Как найти полосу пропускания по графику

Амплитудно-частотная
характеристика последовательного
контура характеризуется тем, что на
резонансной частоте она имеет максимальное
значение. На частотах, отстоящих
значительно от резонансной частоты,
значения амплитудно-частотной
характеристики близки к нулю. Если к
контуру прикладывать сигналы одинаковой
амплитуды, но с разными частотами, то
сигналы с частотой, равной резонансной
частоте, будут создавать большой ток в
контуре и большие напряжения на реактивных
элементах. В этом случае говорят, что
контур пропускает этот сигнал. Если
частота сигнала значительно отличается
от 0,
то в контуре практически отсутствуют
электрические колебания. В этом случае
говорят, что контур такой сигнал
подавляет. Для оценки этих свойств
контура вводится понятие его полосы
пропускания.

Полосой
пропускания

называется интервал частот, включающий
резонансную частоту контура, на границах
которого значение тока контура меньше
значения тока на резонансной частоте
в заданное число раз.

Как
правило, за исключением особой аппаратуры,
требуется, чтобы на границе полосы
пропускания ток контура был меньше тока
на резонансной частоте враз.

На
рис.3.10 показано определение полосы
пропускания с помощью АЧХ. В соответствии
с заданным уровнем подавления на границе
полосы пропускания должно выполняться
условие:

. (3.31)

Значит
на границах полосы пропускания АЧХ
должна иметь значение:

. (3.32)
Исходя из этого, на рис.3.10 найдена полоса
пропускания, границы которой обозначаются
частотами 1
и 2.
Полоса пропускания обозначается как
и измеряется в единицах измерения
частоты. Тогда полоса пропускания будет
равна:

. (3.33)

В
зоне полосы пропускания АЧХ практически
симметрична относительно резонансной
частоты. Поэтому интервалы между
резонансной частотой и границами полосы
пропускания обозначим как ∆.

, .

С
учетом этого выражение для полосы
пропускания (3.33) принимает вид:

. (3.34)

Рассмотренный
способ определения полосы пропускания
возможен только при наличии графика
АЧХ. Это не всегда удобно.

Найдем
аналитическое выражение для определения
полосы пропускания. Для этого воспользуемся
формулой (3.29) определения АЧХ.

. (3.35)

Найдем,
какой имеет вид (3.35) для границ полосы
пропускания. Для этого предварительно
найдем выражение в круглых скобках
формулы (3.35) для 1
и 2.

Для
=1
получаем:

В
контурах радиоаппаратуры полоса
пропускания узкая и составляет единицы
килогерц, а резонансная частота высокая
и составляет сотни килогерц. Это позволяет
пренебречь величиной ∆
в числителе и знаменателе. Тогда
рассматриваемое соотношение принимает
вид:

Для
=2,
с учетом сказанного получаем:

Из
приведенного анализа видно, что
рассматриваемая часть формулы (3.35) на
граничных частотах 1
и 2
имеет
одинаковые выражения, отличающиеся
только знаком. Но так как рассмотренное
соотношение в формуле (3.35) находится в
квадрате, то эта формула для обеих границ
полосы пропускания имеет один и тот же
вид:


(3.36)

При
решении задачи о полосе пропускания в
общем виде вводится понятие коэффициента
неравномерности .
Он показывает, какую часть от резонансного
тока принимает ток контура на границах
полосы пропускания и имеет разные
значения в зависимости от вида аппаратуры
(0.707; 0.1; 0.01 и т. д.) Тогда, в соответствии
с понятием полосы пропускания, приравняем
(3.36) к коэффициенту неравномерности:

Решаем
это уравнение относительно 2∆
и с учетом (3.34) находим:

.

При
коэффициенте неравномерности

полоса пропускания одиночного
последовательного контура определяется
формулой:

(3.37)

На
границах полосы пропускания последовательный
одиночный колебательный контур обладает
рядом свойств, которые полезно знать
при расчете схем с его применением.

1.
Мощность, потребляемая контуром на
границах полосы пропускания, в 2 раза
меньше мощности, потребляемой контуром
на резонансной частоте.

Действительно,
на резонансной частоте мощность,
потребляемая контуром, выражается через
действующее значение тока контура
известным соотношением:

Обозначим
действующее значение тока на границе
полосы пропускания через I. Тогда, с
учетом (3.31), мощность, потребляемая
контуром на каждой из границ полосы
пропускания, равна:

2.
На границах полосы пропускания
сопротивление резистора контура R равно
модулю суммы его реактивных элементов:

На
резонансной частоте ток в контуре равен:

На
границах полосы пропускания ток контура
в общем виде (для =1
и =2)
определяется формулой:

С
учетом (3.31) приравняем эти токи:

После
несложных преобразований находим:

(3.38)

3.
На границах полосы пропускания фаза
тока контура относительно входного
сигнала равна 45.

Комплексное
значение тока контура равно:

.

Фаза
тока равна:

. (3.39)

Исходя
из (3.38), модуль аргумента (3.39) на границах
полосы пропускания равен 1. Исходя из
свойств ФЧХ, на частотах <0
контур имеет емкостные свойства (Х<0)
и, следовательно:

.

На
частотах >0
контур имеет индуктивные свойства (Х >
0), следовательно:

4.
На границах полосы пропускания обобщенная
расстройка
.

Из
(3.36) видно, что обобщенная расстройка,
с учетом ранее выполненного анализа
для 1
и
2
имеет вид:

,

где
“плюс” имеет место для 2,
а “минус” – для 1.

Тогда,
учитывая (3.34) и (3.37), получаем:

.

5.
На границе полосы пропускания модуль
полного сопротивления контура равен:

.

Это
легко проверить, учитывая второе из
рассмотренных свойств (3.38). Из выражения
модуля полного сопротивления контура
находим:

.

  1. Параллельный
    контур
    без
    диссипаций
    в
    реактивных
    ветвях

    полное
    сопротивление,
    резонанс
    в
    контуре,
    напряжение
    на
    контуре
    и
    токи
    в
    ветвях,
    векторная
    диаграмма.

Параллельные
колебательные контура

Параллельные
одиночные колебательные контура
характеризуются тем, что основные
элементы их – конденсатор и индуктивность
соединены между собой параллельно.
Резисторы могут быть включены как
параллельно с реактивными элементами,
так и последовательно. В первом случае
диссипация энергии в параллельных
ветвях, содержащих реактивные элементы,
отсутствует. Во втором случае в этих
ветвях имеют место диссипативные
процессы. Рассмотрим каждый из названных
видов параллельных контуров.

3.3.1.
Параллельный колебательный контур без
диссипации в реактивных ветвях

Общие
соотношения.

В параллельном колебательном контуре
без диссипации в реактивных ветвях
резистор включен параллельно с
конденсатором и индуктивностью, которые
здесь считаются идеальными (рис.3.18). Их
диссипации могут быть учтены в резисторе
по параллельной схеме замещения
(рис.1.4).

Сопротивление
контура
.
Для рассмотрения свойств контура
определим его полное сопротивление
K
(рис.3.18,в). Представим контур в виде
параллельно соединенных реактивных и
резистивного сопротивлений (рис.3.18,б).

Воспользуемся
проводимостями этих элементов:

; ; ; .

Как
известно, эквивалентная проводимость
параллельно соединенных элементов
равна сумме проводимостей этих элементов.
Тогда эквивалентная проводимость
контура имеет вид:

.

Отсюда
находим величину эквивалентного
сопротивления контура, выделяя в нем
вещественную и мнимую составляющие:

(3.50)

Представим
сопротивление контура в показательной
форме:

, (3.51)

где ;.

Напряжение
на контуре
.
В отличие от последовательного контура,
в параллельном контуре входным параметром
является ток контура iК(t),
а выходным – напряжение на контуре uК(t).
Это связано с особенностью функционирования
параллельных контуров в радиотехнических
устройствах, таких как резонансные
усилители, резонансные фильтры и др. В
связи с этим задаем ток с определенной
амплитудой и нулевой фазой, который в
гармонической форме записи и в комплексной
форме имеет виды:

; .

Напряжение
на контуре определяется в соответствии
с законом Ома:

, (3.52)

где , .

Токи
в контуре
.
Определим токи во всех ветвях контура.
Напряжение на контуре, а, значит,
напряжение, приложенное к каждой из
ветвей, имеет вид:

. (3.53)

Токи
в ветвях определяются по закону Ома:

,где.

, где
(3.54)

,где

Резонанс
в контуре
.
Условие резонанса и резонансная частота.
Как отмечалось, признаком резонанса
являются максимальные значения тока и
напряжения в схеме при определенной
частоте сигнала. При этом в полном
сопротивлении цепи мнимая составляющая
равна нулю. Это мы видели в последовательном
одиночном колебательном контуре.
Воспользуемся этим условием. Тогда из
выражения (3.50) видно, что условием
резонанса в контуре является выполнение
следующего равенства:

. (3.55)

Это
значит, что при резонансе сопротивления
конденсатора и катушки индуктивности
равны:

.

Решая
(3.55) относительно частоты, находим
выражение для резонансной частоты
контура:

. (3.56)

Определим
сопротивление контура, напряжение на
контуре и токи в ветвях на резонансной
частоте.

Сопротивление
контура на резонансной частоте можно
определить из (3.51). С учётом условия
резонанса (3.55) видно, что на резонансной
частоте модуль и фаза сопротивления
контура принимают значения:

, .

Напряжение
на контуре при резонансе определяется
из (3.53) с учётом равенства нулю фазы
сопротивления контура на резонансной
частоте

где

,
(3.57)

.

Токи
в ветвях контура при резонансе определяются
из (3.54) с учётом (3.55) и (3.57):

,
где ;

,
где
;
(3.58)

,
где.

