Как найти положение главных центральных осей

Центробежный момент инерции сечения относительно осей, из которых хотя бы одна есть ось симметрии, равен нулю. Действительно, каждому элементу площади в правой половине симметричного сечения (рис. 4.11) всегда соответствует такой же элемент в левой половине. Ординаты центров тяжести этих двух элементов одинаковы, а абсциссы равны по величине, но противоположны по знаку. Поэтому интегралы по площади левой и правой части сечения противоположны по знаку, а их сумма, представляющая собой центробежный момент инерции сечения, равна нулю.

Следовательно, если сечение имеет хотя бы одну ось симметрии, то эта ось является одной из главных центральных осей инерции. Любая перпендикулярная к ней ось также является главной, а проходящая, кроме того, через центр тяжести — второй главной центральной осью инерции. Поэтому при определении положения главных осей надо прежде всего обращать внимание на наличие осей симметрии.

Если сечение не имеет осей симметрии, то сначала выбирается рациональная система осей координат, затем вычисляются моменты инерции относительно этих осей и далее по формуле (4.26) определяется угол а, на который нужно повернуть исходные оси, чтобы они стали главными. При положительном оси у и надо поворачивать на угол а против часовой стрелки, а при отрицательном — по часовой стрелке.

Рассмотрим несколько примеров определения главных центральных осей инерции и главных моментов инерции сечений.

Пример. Определить главные центральные оси и главные моменты инерции для сечения, представленного на рис. 4.12.

Решение. Сечение имеет две оси симметрии Следовательно, эти оси являются искомыми главными центральными осями инерции сечения. Дополннм сечение до полного квадрата и определим вычитанием из момента инерции квадрата со стороной 4 см моментов инерции квадратов со стороной 1 см. Учитывая, что по доказанному выше моменты инерции квадратов относительно всех центральных осей одинаковы,

Рис. 4.11

Рис. 4.12

Рис. 4.13

Рис. 4.14

При вычислении необходимо применить формулу (4.12)

Итак, Заметим, что осью максимального главного Момента инерции всегда будет та, от которой более удалены элементы площади сечения.

Пример. Определить моменты инерции относительно главных нейтральных осей инерции (рис. 4.13).

Решение. Совместим оси и у с горизонтальным и вертикальным участками средней линии уголка и определим положение его центра тяжести:

Проведем через центр тяжести оси и вычислим моменты инерции уголка относительно этих осей. Разбивая уголок на два прямоугольника, как показано на рис. 4.13, с помощью формул (4.12) получаем:

Определим по формуле (4.27) угол а, на который надо повернуть центральные оси чтобы они совпали с главными центральными осями инерции уголка;

Как видно из рис. 4.13, при повороте на угол ось совпадает с первой, а ось второй главной центральной осью инерции уголка (элементы данной фигуры расположены ближе к оси чем к оси 1).

Главные моменты инерции и вычислим по формуле (4.28);

Следовательно,

Пример. Определить главные моменты инерции тонкостенного профиля по» стоянной толщины представленного на рис. 4.14.

Решение. Проведем оси и у, как показано на рис. 4.14, и определим положение центра тяжести профиля

где площади и статические моменты полукольца, вертикального и, горизонтального прямоугольников

Следовательно,

Определим моменты инерции относительно главных центральных осей инерции

При вычислении поступим так. Сначала определим момент инерции всего сечения относительно оси а затем по формулам (4.12) перейдем к центральной оси Используя результаты разд. 4.4, получим

Первое слагаемое в квадратных скобках, момент инерции горизонтального элемента относительно его собственной центральной оси — весьма мало по сравнению со всеми остальными слагаемыми, так как содержит малую величину в третьей степени.

Такими слагаемыми при расчете тонкостенных сечений обычно пренебрегают, Поэтому

Момент инерции относительно оси

Определяем
координаты точек С1
и С2
относительно системы z1C1y1.

Точка
С1:

=0;=0.

Точка
С2
:
;.

Общая
площадь фигуры

Координата
центра тяжести по оси y

.

Координата
центра тяжести по оси z

.

Проводим
центральные осиy
C
, z
C
параллельно
осям y
1
, z1
, как это
показано на рис.11.

Рис.11

Замечание. Центр
тяжести составной фигуры (точка С) всегда
должен лежать на

прямой
линии, соединяющей точка С1
и С2
(см. рис.11).

Теперь
y
C,
z
C

основная система координат.

2.Определение величин осевых и центробежного моментов инерции относительно центральных осей

Момент
инерции составной фигуры относительно
оси y
C
равен сумме моментов инерции первой и
второй фигур

.

Момент
инерции первой фигуры относительно
оси y
C
равен моменту инерции относительно оси
y
1
плюс
площадь этой фигуры на квадрат расстояния
между осями y
1
и y
C
(используем формулы параллельного
переноса осей)

;

(см.
рис.11).

Момент
инерции второй фигуры относительно оси
y
C

;

(см.
рис.11).

.

Момент
инерции составной фигуры относительно
оси z
C
равен сумме моментов инерции первой и
второй фигур

.

;

(см.
рис.11).

