 4.4. На частоте

                                 (4.2)

реактивное сопротивление  и   принимает  минималь-

72

ное значение,  равное ,

.                                     (4.3)

Рис. 4.4

При отклонении частоты от  модуль сопротивления контура резко возрастает. В области  реактивное сопротивление положительно, то есть контур имеет индуктивный характер сопротивления, сдвиг фаз между напряжением и током . В области  реактивное сопротивление отрицательно и сопротивление контура имеет емкостный характер .

4.3. Ток и напряжения в контуре, резонансные явления

Подключим к контуру рис. 4.2а идеальный источник гармонического напряжения, получим схему на рис. 4.5.

73

Комплексная амплитуда ЭДС  источника равна , тогда для комплексной амплитуды тока в контуре получим

              Рис. 4.5                           ,    (4.4)

а для его амплитуды  и начальной фазы  соответственно

,                         (4.5)

.                      (4.6)

Зависимости амплитуды и начальной фазы тока от частоты при Ом, мГн, нФ, В и  представлены на рис. 4.6.

Рис. 4.6

74

Ток в контуре резко нарастает при приближении частоты источника к частоте  (4.3), его максимальное значение равно

.                                         (4.7)

Однако резонанс тока в последовательном колебательном контуре отсутствует, так как ток в контуре равен току источника, а не возрастает по сравнению с ним.

Так как изменения тока происходят в малой окрестности около частоты , то целесообразно строить графики в координатах абсолютной расстройки, равной

,                                    (4.8)

то есть производится смещение начала координат  в  точку .

Те же графики, что и на рис. 4.6, но в координатах , показаны на рис. 4.7.

Рис.4.7

Как видно, координаты абсолютной расстройки удобны для построения графиков частотных характеристик колебательного контура.

75

Определим комплексные амплитуды напряжений на элементах контура:

,                          (4.9)

,                        (4.10)

.                        (4.11)

Тогда для амплитуд этих напряжений получим:

,                          (4.12)

,                        (4.13)

.                        (4.14)

76

а их начальные фазы равны

,                      (4.15)

,                      (4.16)

.                      (4.17)

На рис. 4.8 показаны зависимости амплитуд напряжений на элементах контура при Ом, мГн, нФ, В и  (обратите внимание, что сопротивление потерь в 10 раз больше, чем в предыдущем примере)

Рис. 4.8

77

На рис. 4.8а кривые представлены в широком диапазоне частот, а на рис. 4.8б – в координатах абсолютной расстройки и узком частотном интервале в окрестности .

Как видно на частоте  напряжения на индуктивности и емкости резко возрастают по сравнению с напряжением (ЭДС) источника (становятся много больше ), то есть в последовательном колебательном контуре имеет место резонанс напряжений на реактивных элементах. Напряжение на сопротивлении  не превышает входной ЭДС, поэтому о его резонансе говорить не приходится.

Частоты, на которых напряжения  и  максимальны, примерно равны , поэтому частоту (4.2)

называют резонансной.

Точные значения резонансных частот нетрудно найти, определив производные  и  по частоте  и приравняв результат нулю (проделайте это самостоятельно). Как видно из  кривых рис. 4.8б, эти частоты отличаются от  весьма незначительно (резонансная частота напряжения емкости меньше , а индуктивности – больше)  и тем сильнее, чем больше сопротивление  (для того, чтобы это увидеть графически и было выбрано Ом).

Принимая резонансную частоту равной , определим резонансные амплитуды напряжений,

,                                    (4.18)

,                                (4.19)

78

.                                 (4.20)

Подстановкой  нетрудно убедиться, что

,                                   (4.21)

тогда резонансные напряжения на реактивных элементах одинаковы и равны

.                              (4.22)

Величину

                            (4.23)

называют добротностью колебательного контура. Согласно (4.22) добротность является важнейшей характеристикой резонансных явлений.

На рис. 4.9 приведены зависимости от частоты сдвигов фаз напряжений на элементах контура относительно фазы ЭДС источника,

,

,                             (4.24)

 

начальные фазы напряжений определяются из (4.15)-(4.17). Как видно, напряжение на индуктивности  опережает  по  фазе

79

напряжение на сопротивлении на , а на емкости – отстает  от него на . Напряжение на индуктивности  опережает по фазе напряжение на емкости  на , то есть эти напряжения противофазны.

Рис. 4.9

4.4. Вторичные параметры колебательного контура

Последовательный колебательный контур полностью описывается своими первичными параметрами ,  и . Однако их численные значения малоинформативны, и на практике широко используются дополнительные (вторичные) параметры.