В
силу равенства

видно, что токи в ветвях с индуктивностью
и конденсатором равны по величине, а по
фазе отличаются друг от друга на 180.
Это хорошо видно на векторной диаграмме
(рис.3.19). Совершенно очевидно,

что
в соответствии с первым законом Кирхгофа
контурный ток равен сумме токов ветвей
контура:

.

Однако,
как видно из векторной диаграммы, токи

и

при суммировании уничтожают друг друга
и контурный ток определяется током,
протекающим через резистор:

. (3.59)

В
силу рассмотренных свойств параллельного
контура, резонанс в параллельном контуре
еще называют резонансом токов.

Мощности
в контуре
.
Мгновенная мощность контура определяется
как произведение мгновенного тока
контура на мгновенное напряжение:

На
резонансной частоте ,
тогда

.

Средняя
мощность, потребляемая контуром, равна:

.

С
учетом (3.58) выражение для средней мощности
контура принимает вид:

.

В
полученном выражении мгновенной мощности
контура на резонансной частоте отсутствует
реактивная составляющая мощности.
Однако под действием контурного
напряжения через конденсатор и
индуктивность протекают токи. Определим
мгновенные мощности на этих элементах
так, как это делали при анализе идеальных
емкостного и индуктивного двухполюсников.

Для
емкостной ветви и индуктивной ветви
получим:

,

. (3.60)

При
резонансе
.
Из (3.60) следует, что мгновенные мощности
на конденсаторе и индуктивности равны
по величине и противоположны по фазе.

Добротность
контура
.
Добротность контура, как и прежде, найдем
из отношения амплитуды реактивной
мощности контура к средней мощности.
Для этого воспользуемся амплитудными
значениями мощностей на конденсаторе
и индуктивности (3.60). После очевидных
преобразований имеем:

. (3.61)

Из
(3.61) видно, что добротность контура без
диссипации в параллельных ветвях
(рис.3.18) тем выше, чем больше величина
R, и тем меньше затухают колебания в
контуре.

С
учетом полученного выражения для
добротности полное сопротивление
контура (3.50) примет вид:

(3.62)

Последнее
выражение для сопротивления контура
позволяет рассмотреть зависимость от
частоты его модуля и фазы:

,. (3.63)

На
рис.3.20 представлены эти зависимости.
Модуль сопротивления контура имеет
наибольшее значение на резонансной
частоте. Если R имеет конечное значение
(присутствует в контуре), то ZК0=R
(график 1). Если R стремится к бесконечности
(резистор отсутствует), то ZК0
также стремится к бесконечности (график
2).

Фазовая
характеристика сопротивления контура
позволяет установить его свойства на
различных частотах. Если воспользоваться
треугольником сопротивления, то видно,
что на низких частотах (слева от
резонансной частоты) контур должен
иметь свойства реального индуктивного
двухполюсника, а на высоких частотах
(справа от резонансной частоты) контур
должен иметь свойства реального
емкостного двухполюсника.

Сравним
амплитуды токов IL
и IC
с
амплитудой тока IR.
Используя соотношения (3.58), находим:

; .

Амплитудно-частотной
характеристикой (АЧХ)

параллельного контура называется
зависимость от частоты модуля напряжения
на контуре.

Как
и для последовательного контура, удобно
АЧХ для параллельного контура рассматривать
в приведенном виде. Для этого необходимо
найти модуль отношения напряжения на
контуре в комплексной форме при
произвольной частоте к напряжению на
контуре при резонансной частоте.

Напряжение
на контуре при произвольной частот и
на резонансной частоте находятся по
закону Ома:

; .

Для
удобства рассмотрения АЧХ здесь
напряжение на контуре и сопротивление
контура на резонансной частоте обозначены,
соответственно как
и.

Берем
отношение этих напряжений и, с учетом
(3.58) и что,
получаем:

. (3.64)

Модуль
полученного выражения (3.60) является
амплитудно-частотной характеристикой
параллельного контура.

. (3.65)

На
рис.3.21 представлены графики АЧХ
параллельного контура для двух значений
добротности. Увеличение добротности
делает график АЧХ более крутым.

Фазо-частотной
характеристикой

параллельного контура называется
зависимость от частоты фазы напряжения
на контуре.

Как
видно из (3.52), фаза напряжения на контуре
равна фазе комплексного сопротивления
контура. Учитывая (3.63), фазо-частотная
характеристика параллельного контура
принимает вид:

. (3.66)

На
рис.3.22 представлен график ФЧХ параллельного
контура. Так как фаза контурного тока
равна нулю, то ФЧХ контура показывает,
в каком фазовом соотношении (опережает,
совпадает, отстает) находится напряжение
по отношению к току. Эта информация
позволяет судить о свойствах контура.
Так, на резонансной частоте фаза
контурного напряжения равна нулю. Значит
на резонансной частоте напряжение
контура и ток совпадают по фазе. Исходя
из теории двухполюсников, этим свойством
обладает резистивный двухполюсник.
Следовательно, на резонансной частоте
контур может быть заменен резистором.
Об этом свойстве контура уже говорилось.

На
низких частотах (слева от резонансной
частоты) фаза контурного напряжения
положительная. Значит, в этом интервале
частот напряжение опережает ток контура.
Из теории двухполюсников известно, что
этим свойством обладает реальный
индуктивный двухполюсник. Следовательно,
на низких частотах параллельный контур
может быть заменен последовательно
соединенными резистором и индуктивностью.
На высоких частотах (справа от резонансной
частоты) фаза контурного напряжения
отрицательная. Значит, в этом интервале
частот контурное напряжение отстает
от контурного тока. Следовательно, на
этом интервале частот контур обладает
свойствами реального емкостного
двухполюсника, и может быть заменен
последовательно соединенными резистором
и конденсатором. Необходимо отметить,
что величины индуктивности и емкости
в схемах замещения контура индуктивным
и емкостным двухполюсниками не равны
значениям индуктивности и ёмкости
контура и на различных частотах будут
иметь различные значения.

Полоса
пропускания
.
Физический смысл полосы пропускания
резонансных контуров рассматривался
для последовательного одиночного
колебательного контура. Для параллельного
контура физический смысл полосы
пропускания совершенно аналогичен.
Отличительная особенность параллельного
контура состоит в том, что выходным
сигналом является контурное напряжение,
и АЧХ отображает его зависимость от
частоты.

Полосой
пропускания параллельного одиночного
колебательного контура называется
интервал частот, включающий резонансную
частоту контура, на границах которого
значение напряжения контура меньше
значения напряжения на резонансной
частоте в

раз.

Это
требование для значения напряжения на
границе полосы пропускания можно
выразить так:

; .

Последнее
соотношение позволяет определить
границы полосы пропускания и ее величину
по АЧХ контура (рис.3.23):

.

Пользуясь
полученными соотношениями для
последовательного колебательного
контура, АЧХ для параллельного контура
на границах полосы пропускания примет
вид, аналогичный (3.36):

.
(3.67)

Приравнивая
(3.67) к коэффициенту неравномерности 
и решая полученное уравнение относительно
2∆ω, находим:

; .

Как
отмечалось, для широкого круга
приемно-передающих устройств коэффициент
неравномерности берется равным:

.

С
учетом этого находим выражение для
полосы пропускания одиночного
параллельного резонансного контура:

. (3.68)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Амплитудно-частотная характеристика

Аббревиатура АЧХ расшифровывается как амплитудно-частотная характеристика. На английском этот термин звучит как «frequency response», что в дословном переводе означает «частотный отклик». Амплитудно-частотная характеристика цепи показывает зависимость уровня сигнала на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства. АЧХ может быть определена аналитически через формулы, либо экспериментально. Любое устройство предназначено для передачи (или усиления) электрических сигналов.  АЧХ устройства определяется по зависимости  коэффициента передачи (или коэффициента усиления) от частоты.

Коэффициент передачи

Что такое коэффициент передачи? Коэффициент передачи — это отношение напряжения на выходе цепи к напряжению на ее входе. Или формулой:

коэффициент передачи формула

где

Uвых   — напряжение на выходе цепи

Uвх  — напряжение на входе цепи

Что такое АЧХ и ФЧХ

В усилительных устройствах коэффициент передачи больше единицы. Если устройство вносит ослабление передаваемого сигнала, то коэффициент передачи меньше единицы.

Коэффициент передачи может быть выражен через децибелы:

коэффициент передачи через децибелы

Строим АЧХ RC-цепи в программе Proteus

Для того, чтобы досконально разобраться, что такое АЧХ, давайте рассмотрим рисунок ниже.

Итак, имеем «черный ящик», на вход которого мы будем подавать синусоидальный сигнал, а на выходе черного ящика мы будем снимать сигнал. Должно соблюдаться условие: нужно менять частоту входного синусоидального сигнала, но его амплитуда должна быть постоянной.

Что такое АЧХ и ФЧХ

Что нам  делать дальше? Надо измерить амплитуду сигнала на выходе после черного ящика при интересующих нас значениях частоты входного сигнала. То есть мы должны изменять частоту входного сигнала от 0 Герц (постоянный ток) и до какого-либо конечного значения, которое будет удовлетворять нашим целям, и смотреть, какая амплитуда сигнала будет на выходе при соответствующих значениях на входе.

Давайте разберем все это дело на примере. Пусть в черном ящике у нас будет самая простая RC-цепь с уже известными номиналами радиоэлементов.

Что такое АЧХ и ФЧХ

Как я уже говорил, АЧХ может быть построено экспериментально, а также с помощью программ-симуляторов. На мой взгляд, самый простой и мощный симулятор для новичков — это Proteus. С него и начнем.