Момент
инерции второй фигуры относительно оси
y
C

;

(см.
рис.11).

.

Центробежный
момент инерции составной фигуры
относительно осей y
C,
z
C
равен сумме центробежных моментов
инерции первой и второй фигур

.

;

;

.

Моменты инерции
относительно центральных осей найдены

3. Определение направления главных центральных осей

Направление
главных центральных осей определяется
по формуле:

.

Знак
“ –“ показывает, что угол
откладывается
от осиy
C
по ходу часовой стрелки (для “ + “ –
против хода часовой стрелки).

Проводим
главные центральные оси u
,v
, как это
показано на рис.11.

4. Определение
величин осевых моментов инерции
относительно

главных центральных
осей

Моменты инерции относительно главных
центральных осей вычисляются по следующим
формулам:

Так как
,
то

Наибольший из моментов инерции при
повороте осей возрастает, достигая
максимального значения, а меньший момент
инерции убывает, достигая минимального
значения, при этом сумма осевых моментов
инерции относительно двух взаимно
перпендикулярных осей остается
постоянной, т.е.

=const.

Используем последнее
соотношение в качестве проверки

==.

Задача 3

Для заданных двух
схем балок (рис.12,15) требуется:

1.Для
каждого участка балки составить выражения
поперечных сил (Q)
и изги-

бающих
моментов(M)
, используя метод сечений. Построить их
эпюры.

2.Определить опасное
сечение по нормальным напряжениям.

3.Из условия
прочности по методу допускаемых
напряжений при изгибе

подобрать:

а) для схемы (а)
деревянную балку круглого поперечного
сечения, приняв

допускаемое
нормальное напряжение 


= 10МПа;

б) для схемы (б)
стальную балку двутаврового поперечного
сечения, приняв

допускаемое
нормальное напряжение 


= 160МПа.

4. Проверить
прочность балок.

Схема
а)

Исходные
данные:

a=2
м;
b=2
м;
q=10
кН/м;

m=8
кНм;
F=15
кН;

  =
10МПа=10.


Рис.12

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Определить главные центральные моменты инерции, осевые моменты сопротивления  сечения, составленного из стандартных профилей проката.

Сечение состоит из двух неравнополочных уголков 75×50х5 (маркировка в мм) и швеллера № 16 (№ швеллера говорит о его высоте в см).

2016-09-08-20-28-30-skrinshot-ekrana

  1. Определим положение центра тяжести сечения.

Сечение симметрично относительно оси у, проводим её как ось – главную и центральную. Координата хС=0. Для нахождения уС проводим случайную ось х (выбранную случайным образом). Обозначим центры тяжести всех профилей и выпишем необходимые характеристики профилей из сортамента прокатной стали.

Фигуры 1,2 – уголки 75×50х5

2016-09-08-20-30-55-skrinshot-ekrana

А1=А2=6,11 см2

Iх1= Iх2=34,8 см4

Iу1= Iу2=12,5 см4

Фигура 3 – швеллер №16

2016-09-08-20-32-08-skrinshot-ekrana

А3=18,1 см2,    

Iх3=747 см4

Iу3=63,3 см4.

Покажем на схеме и определим координаты у для профилей

ууу=2,39 см,

у1= –z=-1,8 см.

Определим координату уС по формуле

 2016-09-06 20-26-28 Скриншот экрана,

где Аiплощадь каждого профиля,

      уi – координата.

2016-09-08-20-35-07-skrinshot-ekrana

Проводим главную центральную ось х вниз от оси х′ на 0,11 см, наносим т.С – центр тяжести всего сечения.

2. Определяем главные центральные моменты инерции по формулам перехода:

2016-09-06 20-36-54 Скриншот экрана,

где Ixi , Iyi моменты инерции каждой фигуры;

Аi площадь сечения каждой фигуры;

аi – расстояние от центра тяжести каждой фигуры до главной центральной оси х;

bi – расстояние от центра тяжести каждой фигуры до главной центральной оси у.

Определяем аi (смотрим схему)

аау1+|уС|= 2,39 + 0,11 = 2,5см,

а3= — (|у3|-|уС|) = -1,69см.

Определяем Iх. Следует обратить внимание на то, что фигура 3 – швеллер – повернут, поэтому, для определения Iх следует из сортамента взять Iу швеллера.

Iх3=63,3см4

2016-09-08-20-40-40-skrinshot-ekrana

Определяем Iу.  Для швеллера (повернут)  Iу3  Iх = 747см4.

Определим размеры bi, показываем на схеме.

b1= –х0 = -1,17см,

b2= х0 = 1,17см,

b3=0, т.к. центр тяжести швеллера лежит на оси у.

2016-09-08-20-42-24-skrinshot-ekrana3. Определим осевые моменты сопротивления сечения по формулам:

2016-09-08-20-44-11-skrinshot-ekrana

Из схемы видно ,что

2016-09-08-20-44-50-skrinshot-ekrana

Тогда

2016-09-08-20-46-18-skrinshot-ekrana

Определить главные центральные моменты инерции сечения геометрической формы.

2016-09-06 20-24-39 Скриншот экрана

  1. Определим положение центра тяжести сечения.