Резонансная частота контура

                                 (4.25)

измеряется в радианах делить на секунду, или

,                             (4.26)

80

которая измеряется в герцах. Ее значение сразу определяет частоту настройки колебательного контура.

Характеристическое сопротивление контура

                          (4.27)

измеряется в Омах  и численно равно модулю реактивного сопротивления индуктивности или емкости (отдельно) на резонансной частоте .

Добротность контура

                     (4.28)

– величина безразмерная, характеризует резонансные свойства колебательного контура. Физический смысл добротности – это отношение максимальной энергии, накапливаемой в реактивных элементах, к энергии потерь в контуре за период колебаний на резонансной частоте.

Как видно из (2.28), добротность возрастает с уменьшением сопротивления потерь контура, которое практически полностью определяется потерями мощности сигнала в катушке индуктивности. На практике добротность . В большинстве случаев добротность составляет 70-100. Для получения высоких добротностей 150-300 используют специальный провод (покрытый тонким слоем серебра – «серебрянку»), вжигание серебряного проводника в керамический каркас и ряд других инженерных решений. Более высокие значения добротности LC колебательных контуров получить не удается.

Явление  резонанса  и  понятие  добротности  используются  и  в   механических   колебательных   системах.   Например,

81

в кристаллах кварца (горного хрусталя) очень малы потери энергии механических колебаний, то есть они имеют высокую добротность. Поэтому изготовленные из него бокалы при слабом ударе издают продолжительный звон. В железе, алюминии или пластмассе эти потери велики, поэтому сделанные их них бокалы не обладают соответствующим звучанием.

Помимо малых потерь энергии механических колебаний монокристаллы кварца характеризуются явлением пьезоэффекта (повторите материал по физике): при возникновении в кварцевой пластине механических колебаний на ее гранях возникает переменное напряжение и наоборот, приложенное к кристаллу переменное напряжение вызывает механические колебания кристалла. Из кварцевых пластин изготавливают электронные устройства – кварцевые резонаторы. С электрической точки зрения они эквивалентны последовательному колебательному контуру с очень высокой добротностью .

4.5. Частотные характеристики контура

Под частотными характеристиками последовательного колебательного контура (рис. 4.2) понимают зависимость от частоты характеристик комплексного коэффициента передачи по напряжению вида

                                      (4.29)

или

,                                    (4.30)

где  – комплексная амплитуда напряжения на емкости (обычно полагают, что потери в емкости отсутствуют),  – комплексная амплитуда напряжения на  последовательном  со-

82

единении индуктивности  с ее сопротивлением потерь  (напряжение на реальной катушке индуктивности).

Рассмотрим комплексный коэффициент передачи напряжения емкости  (аналогичный анализ  проведите самостоятельно). Из (4.29) с учетом (4.11) получим

.                             (4.31)

Из (4.31) АЧХ  и ФЧХ  контура имеют вид

,                            (4.32)

.                     (4.33)

Частотные характеристики последовательного колебательного контура при мГн, нФ для двух значений Ом (сплошные линии) и Ом (пунктир) в различных масштабах показаны на рис. 4.10 в координатах абсолютной расстройки. Кривые резко возрастает при приближении частоты сигнала  к резонансной частоте контура  (4.25). Максимум коэффициента передачи имеет  место приближенно

83

на частоте  и равен добротности контура,

.                           (4.34)

Рис. 4.10

На рис. 4.10а приведены АЧХ в абсолютном, а на рис. 4.10б в относительном масштабах по оси ординат. На рис. 4.11 показаны ФЧХ этих контуров.

Рис. 4.11.

Как видно, с  ростом  сопротивления  потерь    в   колеба-

84

тельном контуре максимум АЧХ падает (так как уменьшается добротность) и кривая АЧХ становится «шире», а ФЧХ – более пологой.

Постройте графики АЧХ в координатах частоты , рассмотрите влияние на форму кривой величины сопротивления потерь, оцените удобство координат абсолютной расстройки.

По форме АЧХ видно, что последовательный колебательный контур является узкополосным частотным фильтром.

4.6. Обобщенная расстройка

Исследование частотных характеристик колебательного контура удобнее всего проводить в координатах обобщенной расстройки , равной

.                                   (4.35)

Как видно, она зависит от частоты сигнала и параметров контура. Проведем преобразования

. (4.36)

Обозначая абсолютную расстройку

,                                   (4.37)

85

и приближенно полагая в первой дроби , получим

.                            (4.38)

Из (4.38) видно, что обобщенная расстройка прямо пропорциональна абсолютной расстройке, то есть частоте сигнала (начало координат смещено в точку ).