Собираем данную схему в рабочем поле программы Proteus

Что такое АЧХ и ФЧХ

Для того, чтобы подать на вход схемы синусоидальный сигнал, мы кликаем на кнопочку «Генераторы», выбираем SINE, а потом соединяем его со входом нашей схемы.

Что такое АЧХ и ФЧХ

Для измерения выходного сигнала достаточно кликнуть на значок  с буквой «V»  и соединить выплывающий значок с выходом нашей схемы:

Что такое АЧХ и ФЧХ

Для эстетики, я уже поменял название входа и выхода на sin и out. Должно получиться как-то вот так:

Что такое АЧХ и ФЧХ

Ну вот, пол дела уже сделано.

Теперь осталось добавить важный инструмент. Он называется «frequency response», как я уже говорил, в дословном переводе с английского — «частотный отклик». Для этого нажимаем кнопочку «Диаграмма» и в списке выбираем «frequency»

Что такое АЧХ и ФЧХ

На экране появится что-то типа этого:

Что такое АЧХ и ФЧХ

Кликаем ЛКМ два раза и открывается вот такое окошко, где в качестве входного сигнала мы выбираем наш генератор синуса (sin), который у нас сейчас задает частоту на входе.

Что такое АЧХ и ФЧХ

Здесь же выбираем диапазон частоты, который будем «загонять» на вход нашей цепи. В данном случае это диапазон от 1 Гц и до 1 МГц. При установке начальной частоты в 0 Герц Proteus выдает ошибку. Поэтому, ставьте начальную частоту близкую к нулю.

Что такое АЧХ и ФЧХ

Нажимаем ОК.

Далее нажимаем ПКМ на самой табличке Frequency Response и видим вот такой выплывающий список, в котором нажимаем «Добавить трассы»

Что такое АЧХ и ФЧХ

Долго не думая, выбираем в первом же окошке наш выход out

Что такое АЧХ и ФЧХ

и в результате должно появится окошко с нашим выходом

Что такое АЧХ и ФЧХ

Нажимаем пробел и радуемся результату

Что такое АЧХ и ФЧХ

Итак, что интересного можно обнаружить, если взглянуть на нашу АЧХ? Как вы могли заметить, амплитуда на выходе цепи падает с увеличением частоты. Это означает, что наша RC-цепь является своеобразным частотным фильтром. Такой фильтр пропускает низкие частоты, в нашем случае до 100 Герц, а потом с ростом частоты начинает их «давить». И чем больше частота, тем больше он ослабляет амплитуду выходного сигнала. Поэтому, в данном случае, наша  RC-цепь является самым простейшим фильтром низкой частоты (ФНЧ).

Полоса пропускания

В среде радиолюбителей и не только встречается также такой термин, как полоса пропускания. Полоса пропускания — это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы.

Как же определить полосу пропускания? Это сделать довольно легко. Достаточно на графике АЧХ найти уровень в -3 дБ от максимального значения АЧХ и найти точку пересечения прямой с графиком. В нашем случае это можно сделать легче пареной репы. Достаточно развернуть нашу диаграмму на весь экран и с помощью встроенного маркера посмотреть частоту на уровне в -3 дБ в точке пересечения с нашим графиком АЧХ. Как мы видим, она равняется 159 Герц.

полоса пропускания

Частота, которая получается на уровне в -3 дБ, называется частотой среза. Для RC-цепи ее можно найти по формуле:

формула частоты среза

Для нашего случая расчетная частота получилась 159,2 Гц, что подтверждает и Proteus.

Что такое АЧХ и ФЧХ

Кто не желает связываться  с децибелами, то можно провести линию на уровне 0,707 от максимальной амплитуды  выходного сигнала и смотреть пересечение с графиком. В данном примере, для наглядности, я взял максимальную амплитуду за уровень в  100%.

как найти полосу пропускания

Как построить АЧХ на практике?

Как построить АЧХ на практике, имея в своем арсенале генератор частоты и осциллограф?

Итак, поехали. Собираем нашу цепь в реале:

Что такое АЧХ и ФЧХ

Ну а теперь цепляем ко входу схемы генератор частоты, а с помощью осциллографа следим за амплитудой выходного сигнала, а также будем следить за амплитудой входного сигнала, чтобы мы были точно уверены, что на вход RC-цепи подается синус с постоянной амплитудой.

Что такое АЧХ и ФЧХ

Для экспериментального изучения АЧХ  нам потребуется собрать простенькую схемку:

Что такое АЧХ и ФЧХ

Наша задача состоит в том, чтобы менять частоту генератора и уже наблюдать, что покажет осциллограф на выходе цепи. Мы будем прогонять нашу цепь по частотам, начиная от самой малой. Как я уже сказал, желтый канал предназначен для визуального контроля, что мы честно проводим опыт.

Постоянный ток, проходящий через эту цепь,  на выходе будет давать амплитудное значение входного сигнала, поэтому первая точка будет иметь координаты (0;4), так как амплитуда нашего входного сигнала 4 Вольта.

Следующее значение смотрим на осциллограмме:

Частота 15 Герц, амплитуда на выходе 4 Вольта. Итак, вторая точка (15;4)

Что такое АЧХ и ФЧХ

Третья точка (72;3.6). Обратите внимание на амплитуду выходного красного сигнала. Она начинает проседать.

Что такое АЧХ и ФЧХ

Четвертая точка (109;3.2)

Что такое АЧХ и ФЧХ

Пятая точка (159;2.8)

Что такое АЧХ и ФЧХ

Шестая точка (201;2.4)

Что такое АЧХ и ФЧХ

Седьмая точка (273;2)

Что такое АЧХ и ФЧХ

Восьмая точка (361;1.6)

Что такое АЧХ и ФЧХ

Девятая точка (542;1.2)

Что такое АЧХ и ФЧХ

Десятая точка (900;0.8)

Что такое АЧХ и ФЧХ

Ну и последняя одиннадцатая точка (1907;0.4)

Что такое АЧХ и ФЧХ

В результате измерений у нас получилась табличка:

Что такое АЧХ и ФЧХ

Строим график по полученным значениям и получаем нашу экспериментальную АЧХ  😉

Что такое АЧХ и ФЧХ

Получилось не так, как в технической литературе. Оно и понятно, так как по Х берут логарифмический масштаб, а не линейный, как у меня на графике. Как вы видите, амплитуда выходного сигнала будет и дальше понижаться с увеличением частоты. Для того, чтобы еще более точно построить нашу АЧХ, требуется взять как можно больше точек.

Давайте вернемся к этой осциллограмме:

Что такое АЧХ и ФЧХ

Здесь на частоте среза амплитуда выходного сигнала получилась ровно 2,8 Вольт, которые как раз и находятся на уровне в 0,707. В нашем случае 100% это 4 Вольта. 4х0,707=2,82 Вольта.

Что такое АЧХ и ФЧХ

АЧХ полосового фильтра

Существуют также схемы, АЧХ которых имеет вид холма или ямы. Давайте рассмотрим один из примеров. Мы будем рассматривать так называемый полосовой фильтр, АЧХ которого имеет вид холма.

Собственно сама схема:

Что такое АЧХ и ФЧХ

А вот ее АЧХ:

ачх полосового фильтра

Особенность таких фильтров, что они имеют две частоты среза. Определяются они также на уровне в -3дБ  или на уровне в  0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.

полоса пропускания полосового фильтра

Так как в дБ смотреть график неудобно, поэтому я переведу его в линейный режим по оси Y, убирая маркер

Что такое АЧХ и ФЧХ

В результате перестроения получилась такая АЧХ:

Что такое АЧХ и ФЧХ

Максимальное значение на выходе составило 498 мВ при амплитуде входного сигнала в 10 Вольт. Мдя, неплохой «усилитель») Итак, находим значение частот на уровне в 0,707х498=352мВ. В результате получились две частоты среза — это частота в 786 Гц и в 320 КГц. Следовательно, полоса пропускания данного фильтра от 786Гц и до 320 КГц.

На практике для получения АЧХ используются приборы, называемые характериографами для исследования АЧХ. Вот так выглядит один из образцов Советского Союза

Что такое АЧХ и ФЧХ

Фазо-частотная характеристика

ФЧХ расшифровывается как фазо-частотная характеристика, phase response — фазовый отклик. Фазо-частотная характеристика — это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.

Разность фаз

Думаю, вы не раз слышали такое выражение, как » у него произошел сдвиг по фазе». Это выражение не так давно пришло в наш лексикон и обозначает оно то, что человек слегка двинулся умом. То есть было все нормально, а потом раз! И все :-). И в электронике такое тоже часто бывает)  Разницу между фазами сигналов в электронике называют разностью фаз. Вроде бы «загоняем» на вход  какой-либо сигнал, а выходной сигнал ни с того ни с сего взял и сдвинулся по времени, относительно входного сигнала.

Для того, чтобы определить разность фаз, должно выполняться условие: частоты сигналов должны быть равны. Пусть даже один сигнал будет с амплитудой в Киловольт, а другой в милливольт. Неважно! Лишь бы соблюдалось равенство частот. Если бы  условие равенства не соблюдалось, то сдвиг фаз между сигналами все время бы изменялся.

Для определения сдвига фаз используют двухканальный осциллограф. Разность фаз чаще всего обозначается буквой φ и на осциллограмме это выглядит примерно так:

Что такое АЧХ и ФЧХ

Строим ФЧХ RC-цепи в Proteus

Для нашей исследуемой цепи

Что такое АЧХ и ФЧХ

Для того, чтобы отобразить ее в Proteus мы снова открываем функцию «frequency response»

Что такое АЧХ и ФЧХ

Все  также выбираем наш генератор

Что такое АЧХ и ФЧХ

Не забываем проставлять испытуемый диапазон частот:

Что такое АЧХ и ФЧХ

Далее нажимаем ПКМ на самой табличке Frequency Response и видим вот такой выплывающий список, в котором нажимаем «Добавить трассы»

Что такое АЧХ и ФЧХ

Долго не думая, выбираем в первом же окошке наш выход out

Что такое АЧХ и ФЧХ

И теперь главное отличие: в колонке «Ось» ставим маркер на «Справа»

Что такое АЧХ и ФЧХ

Нажимаем пробел и вуаля!