4.7. Частотные характеристики в координатах обобщенной

       расстройки

 Комплексное входное сопротивление контура (4.1) в координатах  можно записать в виде

,             (4.39)

а его модуль, аргумент, активную и реактивную составляющие соответственно

                                (4.40)

Эти характеристики как функции обобщенной расстройки показаны на рис. 4.12. Сплошной линией показаны точные, а пунктирной – приближенные значения, полученные из (4.40).

86

Рис. 4.12

Проведем расчет комплексного коэффициента передачи, приближенно заменив в числителе (4.31)  на ,

.          (4.41)

Частотные характеристики последовательного колебательного контура в координатах обобщенной расстройки имеют вид

,                                (4.42)

                           (4.43)

Зависимости АЧХ  и ФЧХ  показаны на рис. 4.13 пунктирными линиями. Их точные значения показаны сплошными кривыми.

Как видно, расчеты частотных характеристик в координатах обобщенной расстройки  имеют  вполне   удовлетворитель-

87

ную точность в достаточно широкой окрестности резонансной частоты, то есть там, где они и представляют практический интерес.

Рис. 4.13

С помощью обобщенной расстройки можно проводить расчеты токов и напряжений в контуре:

,                                    (4.44)

,                                    (4.45)

,                                    (4.46)

,                                  (4.47)

Выражения и вычисления существенно упрощаются.

Запишите самостоятельно выражения для амплитуд и начальных фаз тока и напряжений на элементах контура. Постройте их зависимости от частоты и обобщенной расстройки, оцените погрешность вычислений в координатах .

88

4.8. Полоса пропускания и коэффициент

       прямоугольности

Определим полосу пропускания контура, расчет  проведем в координатах обобщенной расстройки (рис. 4.14).

Максмум АЧХ контура равен добротности , тогда полоса пропускания    определяется на    уровне

      .

С учетом (4.42)      урав-

нение     имеет

вид                                                        Рис. 4.14                                                                     

                                (4.48)

и его решения равны

Интервал обобщенной расстройки в полосе пропускания

,

с другой стороны из (4.38)

,

89

тогда получим уравнение

,

а полоса пропускания будет равна

.                                    (4.49)

Как видно, полоса пропускания контура с заданной частотой настройки  определяется только его добротностью. Высокодобротный контур позволяет реализовать узкополосный частотный фильтр. Как уже отмечалось, большие значения  обеспечить достаточно сложно.

Добротность колебательного контура является основной характеристикой его резонансных свойств.

Для определения коэффициента прямоугольности  необходимо найти полосу пропускания контура  на уровне 1/10 от максимума. Для этого составим уравнение в координатах ,

,                                  (4.50)

решения которого равны

90

Интервал величин обобщенной расстройки в полосе пропускания на уровне 1/10 от максимума равен

,

тогда получим уравнение

,

а полоса пропускания  будет равна

.                                   (4.51)

В результате коэффициент прямоугольности колебательного контура оказывается равным

.

Как видно, последовательный колебательный контур является полосовым частотным фильтром с низкой избирательностью.

4.9. Влияние внутреннего сопротивления источника

       сигнала и нагрузки на резонансные свойства контура

Рассмотрим контур с подключенным реальным источником напряжения  (– его внутреннее сопротивление) и сопротивлением нагрузки  (рис. 4.15). Можно провести анализ этой цепи отдельно, однако целесообразнее  преобразовать

91

ее к уже рассмотренной цепи вида рис. 4.5 (с идеальным источником напряжения и без нагрузки) и воспользоваться уже полученными результатами анализа.

Рис. 4.15

Как видно, сопротивление источника  просто складывается с , увеличивая сопротивление потерь контура. Нагрузка же подключена параллельно емкости, и тогда параллельное соединение  необходимо эквивалентно преобразовать в последовательное соединение элементов  (как  по-

                 Рис. 4.16                        казано на рис. 4.16).    Эти

                                                        цепи эквивалентны, если равны их полные комплексные сопротивления, тогда получим

.

Преобразуя дроби и приводя обе части равенства к алгебраической форме записи комплексных чисел, можно записать

.

92

Комплексные числа равны тогда и только тогда, когда равны отдельно их действительные и мнимые части, поэтому после алгебраических преобразований получим два уравнения для неизвестных ,

,                              (4.52)

.                            (4.53)

Проделайте необходимые преобразования самостоятельно.