фчх

Можно его развернуть на весь экран

Что такое АЧХ и ФЧХ

При большом желании эти две характеристики можно объединить на одном графике

фчх и ачх

Обратите внимание, что на частоте среза сдвиг фаз между входным и выходным сигналом составляет 45 градусов или в радианах п/4 (кликните для увеличения)

Что такое АЧХ и ФЧХ

В данном опыте при частоте более 100 КГц разность фаз достигает значения в 90 градусов (в радианах π/2) и уже не меняется.

Строим ФЧХ на практике

ФЧХ на практике можно измерить также, как и АЧХ, просто наблюдая разность фаз и записывая показания в табличку. В этом опыте мы просто убедимся, что на частоте среза у нас действительно разность фаз между входным и выходным сигналом будет 45 градусов или  π/4 в радианах.

Итак, у меня получилась вот такая осциллограмма на частоте среза в 159,2 Гц

Что такое АЧХ и ФЧХ

Нам надо узнать разность фаз между этими двумя сигналами

разность фаз

Весь период — это 2п, значит половина периода — это π. На полупериод у нас приходится где-то 15,5 делений. Между двумя сигналами разность в 4 деления. Составляем пропорцию:

Что такое АЧХ и ФЧХ

Отсюда х=0,258п или можно сказать почти что 1/4п. Следовательно, разница фаз между двумя этими сигналами равняется п/4, что почти в точности совпало с расчетными значениями в Proteus.

Если Вы лучше воспринимаете информацию через видео, то к Вашему вниманию:

Резюме

Амплитудно-частотная характеристика цепи показывает зависимость уровня сигнала на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства.

И еще интересная статья — последовательное и параллельное соединение проводников.

Фазо-частотная характеристика — это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.

Коэффициент передачи — это отношение напряжения на выходе цепи к напряжению на ее входе. Если коэффициент передачи больше единицы, то электрическая цепь усиливает входной ссигнал, если же меньше единицы, то ослабляет.

Полоса пропускания — это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы. Определяется по уровню 0,707 от максимального значения АЧХ.

Содержание:

Частотные методы анализа электрических цепей:

Частотные характеристики являются компонентами комплексных функций цепи.

Комплексная функция цепи (КФЦ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-частотная характеристика (АЧХ)

Частотные методы анализа и расчёта электрических цепей

Фазочастотная характеристика (ФЧХ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-фазовая частотная характеристика (АФЧХ) (комплексная функция цепи)

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— вещественная частотная характеристика (ВЧХ); Частотные методы анализа и расчёта электрических цепей— мнимая частотная характеристика (МЧХ).

Комплексные функции простых цепей можно рассчитать непосредственно по закону Ома.

На рис.4.1 показаны АЧХ и ФЧХ, а на рис.4.2 — АФЧХ простейшей интегрирующей цепи (апериодического звена). По АЧХ определяют полосу пропускания

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Полосой пропускания П называется диапазон частот, на границах которого мощность сигнала уменьшается в 2 раза, а амплитуда (действующее значение) напряжения (тока) — в Частотные методы анализа и расчёта электрических цепей раз по сравнению с максимальными значениями.

Полоса пропускания может измеряться в радианах в секунду Частотные методы анализа и расчёта электрических цепей или в герцах (Гц).

Например, для простой интегрирующей цепи полоса пропускания (см. рис. 4.1)

Частотные методы анализа и расчёта электрических цепей

Для сложных цепей КФЦ рассчитывают по MKT или МУН. В табл. 4.1 приведены соотношения для расчета КФЦ, выраженные через определитель и алгебраические дополнения матрицы контурных сопротивлений и узловых проводимостей.
Частотные методы анализа и расчёта электрических цепей

Частотные характеристики цепей с одним реактивным элементом

Примеры решения типовых задач:

Пример 4.2.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего RC-контура (рис.4.3, а), рассчитать и построить графики АЧХ и ФЧХ.

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.3, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим комплексное напряжение на выходе цепи в виде 

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся зa скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей. После преобразований получимЧастотные методы анализа и расчёта электрических цепей
Следовательно.

Частотные методы анализа и расчёта электрических цепей

Введем обозначения:

Частотные методы анализа и расчёта электрических цепей
Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина Частотные методы анализа и расчёта электрических цепей имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей

 С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений АЧХ и ФЧХ запишем комплексную функцию в показательной форме.
Так как выражение (4.2) есть отношение двух полиномов, то удобно числитель и знаменатель записать отдельно в показательной форме, а затем разделить:

Частотные методы анализа и расчёта электрических цепей

3. Из (4.3) запишем АЧХ и ФЧХ соответственно:

Частотные методы анализа и расчёта электрических цепей

4. Построим график АЧХ и ФЧХ качественно по двум точкам. Для этого рассчитаем значения Частотные методы анализа и расчёта электрических цепей для крайних значений частот:

Частотные методы анализа и расчёта электрических цепей

График АЧХ Частотные методы анализа и расчёта электрических цепей (рис. 4.4, а) является кривой, монотонно возрастающей от значения Частотные методы анализа и расчёта электрических цепей

График функции ФЧХ Частотные методы анализа и расчёта электрических цепей можно построить качественно как сумму двух графиков (рис. 4.4). Из рис. 4.4,б видно, что оба слагаемых монотонно увеличиваются: первое от нуля до +90° и вносит опережение по фазе. Второе до -90° и вносит отставание по фазе. Но первое слагаемое растет быстрее, так как Частотные методы анализа и расчёта электрических цепейчто следует из формулы (4.1). Поэтому функция Частотные методы анализа и расчёта электрических цепейследовательно, дифференцирующий -контур вносит опережение по фазе.

Исследуя функцию (4.5) на экстремум, можно показать, что она имеет максимум на частоте

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в (4.5), получим

Частотные методы анализа и расчёта электрических цепей

Графики АЧХ и ФЧХ изображены на рис. 4.4.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.2.

Для электрической цепи, изображенной на рис. 4.5, определить АЧХ Частотные методы анализа и расчёта электрических цепей граничную частоту полосы пропускания. Рассчитать АЧХ, ФЧХ и построить графики, если параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию К(; (/ш) но формуле делителя напряжения
Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду
Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Отсюда: АЧХ
Частотные методы анализа и расчёта электрических цепей

ФЧХ

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем граничную частоту. По определению
Частотные методы анализа и расчёта электрических цепей

Из (4.7) найдем
Частотные методы анализа и расчёта электрических цепей

Следовательно,
Частотные методы анализа и расчёта электрических цепей

Из уравнения (4.9) получаем, что

Частотные методы анализа и расчёта электрических цепей

Отсюда    Частотные методы анализа и расчёта электрических цепей

3. Построим график функций.

Вычислим значения (4.7) и (4.8) для частот с дискретностью Частотные методы анализа и расчёта электрических цепей

Графики и таблицы выполним в среде Mathcad (рис. 4.6).

Пример 4.2.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.7, а), используя метод контурных токов. Построить в среде Mathcad график АЧХ, определить полосу пропускания.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Представим цепь комплексной схемой замещения (рис. 4.7, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направления контурных токов выбираем одинаковыми.

2.Составим матрицы контурных сопротивлений для двух независимых контуров
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки равно Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем 

Частотные методы анализа и расчёта электрических цепей

или Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей С ростом частоты емкостное сопротивление уменьшается. ЕслиЧастотные методы анализа и расчёта электрических цепей то Частотные методы анализа и расчёта электрических цепей и шунтирует сопротивление Частотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей    = 0.

По полученным выражениям строим график АЧХ (рис. 4.8) и среде Mathcad.

Частотные методы анализа и расчёта электрических цепей

5. Определяем полосу пропускания. По определению
Частотные методы анализа и расчёта электрических цепей

Поэтому из (4.11) имеем
Частотные методы анализа и расчёта электрических цепей

После преобразований уравнения (4.12) получаем

Частотные методы анализа и расчёта электрических цепей

откуда

Частотные методы анализа и расчёта электрических цепей

или

Частотные методы анализа и расчёта электрических цепей

Следовательно, цепь имеет полосу пропускания 

Частотные методы анализа и расчёта электрических цепей

На рис. 4.8 указана граничная частота Частотные методы анализа и расчёта электрических цепей

Данная цепь представляет собой фильтр нижних частот с полосой пропускания Частотные методы анализа и расчёта электрических цепей сигналы на частотах Частотные методы анализа и расчёта электрических цепей проходят с большим затуханием.

Пример 4.2.4.

Найти комплексную передаточную проводимость Частотные методы анализа и расчёта электрических цепей для цепи, изображенной на рис. 4.9, а методом узловых напряжений.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить АЧХ и ФЧХ, построить их графики в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.9, б). Схема имеет два независимых узла. В данном случае Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

2. Составим матрицу узловых проводимостей. При определении собственной проводимости узлов необходимо помнить, что собственная проводимость ветви, состоящей  из последовательно включенных пассивных элементов, находится из соотношения Частотные методы анализа и расчёта электрических цепей, гдеЧастотные методы анализа и расчёта электрических цепей — эквивалентное сопротивление ветви. Как найти проводимость ветви с последовательно включенными Частотные методы анализа и расчёта электрических цепей

В начале рассчитывают комплексное сопротивление этой ветви, Частотные методы анализа и расчёта электрических цепей, а затем комплексную проводимость

Частотные методы анализа и расчёта электрических цепей

Составим матрицу проводимостей цепи 1 2
Частотные методы анализа и расчёта электрических цепей

Как видим, общие проводимости узлов взяты со знаком минус, так как узловые напряжения Частотные методы анализа и расчёта электрических цепей направлены одинаково, к базисному yзлy.