Как видно, эквивалентные параметры последовательной цепи зависят от частоты и, строго говоря, такое преобразование возможно только на фиксированной частоте. При анализе колебательного контура интерес представляет окрестность его резонансной частоты , поэтому в (4.52) и (4.53), приняв  и условие

,                                    (4.54)

получим

,                              (4.55)

.                                     (4.56)

Эти равенства является точными на частоте  и приближенными в ее окрестности. На рис. 4.17 показаны зависимости эквивалентных сопротивления  и емкости  от абсолютной

93

расстройки при нФ и рад/с и различных значениях сопротивления нагрузки . Как видно, при больших , и особенно при выполнении условия (4.54), величины  и  практически постоянны в широкой окрестности резонансной частоты.

Рис. 4.17

       Таким образом эквивалентная схема последовательного колебательного контура с реальным источником сигнала и нагрузкой имеет вид, показанный на рис. 4.18, где  – эквивалентное  сопротивление  потерь,  рав-

            Рис. 4.18                 ное

.            (4.56)

Контур рис. 4.18 уже изучен, его резонансные свойства определяются эквивалентной добротностью ,

94

.   (4.57)

Как видно, внутреннее сопротивление источника сигнала  снижает эквивалентную добротность, его влияние будет мало, если

  или  ,                       (4.58)

Собственное сопротивление потерь  достаточно мало (доли Ома – единицы Ом), поэтому источник сигнала для последовательного колебательного контура должен быть практически идеальным.

Нагрузка контура также снижает его добротность, чем больше , тем меньше падает . Для того, чтобы влияние нагрузки было невелико, необходимо выполнение условия

  или  .                      (4.59)

На практике величина характеристического сопротивления  составляет сотни Ом – килоОмы, добротность лежит в пределах от нескольких десятков до 150, тогда произведение  составляет десятки – сотни килоОм. С учетом сделанных оценок необходимое сопротивление нагрузки при условии (4.59) оказывается достаточно большим, например, 1 МОм, что крайне сложно обеспечить на практике.

Для ослабления влияния нагрузки на добротность контура используют ее неполное включение, один из вариантов схемы показан на рис. 4.19.

95

Рис. 4.19

Проведите самостоятельно анализ этой цепи аналогично предыдущей, преобразовав параллельное соединение  в последовательное, получите выражение для эквивалентной добротности, в результате можно записать

,              (4.60)

где – коэффициент включения нагрузки в контур, равный

.                              (4.61)

Требования к сопротивлению нагрузки определяются неравенством

,                            (4.62)

что значительно слабее (4.59). Например, при кОм и  (типичное значение) необходимо выполнение условия кОм, что вполне приемлемо на практике.

96

4.10. Расчеты цепей с последовательными

         колебательными контурами

Расчет гармонических токов и напряжений в электрических цепях с колебательными контурами проводится методом комплексных амплитуд чаще всего в координатах обобщенной расстройки.

Рассмотрим пример, показанный на рис. 4.20, в котором на заданной частоте рад/с при Ом, мГн, нФ, Ом и В необходимо определить комплексную амплитуду напряжения на нагрузке . Расчет в координатах частоты  будет достаточно громоздким (проведите его самостоятельно, чтобы убедиться в этом).                                                        Рис. 4.20

Резонансная частота

контура равна

,

а добротность соответственно

.

В  координатах  обобщенной расстройки , равной

,

97

сопротивление  последовательного колебательного контура  равно  Ом.

Сопротивление  параллельного соединения контура с нагрузкой определяется выражением

Ом.

Вычислим общее сопротивление цепи,

,

в результате получим

Ом.

Комплексная амплитуда тока в цепи равна

а напряжения на нагрузке соответственно

В.

Переход к координатам обобщенной расстройки существенно упрощает расчеты цепей с колебательными контурами. При расчетах широко используют известные выражения для коэффициента передачи и других характеристик контура.

98

Рассмотрим пример, показанный на рис.4.21 при В рад/с, Ом, мГн и нФ. Необходимо рассчитать мгновенные значения напряжения на емкости последовательного колебательного контура    .

Резонансная частота  и добротность  равны                                   Рис. 4.21

,   ,

тогда для обобщенной расстройки получим

.

Комплексный коэффициент передачи  определяется выражением

,

тогда комплексная амплитуда напряжения на емкости равна

В,

а для его мгновенных значений получим

В.

99

        4.11. Моделирование последовательного колебательного

                 контура

На рис. 4.22 показана модель последовательного колебательного контура Ом, мГн и пФ с нагрузкой МОм в пакете программ MicroCAP7. На рис. 4.23 приведены результаты моделирования в АЧХ и ФЧХ режиме «Stepping» при изменении сопротивления потерь        от 50 Ом (верхние кривые)  до 150 Ом (нижние

кривые) с шагом 50 Ом.