3.Определим комплексную передаточную проводимость по соотношению, приведенному в табл. 4.1

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-комплексная проводимость ветви, по которой протекает ток Частотные методы анализа и расчёта электрических цепей,так как по определению

Частотные методы анализа и расчёта электрических цепей

Найдем алгебраические дополнения:

Частотные методы анализа и расчёта электрических цепей

После подстановки найденных значений получим

Частотные методы анализа и расчёта электрических цепей

Для определении АЧХ и ФЧХ запишем выражения для модуля и аргумента Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем значения Частотные методы анализа и расчёта электрических цепей на частотах Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Примечание. Эти значения можно найти без вывода аналитического выражения для Частотные методы анализа и расчёта электрических цепей Для этого достаточно воспользоваться эквивалентными схемами цепи на рассматриваемых частотах.

Учитывая, что Частотные методы анализа и расчёта электрических цепей получим две схемы, показанные на рис. 4.10. а, б, соответственно.
Частотные методы анализа и расчёта электрических цепей

Для первой схемы:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Аналогично для второй схемы получим 

Частотные методы анализа и расчёта электрических цепей

При расчете сложных схем такой прием можно применять для проверки правильности полученного аналитического выражения КФЦ.

Из (4.13) видно, что функция наметен монотонной, но для качественного построения графика АЧХ (рис. 4.11) необходимо воспользоваться ПЭВМ, например построить функцию в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.5.

Для интегрирующего -контура (рис.4.12,а) определить комплексный коэффициент передачи по напряжению, рассчитать АЧХ, ФЧХ, ВЧХ, МЧХ. Построить графики АЧХ, ФЧХ. АФЧХ, если

Частотные методы анализа и расчёта электрических цепей

Решение

1. Составим комплексную схему замещения цепи (рис. 4.12, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим Частотные методы анализа и расчёта электрических цепей из соотношения Частотные методы анализа и расчёта электрических цепей где

Частотные методы анализа и расчёта электрических цепей

Следовательно.

Частотные методы анализа и расчёта электрических цепей

3. Для нахождения АЧХ и ФЧХ комплексную функцию Частотные методы анализа и расчёта электрических цепейпредставленную в виде отношения двух полиномов мнимой частоты Частотные методы анализа и расчёта электрических цепей записывают в показательной форме

Частотные методы анализа и расчёта электрических цепей

Найдем модуль (АЧХ) и аргумент (ФЧХ) комплексной функции;

Частотные методы анализа и расчёта электрических цепей

Для определения вещественной и мнимой частотных характеристик запишем КФЦ в алгебраической форме. Для этого умножим и разделим (4.14) на комплексно-сопряженный знаменатель:

Частотные методы анализа и расчёта электрических цепей

4. Для приближенного построения графиков АЧХ, ФЧХ. АФХ найдем значения Частотные методы анализа и расчёта электрических цепей для трех значений частот: Частотные методы анализа и расчёта электрических цепейРезультаты расчетов для удобства построения графиков сведем в табл. 4.2.

Частотные методы анализа и расчёта электрических цепей

Для более точного и наглядного представления графиков воспользуемся ПЭВМ и математической средой Mathcad.

 Графики характеристик приведены на рис. 4.13.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

АЧХ представляет монотонно убывающую функцию (рис. 4.13, а).

ФЧХ принимает отрицательные значения, т.е. контур вносит фазовое отставание, а на частоте Частотные методы анализа и расчёта электрических цепей ФЧХ имеет экстремум (рис.4.13, б). Найдем из соотношения

Частотные методы анализа и расчёта электрических цепей

Взяв производную, получим

Частотные методы анализа и расчёта электрических цепей

Решая полученное уравнение относительно Частотные методы анализа и расчёта электрических цепей, найдем

Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в выражение Частотные методы анализа и расчёта электрических цепей определим максимальное значение фазовой частотной характеристики.

Частотные методы анализа и расчёта электрических цепей

АФХ (рис. 4.13, в) представляет собой полуокружность, расположенную в 4-м квадрате. Центр окружности находится на оси Частотные методы анализа и расчёта электрических цепей в точке с абсциссой, равной

Частотные методы анализа и расчёта электрических цепей

Радиус окружности нетрудно определить из соотношения:

Частотные методы анализа и расчёта электрических цепей

МЧХ:

Частотные методы анализа и расчёта электрических цепей

Отрицательное значение Частотные методы анализа и расчёта электрических цепей свидетельствует о том, что 

Частотные методы анализа и расчёта электрических цепей принимает отрицательное значения, т.е. интегрирующий контур вносит запаздывание по фазе.

5. Проверка расчетов АЧХ. Воспользуемся эквивалентными схемами цепи для  частот Частотные методы анализа и расчёта электрических цепей(рис. 4.14).

На частоте Частотные методы анализа и расчёта электрических цепей цепь разомкнута (рис. 4.14, а), поэтому

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей схема представляет собой резистивный делитель напряжения (рис. 4.14, б) с коэффициентом передачи

Частотные методы анализа и расчёта электрических цепей

Подставляя эти значения частот в аналитическое выражение (4.14) для Частотные методы анализа и расчёта электрических цепейполучаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, расчет АЧХ выполнен верно.

Частотные характеристики последовательного колебательного контура

Основные теоретические сведения:

В последовательном колебательном контуре (рис. 4.21) возникает резонанс напряжений, если выполняется условие    

Частотные методы анализа и расчёта электрических цепей

 т. е. Частотные методы анализа и расчёта электрических цепей                     

Частотные методы анализа и расчёта электрических цепей

Резонансная частота

Частотные методы анализа и расчёта электрических цепей

Волновое сопротивление контура Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе Частотные методы анализа и расчёта электрических цепей

Собственная добротность контура  Частотные методы анализа и расчёта электрических цепей

Добротность нагруженного контура Частотные методы анализа и расчёта электрических цепей

Затухание контура  Частотные методы анализа и расчёта электрических цепей

Абсолютная расстройка   Частотные методы анализа и расчёта электрических цепей

Относительная расстройка   Частотные методы анализа и расчёта электрических цепей

Обобщенная расстройка

Частотные методы анализа и расчёта электрических цепей

Фактор расстройки:  Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.22)
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Для нагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Комплексные коэффициенты передачи по напряжению:

на активном сопротивлении
Частотные методы анализа и расчёта электрических цепей
на индуктивности
Частотные методы анализа и расчёта электрических цепей

на емкости 

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.3.1.

Последовательный колебательный контур (рис. 4.23) подключен к источнику напряжению. Контур настроен в резонанс.

Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить резонансную частоту, волновое сопротивление. добротность и полосу пропускания, ток и напряжения на элементах контура.

Построить АЧХ и ФЧХ по напряжению на конденсаторе в среде Mathcad.    

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определяем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

2. Находим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

3. Вычисляем добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

4. Определяем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

5. Рассчитываем ток и напряжения на элементах контура при резонансе

Частотные методы анализа и расчёта электрических цепей

Напряжение на R равно

Частотные методы анализа и расчёта электрических цепей

Напряжения на реактивных элементах

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем АЧХ и ФЧХ комплексного коэффициента передачи напряжения с емкости.

Учитывая (4.22), из (4.29) получим:

Частотные методы анализа и расчёта электрических цепей

Для построения графиков АЧХ и ФЧХ, выполнения расчетов используем среду Mathcad. АЧХ, ФЧХ в виде графиков и таблиц приведены на рис. 4.24.

Следует заметить, что максимум А11Х достигается на частоте

Частотные методы анализа и расчёта электрических цепей

т.е. при Частотные методы анализа и расчёта электрических цепей смещение максимума мало, тогда Частотные методы анализа и расчёта электрических цепей

Задача 4.3.2.

К последовательному колебательному контуру (рис. 4.25) с параметрами Частотные методы анализа и расчёта электрических цепей подключена нагрузка Частотные методы анализа и расчёта электрических цепей

Определить собственную добротность и добротность нагруженного контура, полосу пропускания нагруженного и ненагруженного контура.

Решение

1. Рассчитаем вторичные параметры ненагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2.Определим вторичные параметры наруженного контура. Так как сопротивление нагрузки активное, причем Частотные методы анализа и расчёта электрических цепей то согласно (4.15) и (4.16) резонансная частота и волновое сопротивление не изменяются.

Для определения добротности рассчитаем сопротивление Частотные методы анализа и расчёта электрических цепей, вносимое в контур за счет нагрузки, и построим эквивалентную схему нагруженного контура (рис. 4.25, б). Так как Частотные методы анализа и расчёта электрических цепейто
Частотные методы анализа и расчёта электрических цепей
Следовательно,

Частотные методы анализа и расчёта электрических цепей

Вывод. Подключение нагрузки ухудшает добротность контура, что приводит к расширению полосы пропускания.

Пример 4.3.3.

На рис. 4.26, а изображена входная цепь приемника, а на рис. 4.26, б — ее эквивалентная схема. Известны входное сопротивление и входная емкость транзистора входного каскада УВЧ: Частотные методы анализа и расчёта электрических цепей. На резонансной частоте антенна наводит в контуре ЭДС Частотные методы анализа и расчёта электрических цепей Емкость конденсатора Частотные методы анализа и расчёта электрических цепейкатушка индуктивности имеет Частотные методы анализа и расчёта электрических цепей

Определить абсолютную полосу пропускания и ток в контуре на резонансной частоте.

Решение

1. Определяем эквивалентную емкость контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитываем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

3. Находим волновое сопротивление и сопротивление, вносимое в контур за счет транзистора усилителя (рис. 4.26, в):

Частотные методы анализа и расчёта электрических цепей

4. Определяем добротность нагруженного контура
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем абсолютную полосу пропускания нагруженного контура

Частотные методы анализа и расчёта электрических цепей

6. Находим ток в контуре

Частотные методы анализа и расчёта электрических цепей

Пример 4.3.4.

Рассчитать емкость последовательного колебательного контура, если резонансная частота контура Частотные методы анализа и расчёта электрических цепей полоса пропускания Частотные методы анализа и расчёта электрических цепейпри сопротивлении потерь 0,5 Ом.

Построить АЧХ и ФЧХ комплексного коэффициента передачи напряжения с индуктивности в среде Mаthcad.

Решение

1. Определим требуемую добротность контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем емкость конденсатора. Из формулы Частотные методы анализа и расчёта электрических цепейнайдем

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем АЧХ и ФЧХ.

Воспользуемся комплексным коэффициентом передачи напряжения с индуктивности по формуле (4.28). Учитывая 4.22), запишем:

Частотные методы анализа и расчёта электрических цепей

Вычислим значения функций на частотах:

Частотные методы анализа и расчёта электрических цепей

Определим частоту, при которой АЧХ имеет максимум

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Смещением частоты Частотные методы анализа и расчёта электрических цепей можно пренебречь.

Результаты расчетов АЧХ и ФЧХ б графическом и табличном видах приведены на рис. 4.27.

Частотные методы анализа и расчёта электрических цепей

Частотные характеристики параллельного колебательного контура

Основные теоретические сведения:

Параллельный колебательный контур образуется путем параллельного соединения катушки индуктивности и конденсатора. Оба элемента, кроме основного эффекта (запасания энергии), имеют потери энергии. В расчетной схеме (рис. 4.29, а) тепловые потери в элементах учтены включением условных сопротивлений Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

где резонансная частота колебанийЧастотные методы анализа и расчёта электрических цепей

Для реального контура Частотные методы анализа и расчёта электрических цепей поэтому при расчете можно полагать, что

Частотные методы анализа и расчёта электрических цепей

При резонансе сопротивление контура является активным, поэтому ток Частотные методы анализа и расчёта электрических цепей в цепи и напряжение Частотные методы анализа и расчёта электрических цепей в контуре синфазны. Эквивалентные схемы цепи в режиме резонанса токов показаны на рис. 4.31, а, б.

Сопротивление параллельного колебательного контура при резонансе максимально и равно (без учета внешней цепи)
Частотные методы анализа и расчёта электрических цепей
где  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Добротность Частотные методы анализа и расчёта электрических цепей нагруженного контура меньше собственной добротности Частотные методы анализа и расчёта электрических цепей Ее можно выразить через сопротивления элементов цепи

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

или через их проводимости

Частотные методы анализа и расчёта электрических цепей

Важными параметрами цепи при резонансе являются токи в ветвях и напряжение на контуре. Ток в обшей ветви (ток источника) при резонансе минимален и равен (см. рис. 4.31)

Частотные методы анализа и расчёта электрических цепей

При этом напряжение на контуре максимально и равно

Частотные методы анализа и расчёта электрических цепей

Токи в индуктивности и в емкости при резонансе равны по значению и противоположны по направлению. Они образуют замкнутый ток в контуре, равный

Частотные методы анализа и расчёта электрических цепей

Частотные свойства параллельного колебательного контура обычно оценивают по нормированной АЧХ

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-обобщенная расстройка контура без учета внешних цепей; Частотные методы анализа и расчёта электрических цепей — фактор расстройки.

Параллельный контур, показанный на рис. 4.29, имеет по одной реактивности в ветвях. Такой контур называется простым или контуром I вида. Для уменьшения шунтирующего действия внешних цепей часто применяют сложные параллельные контуры.

На рис. 4.32, а, б, в показаны контуры II, (III и IV) видов, соответственно.

Частотные методы анализа и расчёта электрических цепей

Главной особенностью этих контуров является то, что их резонансное сопротивление меньше резонансного сопротивления простого контура с такими же параметрами.

Сопротивление контуров (рис.4.32) при резонансе рассчитывается по формулам, соответственно:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — коэффициенты включения:

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.4.1.

Параллельный контур (см. рис. 4.29, а) подключен к источнику с параметрами Частотные методы анализа и расчёта электрических цепей Контур настроен в резонанс на длину волны, равную 1000 м.

Параметры катушки индуктивности: Частотные методы анализа и расчёта электрических цепей

Определить действующие значения тока в контуре, тока на входе цепи и напряжения на контуре при резонансе, абсолютную и относительную полосы пропускания контура, добавочное сопротивление необходимое для расширения полосы пропускания в 2 раза.

Решение

1. Определим резонансную частоту колебания

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем волновое сопротивление

Частотные методы анализа и расчёта электрических цепей

3. Определим сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Найдем действующее значение тока на входе контура (см. рис. 4.31, а) при резонансе

Частотные методы анализа и расчёта электрических цепей

5. Определим соответственную добротность контура

Частотные методы анализа и расчёта электрических цепей

6. Найдем ток в контуре и напряжение на нем:

Частотные методы анализа и расчёта электрических цепей

7.  Определим добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

8. Рассчитаем абсолютную и относительную полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

9.  Определяем добавочное cопротивление Частотные методы анализа и расчёта электрических цепей из (4.31)

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.2.

Рассчитать полосу пропускания колебательного контура (см. рис. 4.30, а).

Дано: Частотные методы анализа и расчёта электрических цепей

Определить сопротивление Частотные методы анализа и расчёта электрических цепей шунта, необходимого для расширения полосы пропускания до 10 кГц.

Решение

1. Рассчитаем волновое сопротивление и резонансную частоту контура:

Частотные методы анализа и расчёта электрических цепей

2.Рассчитаем добротность цепи без шунта. Воспользуемся трехветвевой эквивалентной схемой цепи и соотношением (4.32). Найдем проводимость элементов схемы:

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

3. Определим полосу пропускания

Частотные методы анализа и расчёта электрических цепей

4. Найдем сопротивление шунта, необходимою для расширения полосы до 10 кГц,

В этом случае добротность цепи должна быть равна

Частотные методы анализа и расчёта электрических цепей

Тогда из (4.32) получаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, сопротивление шунта должно быть равно

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.3.

Параллельный колебательный контур с параметрами: Частотные методы анализа и расчёта электрических цепей подключен к источникуЧастотные методы анализа и расчёта электрических цепей

Определить собственную добротность контура, добротность нагруженного контура, абсолютную полосу пропускания и граничные частоты полосы пропускания. Построить резонансную кривую по напряжению на ЭВМ.

Решение

1. Определим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем собственную добротность контура

Частотные методы анализа и расчёта электрических цепей

3. Найдем сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим добротность нагруженного контура по формуле (4.31)

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем резонансную частоту

Частотные методы анализа и расчёта электрических цепей

6. Найдем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

7. Определим граничные частоты полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

8. Построим резонансную характеристику контура но напряжению. Из выражения (4.33) запишем

Частотные методы анализа и расчёта электрических цепей

Напряжение па контуре при резонансе 

Частотные методы анализа и расчёта электрических цепей

Для построения резонансной характеристики задаемся характерными значениями частот: Частотные методы анализа и расчёта электрических цепей Результаты расчетов в графическом виде представлены на рис. 4.33.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.4.

Определить резонансную частоту, эквивалентное сопротивление при резонансе и добротность сложного контура (рис. 4.32, а), подключенного к источнику напряжения.

Дано: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим резонансную частоту и сопротивление параллельного контура при резонансе:

Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем эквивалентное сопротивление сложного контура II вида

Частотные методы анализа и расчёта электрических цепей

3. Найдем добротность нагруженного контура II  вида

Частотные методы анализа и расчёта электрических цепей

Сравним значения Частотные методы анализа и расчёта электрических цепей с добротностью простого нагруженного контура

Частотные методы анализа и расчёта электрических цепей

Вывод. За счет неполного включения индуктивности Частотные методы анализа и расчёта электрических цепей уменьшилось шунтирующее действие источника. Поэтому добротность сложного контура больше, чем простого с теми же параметрами элементов.

Частотные характеристики связанных колебательных контуров

Основные теоретические сведения:

С целью повышения коэффициента прямоугольности АЧХ контуров применяют связанные контуры последовательного и параллельного питания (рис. 4.37, а, б).

Частотные характеристики связанных контуров рассмотрим на примере системы из двух контуров.
Частотные методы анализа и расчёта электрических цепей

Эквивалентные схемы связанных контуров

Во всех случаях систему связанных контуров можно представить в виде Т- или П-образной эквивалентной схемы (рис. 4.38).

Количественной характеристикой связи является сопротивление связи Частотные методы анализа и расчёта электрических цепей в Т-образной эквивалентной схеме (рис. 4.38,а) или проводимость связи Частотные методы анализа и расчёта электрических цепей в П-образной эквивалентной схеме (рис. 4.38, б).

Удобным параметром для оценки связи является коэффициент связи

В случае реактивной связи для Т-образной схемы

Для П-образной схемы

где — сопротивление (проводимость) связи;Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей— сопротивления (проводимости) контуров, однотипные элементу связи. Для анализа связанных контуров удобно применять схемы, приведенные к первичному (рис. 4.39, а) или ко вторичному (рис. 4.39, б) контуру.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для этого используют понятия вносимого сопротивления Частотные методы анализа и расчёта электрических цепей и вносимой проводимости Частотные методы анализа и расчёта электрических цепей Эти схемы представляют собой одиночные последовательные (параллельные) контуры с параметрами:

Частотные методы анализа и расчёта электрических цепей

Резонансы в связанных контурах:

При настройке контуров в резонанс добиваются максимального тока (напряжения) во вторичном контуре.