             Рис.4.22                                        На  рис. 4.24   пока-

                                                          заны аналогичные зависимости при Ом и изменении сопротивления нагрузки от МОм (нижние кривые) до МОм верхние кривые) с шагом 1МОм .

Как видно по результатам моделирования, максимум АЧХ снижается с ростом сопротивления потерь и уменьшением сопротивления нагрузки, причем даже при большом МОм добротность контура существенно уменьшается. При этих условиях АЧХ и ФЧХ становятся более пологими.

На рис. 4.25 представлены результаты моделирования контура при изменении его емкости от 100пФ (правая кривая) до 200пФ (левая кривая) с шагом 50 пФ для Ом. Такие изменения происходят при настройке колебательного контура в радиоприемнике с помощью конденсатора переменной емкости.

Проведите расчеты, подтверждающие результаты моделирования, например, вычислите максимальные значения АЧХ при соответствующих параметрах цепи.

100

101

102

103

        4.12. Применение последовательного колебательного

          контура

Последовательный колебательный контур широко используется как узкополосный частотный фильтр. Таким фильтром является преселектор (предварительный селектор), который присутствует в любом супергетеродинном радиоприемнике (факультативно поинтересуйтесь у преподавателя, как работает супергетеродинный радиоприемник), его условная схема показана на рис. 4.26. Антенна приемника включена в контур как источник сигнала, а напряжение с емкости  подается на вход усилителя высокочастотного сигнала (УВЧ), входное сопротивление которого является нагрузкой колебательного контура. Так как транзисторный УВЧ имеет невысо-

           Рис. 4.26                         кое  входное сопротивление,

                                                    то используется неполное включение нагрузки. Задача преселектора – фильтрация «зеркального канала» приема в супергетеродинном приемнике.

На базе последовательного колебательного контура можно реализовать режекторный фильтр, пример которого показан на рис. 4.27. На рис 4.28 показана его модель при мГн, нФ и  Ом, сопротив-

лении потерь катушки ин-

дуктивности   Ом и сопротивлении нагрузки 

              Рис. 4.27                         кОм, а на рис. 4.29 –

                                                       АЧХ и ФЧХ.

104

Рис. 4.28

Рис. 4.29

Как видно, фильтр подавляет сигнал в окрестности частоты 160 кГц. Нетрудно спроектировать такой фильтр на частоту 50 или 100 Гц, что часто необходимо в биомедицинской аппаратуре, питающейся от силовой сети переменного тока 220В с частотой 50 Гц (проведите необходимые расчеты и схемотехническое моделирование).

105

4.13. Задания для самостоятельного решения

Задание 4.1. Определите сопротивление потерь колебательного контура при , рад/с и мГн.

Задание 4.2. Определите сопротивление потерь колебательного контура при полосе пропускания рад/с и мГн.

Задание 4.4. Определите полосу пропускания колебательного контура при рад/с, нФ и сопротивлении потерь Ом.

Задание 4.4. Определите добротность  колебательного контура при рад/с и полосе пропускания рад/с.

Задание 4.5. Определите напряжение на катушке индуктивности контура  рис. 4.30   при   мГн,    пФ,

Ом,  В, Ом и рад/с. Расчет проведите обычным методом комплексных амплитуд и используя теорию колебательных контуров в координатах обобщенной расстройки, сравните результаты.

           Рис. 4.30

Задание 4.6. Определите напряжение на емкости  контура рис. 4.31  при мГн, нФ, Ом,  В,   Ом и    рад/с.  Расчет  проведите   обычным

106

методом комплексных амплитуд и используя теорию колебательных контуров в координатах      обобщенной    расстройки

сравните результаты.                             Рис. 4.31

Рекомендуем посмотреть лекцию “9. Районирование в экономической и социальной географии”.

Задание 4.7. Вычислите резонансные значения тока и  напряжение на емкости контура при мГн, нФ, Ом и ЭДС идеального источника напряжения В.

     Задание 4.8. В координатах обобщенной расстройки вычислите напряжение  на нагрузке  в цепи на  рис. 4.32 при В, мГн,  нФ,  Ом,                       Рис. 4.32                                    

Ом,                                                                          кОм и    рад/с.

     Задание 4.9. Получите выражение для АЧХ цепи, показанной на рис. 4.33, постройте ее график. Проанализируйте влияние нагрузки  и сопротивлений  и  на форму АЧХ.

                                                           Рис. 4.33

Добавить комментарий