Настройка связанных контуров может производиться различными способами, поэтому различают шесть резонансов. В табл. 4.3, 4.4 приведены виды и условия резонансов, способы настройки и соотношения для токов (напряжений) в связанных контурах последовательного (параллельного) питания.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Резонансные характеристики связанных контуров:

Для двух неидентичных связанных контуров: последовательного питания

Частотные методы анализа и расчёта электрических цепей

где   Частотные методы анализа и расчёта электрических цепей

параллельного питания:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— параметр связи. 

Если контуры идентичны, то обобщенная расстройка Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

На рис. 4.40 приведены резонансные характеристики при различных факторах связи.

Относительная полоса пропускания:

а) связь слабая Частотные методы анализа и расчёта электрических цепей

б) связь критическая Частотные методы анализа и расчёта электрических цепей

в) связь сильная Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей достигается максимально возможная полоса пропускания Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.5.1.

В системе двух индуктивно связанных контуров (см. рис.4.37,а) известны следующие параметры: коэффициент связи

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить емкость Частотные методы анализа и расчёта электрических цепей при которой в системе наступает первый частный резонанс, если частота источника равна 500 кГц.

Решение

Емкость конденсатора Частотные методы анализа и расчёта электрических цепей определим но реактивному сопротивлению первого контура:

Частотные методы анализа и расчёта электрических цепей

отсюда

Частотные методы анализа и расчёта электрических цепей

Определим реактивное сопротивление Частотные методы анализа и расчёта электрических цепей, первого контура из условия первого частного резонанса (см. табл. 4.3)

Частотные методы анализа и расчёта электрических цепей

Peaктивное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Рассчитаем полное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепей

Определим сопротивление связи контуров

Частотные методы анализа и расчёта электрических цепей

Следовательно

Частотные методы анализа и расчёта электрических цепей

Находим емкость первого контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.2.

Рассчитать емкости связанных контуров (см. рис. 4.37,а) и оптимальное сопротивление связи, если система настроена и полный резонанс. Определить токи, мощности в контурах при этом режиме, а также КПД системы.

Дано: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим емкость конденсатора Частотные методы анализа и расчёта электрических цепей, полагая, что

Частотные методы анализа и расчёта электрических цепей

Отсюда

Частотные методы анализа и расчёта электрических цепей

2.  Сопротивление оптимальной связи при полном резонансе

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем токи в первом и втором контурах при полном резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим активные мощности в первом и втором контурах и КПД связанных контуров:

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.3.

На рис. 4.37, а показана система из двух идентичных связанных контуров с параметрами: Частотные методы анализа и расчёта электрических цепей Рассчитать полосы пропускания одиночного контура и связанных контуров при различной связи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим полосу пропускания одиночного контура 

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем полосу пропускания системы связанных контуров:

1)  определим параметр связи для Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Таким образом при Частотные методы анализа и расчёта электрических цепей связь меньше критической Частотные методы анализа и расчёта электрических цепей При этом относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.41, резонансная кривая А = 0,5)

Частотные методы анализа и расчёта электрических цепей

2) при Частотные методы анализа и расчёта электрических цепей параметр связи Частотные методы анализа и расчёта электрических цепей Таким образом, коэффициент связи является оптимальным, а связь критическая, система настроена в полный резонанс. Полоса пропускания в этом случае

Частотные методы анализа и расчёта электрических цепей

3) если Частотные методы анализа и расчёта электрических цепей то параметр связи Частотные методы анализа и расчёта электрических цепей следовательно, связь больше критической.

Рассчитаем полосу пропускания для этого случая.

Частотные методы анализа и расчёта электрических цепей

Вид резонансных кривых по току и полоса пропускания для критической и сильной связи показаны на рис. 4.41, кривые А = 1 и А = 2.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.4.

Антенный контур (см. рис. 4.37,б) индуктивно связан с входным контуром усилителя высокой частоты. Оба контура настроены в резонанс на частоту Частотные методы анализа и расчёта электрических цепей принимаемого сигнала. В антенном контуре наводится Частотные методы анализа и расчёта электрических цепей

Дано: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Входное сопротивление УВЧ считать бесконечно большим.

Определить емкости и добротности контуров, их взаимную индуктивность, а также ток и напряжение на емкости во вторичном контуре.

Решение

1.Емкости контуров определим из формулы резонансной частоты. Емкость конденсатора первого контура

Частотные методы анализа и расчёта электрических цепей

Емкость конденсатора второго контура

Частотные методы анализа и расчёта электрических цепей
2. Рассчитаем волновое сопротивление контуров:

Частотные методы анализа и расчёта электрических цепей
3. Рассчитаем добротности контуров и параметр связи:

Частотные методы анализа и расчёта электрических цепей
4. Определим взаимную индуктивность двух связанных контуров

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем ток во вторичном контуре. Известно (см. табл. 4.3), что при полном резонансе Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс, то из (4.34) получаем

Частотные методы анализа и расчёта электрических цепей

Оба контура по условию настроены в резонанс, поэтому расстройки равны нулю:

Частотные методы анализа и расчёта электрических цепей

С учетом этого рассчитаем ток во втором контуре

Частотные методы анализа и расчёта электрических цепей

6. Найдем напряжение на конденсаторе вторичного контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.5.

На рис. 4.42 приведена схема одного каскада УПЧ радиоприемника, в котором избирательность обеспечивается двумя связанными контурами с емкостной связью. Оба контура настроены в резонанс на промежуточную частоту Частотные методы анализа и расчёта электрических цепей

Эквивалентная схема этого каскада (рис. 4.43) имеет следующие параметры: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить емкости и добротности контуров, емкость связи, напряжение на емкости во вторичном контуре, а также полосу пропускания каскада УПЧ.

Решение

1. Из формулы резонансной частоты найдем емкость первого контура. С учетом влияния выходной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа получаем

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Емкость второго контура с учетом влияния входной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа

Частотные методы анализа и расчёта электрических цепей

2. Определим емкость связи

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем добротности нагруженных контуров при отсутствии связи между ними. Для расчета воспользуемся формулой (4.31)
Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем параметр связи Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем напряжение на втором контуре. Известно (см. табл. 4.4), что при полном резонансе

Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс Частотные методы анализа и расчёта электрических цепейиз (4.35) получаем

Частотные методы анализа и расчёта электрических цепей

Найдем проводимость контуров

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем полосу пропускания каскадов УПЧ. учитывая, что А = 1,2.

Частотные методы анализа и расчёта электрических цепей

Частотные методы расчета и построения переходных и установившихся процессов в электрических цепях

Основные теоретические сведения:

Зная частотную характеристику электрической цепи Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей можно определить ее выходную величину при подаче на вход синусоидального (гармонического) сигнала. Действительно, если на вход цепи подано синусоидальное напряжение комплексное изображение которого Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей то в установившемся режиме комплексное изображение выходного напряжения

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей амплитуда и сдвиг по фазе выходных колебаний соответственно.

С помощью частотной характеристики электрической цели можно не только определить выходную величину цепи в установившемся режиме при гармоническом входном воздействии, но и найти реакцию цепи в переходном процессе на произвольное воздействие Частотные методы анализа и расчёта электрических цепей. Действительно, представляя это воздействие в зависимости от того, является оно периодической или непериодической функцией, в виде ряда или интеграла Фурье, т.е. в виде бесконечной суммы гармонических колебаний. По частотной характеристике можно определить реакцию электрической цепи на каждое из этих элементарных колебаний, а затем, просуммировав все реакции, найти результирующую реакцию в виде суммы или интеграла [4].

Найдем реакцию цепи на единичную ступенчатую функцию (т.е. найдем переходную функцию цепи), используя ее частотную характеристику. Как известно, интеграл Фурье для единичной ступенчатой функции имеет вид

Частотные методы анализа и расчёта электрических цепей

т.е. единичная ступенчатая функция может быть представлена как бесконечная сумма элементарных колебаний вида Частотные методы анализа и расчёта электрических цепей

Каждому из этих колебаний соответствует выходное колебание Частотные методы анализа и расчёта электрических цепей а реакция системы на единичную ступенчатую функцию выражается интегралом

Частотные методы анализа и расчёта электрических цепей

Представляя Частотные методы анализа и расчёта электрических цепей в алгебраической форме Частотные методы анализа и расчёта электрических цепей и преобразуя выражение (4.37), получаем следующую формулу для переходной функции |4, 6|:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная частотная характеристика (ВЧХ) КФ электрической цепи. Полученное выражение связывает ВЧХ КПФ цепи с ее переходной функцией. Таким образом, при частотном методе анализа косвенной характеристикой переходной функции является вещественная частотная характеристика КФ электрической цепи.

Построение переходной функции с помощью вещественной частотной характеристики методами численного интегрирования:

Выражение (4.38) позволяет вычислить переходную функцию ЭЦ и определить качество переходного процесса. Однако интегрирование этого выражения аналитическими методами — задача весьма трудоемкая, а чаще всего просто практически невыполнимая. С применением современных ЭВМ и методов численного интегрирования (метод прямоугольников, трапеций, метод Симпсона и др.) эта задача существенно упрощается, ее решение сводится к составлению программы для ПЭВМ. В инженерной практике интегрирование достаточно осуществлять в области существенных частот от Частотные методы анализа и расчёта электрических цепей В области частот Частотные методы анализа и расчёта электрических цепей влияние ВЧХ Частотные методы анализа и расчёта электрических цепей на переходную функцию (4.38) мало и им можно пренебречь. В dtom случае используют модифицированное выражение от (4.38) [4]

Частотные методы анализа и расчёта электрических цепей

В результате интегрирования получают совокупность значений Частотные методы анализа и расчёта электрических цепейпереходной функции системы и исследуемом интервале времени и строят график переходной функции, по которой определяют показатели качества переходного процесса.

В качестве примера построения алгоритма численного интегрирования рассмотрим интегрирование с точки зрения простоты вычислений и точности результата. Сущность метода заключается в следующем. Пусть необходимо вычислить определенный интеграл

Частотные методы анализа и расчёта электрических цепей

Вид подынтегральной функции, соответствующей выражению

Частотные методы анализа и расчёта электрических цепей

при фиксированном времени Частотные методы анализа и расчёта электрических цепей приведен на рис. 4.47, кривая Частотные методы анализа и расчёта электрических цепей для t = 10 с, кривая 2 для Частотные методы анализа и расчёта электрических цепей, а кривая 3 изображает ВЧХ электрической цепи. Функция Частотные методы анализа и расчёта электрических цепей представляет функцию Частотные методы анализа и расчёта электрических цепей модулированную «замечательным» синусом. Известно, что интеграл (4.40) численно равен площади под кривой функции Частотные методы анализа и расчёта электрических цепей Если интервал аргумента Частотные методы анализа и расчёта электрических цепей разбить на Частотные методы анализа и расчёта электрических цепей равных частей, то длина одного интервала будет равна Частотные методы анализа и расчёта электрических цепей Площадь под кривой можно аппроксимировать суммой площадей прямоугольных трапеций с основаниями Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей и высотой Частотные методы анализа и расчёта электрических цепейТогда интеграл (4.40) можно представить как сумму площадей прямоугольных трапеций:

Частотные методы анализа и расчёта электрических цепей

Очевидно, что погрешность численного интегрирования зависит и от выбора числа интервалов Частотные методы анализа и расчёта электрических цепей разбиения аргумента Частотные методы анализа и расчёта электрических цепей при конкретном времени Частотные методы анализа и расчёта электрических цепей При увеличении времени , как видно из рис. 4.47, период подынтегральной функции уменьшается. Следовательно, необходимо увеличивать число интервалов, которое определился выражением
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При этом одно полное колебание подынтегральной функции представляется не менее чем шестнадцатью трапециями.

В качестве примера для построения переходной функции возьмем электрическую цепь, ВЧХ которой была построена и приведена на рис. 4.47 (кривая 3). На рис. 4.48 приведена переходная функция этой сложной электрической цепи.

Переходная функция на рис. 4.48 получена с помощью пакета ПП «Сигнал» [5].

Для вычисления интеграла (4.39) необходимо определить значение частоты для верхнего предела интегрирования Частотные методы анализа и расчёта электрических цепей Это значение легко может быть определено из кривой вещественной частотной характеристики (ВЧХ) КФ электрической цепи. В качестве примера возьмем простую интегрирующую цепь (см. рис. 4.1), КФ которой имеет вид

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Алгебраическая форма КФ
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная и мнимая части КФ. Построим кривуюЧастотные методы анализа и расчёта электрических цепей (рис. 4.49) в среде Mathcad, если Частотные методы анализа и расчёта электрических цепей.

Из графика ВЧХ видно, что при Частотные методы анализа и расчёта электрических цепей Влияние ВЧХ в области больших частот на переходную функцию несущественно, поэтому за частоту Частотные методы анализа и расчёта электрических цепейможно принять частоту, при которой ВЧХ принимает значение Частотные методы анализа и расчёта электрических цепей Эту частоту принято называть «существенной частотой» и обозначать Частотные методы анализа и расчёта электрических цепей. В нашем примере Частотные методы анализа и расчёта электрических цепей Переходная функция, вычисленная по выражению (4.39), приведена на рис. 4.49.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для случая электрических цепей с дифференцирующими свойствами может оказаться, что при Частотные методы анализа и расчёта электрических цепей ВЧХ КФ этой цепи Частотные методы анализа и расчёта электрических цепейТогда для расчета переходной функции необходимо использовать мнимую частотную характеристику (МЧХ) в соответствии с выражением

Частотные методы анализа и расчёта электрических цепей

Приведенный пример наглядно показывает, что использование частотных характеристик для построения временных характеристик с помощью ЭВМ существенно расширяет возможности частотных методов анализа электрических цепей.

Спектральный метод расчета и построения выходных величин электрических цепей при сложных входных воздействиях:

Применение частотных методов при анализе и синтезе электрических цепей с требуемыми динамическими характеристиками и использованием ЭВМ позволяет не только строить переходные характеристики, но и строить реакцию цепи на любые детерминированные воздействия, оценивать их в установившихся режимах.

Математической основой частотных методов анализа электрических цепей и систем автоматического управления является обратное преобразование Фурье, позволяющее получать изображение выходного сигнала системы y(t) с помощью вещественной и мнимой частотных характеристик систем. В свою очередь, по вещественной или мнимой частотным характеристикам можно построить переходный процесс выходной величины и оценить реакцию цепи в переходном и установившемся режимах.

Как известно, реакция системы определяется по формуле обратного преобразования Фурье [4]

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

После соответствующих преобразований выражение (4.46) примет вид:

I) для ступенчатой входной функции Частотные методы анализа и расчёта электрических цепей спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2) для линейной входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей
Частотные методы анализа и расчёта электрических цепей
y{t) = vP(0)t+±l
2 r0(
Л» И
(4.48)
О)
3) для параболической входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
4) для полиномиального воздействия видаЧастотные методы анализа и расчёта электрических цепей 

Частотные методы анализа и расчёта электрических цепей

Применение ЭВМ и численных методов интегрирования позволяет отказаться от графических и табличных методов построения переходных и других необходимых функций в электрических цепях.

Примеры решения типовых задач:

Пример 4.6.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего Частотные методы анализа и расчёта электрических цепей-контура (рис. 4.50,а), рассчитать и построить переходную функцию контура с помощью ВЧХ.

Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.50, б).

2. Определим комплексное напряжение на выходе цепи в виде

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся за скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей После преобразований получим
Частотные методы анализа и расчёта электрических цепей
Следовательно
Частотные методы анализа и расчёта электрических цепей
Введем обозначения:

Частотные методы анализа и расчёта электрических цепей

Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина k имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Примем:Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.51).

Из частотных характеристик КПФ принимаем Частотные методы анализа и расчёта электрических цепей Для построения переходной функции воспользуемся выражением (4.45). Построение проведем также в среде Mathcad.Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Переходная функция, показанная на рис.4.52, соответствует дифференцирую щему фазоопережающему контуру, который широко применяется в электронных и радиотехнических устройствах, системах автоматического управления.

Пример 4.6.2.

Для электрической цепи, изображенной на рис, 4.53, определить КПФ Частотные методы анализа и расчёта электрических цепей построить ВЧХ Частотные методы анализа и расчёта электрических цепей и МЧХ Частотные методы анализа и расчёта электрических цепей. Рассчитать и построить график переходной функции. Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию Частотные методы анализа и расчёта электрических цепей по формуле делителя напряжения

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду 

Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.54).

По виду ВЧХ и МЧХ определяем, что для построения переходной функции необходимо применить МЧХ. Примем из графика МЧХ Частотные методы анализа и расчёта электрических цепей Переходная функция и программа для ее вычисления и построения приведена на рис. 4.55.

Из рис. 4.55 видно, что переходная функция соответствует интегрирующему контуру.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.6.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.56, а), используя метод контурных токов. Построить в среде Mathcad графики АЧХ, ВЧХ, МЧХ. Рассчитать и построить эпюру входного и выходного напряжения, если на вход цепи поступает напряжение вида Частотные методы анализа и расчёта электрических цепей где Частотные методы анализа и расчёта электрических цепей

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1.Представим цепь комплексной схемой замещения (рис. 4.56, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направление контурных тиков выбираем одинаковым.

2.Составим матрицы контурных сопротивлений для двух независимых контуров

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

т.е.  Частотные методы анализа и расчёта электрических цепей

где  Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепей = = 0,75. С ростом частоты емкостное сопротивление уменьшается. Если Частотные методы анализа и расчёта электрических цепей   тоЧастотные методы анализа и расчёта электрических цепей и шунтирует сопротивлениеЧастотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей

5.Определим выражения для АЧХ, ВЧХ, МЧХ. Представим КГ1Ф (4.55) в алгебраической форме

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей вещественная частотная характеристика:

Частотные методы анализа и расчёта электрических цепей — мнимая частотная характеристика.
Амплитудно-частотную характеристику запишем в виде

Частотные методы анализа и расчёта электрических цепей

6. В среде Mathcad построим частотные характеристики и определим Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

По ВЧХ на рис. 4.57 определяем, что существенная частота Частотные методы анализа и расчёта электрических цепей

7. Построим переходную функцию электрической цепи, которая представлена на рис. 4.58.

Переходная функция электрической цепи соответствует апериодическому звену.

Частотные методы анализа и расчёта электрических цепей

8. Построим реакцию электрической цепи на напряжение, изменяющееся но линейному закону (рис. 4.59).

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

  • Операторные передаточные функции
  • Свободные колебания в пассивных электрических цепях
  • Цепи с распределёнными параметрами
  • Волновые параметры длинной линии
  • Энергетические характеристики двухполюсников
  • Комплексные функции электрических цепей
  • Гармонические колебания в колебательном контуре
  • Частотные характеристики линейных электрических цепей

Добавить комментарий