Сечение симметрично относительно оси у, поэтому нанесем ось у – ось, на которой находится центр тяжести всего сечения. Координата хС=0, значит, следует определить координату уС.

Выберем случайную ось х — внизу сечения.

Разобьем сечение на простые фигуры:

фигура 1 – прямоугольник с основанием см и высотой см, отмечаем центр тяжести прямоугольника – т. С1

фигура 2 – равнобедренный треугольник с основанием см и высотой см, отмечаем его центр тяжести – т. С2.

Теперь  вычислим площади каждой фигуры и определим  координаты у каждой фигуры, затем координаты нанесем на схему

Прямоугольник

2016-09-06 20-30-29 Скриншот экрана

Треугольник

2016-09-06 20-33-02 Скриншот экрана

Теперь определим координату центра тяжести всего сечения по формуле:

2016-09-06 20-26-28 Скриншот экрана

Тогда

2016-09-06 20-34-57 Скриншот экрана

Отмечаем уС на схеме, центр тяжести всего сечения – т.С — и проводим через эту точку главную центральную ось х.

По формулам перехода определяем главные центральные моменты инерции сечения:

2016-09-06 20-36-54 Скриншот экрана,

где Ixi  Iyi  — моменты инерции каждой фигуры;

Аi площадь сечения каждой фигуры;

аi расстояние от центра тяжести каждой фигуры до главной центральной оси х;

bi расстояние от центра тяжести каждой фигуры до главной центральной оси у.

Фигура 1 – прямоугольник

2016-09-06 20-40-04 Скриншот экрана

Расстояние а1 от С1 до оси х покажем на схеме. Из схемы видно, что а1=- ( уС – у1 )= -0,8 см. Так как С1 находится на оси у, то b1=0.

Фигура 2 – треугольник

2016-09-06 20-43-51 Скриншот экрана

Находим а=  у2 – уС = 7 — 3,8= 3,2 см, отмечаем на схеме.

b2=0, т.к. С2 находится на оси у.

Подставляем значения в формулы перехода и определяем:

главный центральный момент инерции сечения относительно оси х

2016-09-06 20-46-36 Скриншот экрана

— главный центральный момент инерции сечения относительно оси у

2016-09-06 20-47-22 Скриншот экрана

Таким образом,

2016-09-06 20-48-04 Скриншот экрана

Для заданного поперечного сечения, состоящего из швеллера и равнобокого (равнополочного) уголка   требуется определить главные центральные моменты инерции

2014-12-06 12-19-17 Скриншот экрана

1)  Вычерчиваем сечение в масштабе.

2)  Разбиваем на простейшие фигуры:

       1. Швеллер №30 (пользуемся сортаментом прокатных профилей):

2014-12-06 12-21-10 Скриншот экрана

   2. Уголок 2014-12-06 12-22-59 Скриншот экрана:

2014-12-06 12-24-57 Скриншот экрана

3)  В каждой фигуре найти собственный центр тяжести С1 и С2   ,провести собственные оси.

4)  Выбрать вспомогательные оси  2014-12-06 12-26-45 Скриншот экрана.

5) Относительно вспомогательных осей определить центр тяжести всей фигуры:

2014-12-06 12-28-09 Скриншот экрана

Через найденный центр тяжести проводим центральные оси.

6) Находим моменты инерции всей фигуры относительно центральных осей, используя формулы перехода между параллельными осями

При определении центробежного момента инерции следует помнить ,что если фигура имеет хотя бы одну ось симметрии, то эта ось является главной, вторая ось, перпендикулярная ей, тоже главная. Центробежный момент относительно главных осей равен 0. Таким образом, для швеллера  2014-12-06 12-34-23 Скриншот экрана

Для уголка 2014-12-06 12-35-27 Скриншот экрана см4,  знак зависит от расположения уголка (см. Таблицы «Знак центробежного момента для уголков»). В нашем случае он положительный.

2014-12-06 12-44-49 Скриншот экрана

Здесь: аi расстояния между центральной осью Х и собственным центром тяжести каждой фигуры,

bi расстояние между центральной осью Y и собственным центром тяжести каждой фигуры 

Как видим из вычислений, центробежный момент инерции сечения 2014-12-06 12-47-02 Скриншот экраназначит, центральные оси Х;Y не являются главными!

7) Определим положение главных осeй через угол α0:

2014-12-06 12-49-19 Скриншот экрана

Знак «-» означает, что надо повернуть оси Х, У по часовой стрелке.

8) Определим главные моменты инерции сечения

2014-12-06 12-50-59 Скриншот экрана 9) Проверка: Сумма моментов инерции относительно любых двух взаимно перпендикулярных осей есть величина постоянная:

2014-12-06 12-52-19 Скриншот экрана

Проверка выполняется.

Найти главные центральные моменты инерции.

2014-12-11 21-57-49 Скриншот экрана

  1. Подготовка исходных данных.

Из сортамента выписываем:

— для двутавра №10:

2014-09-20 22-06-32 Скриншот экрана

— для швеллера №20:

2014-09-20 22-07-27 Скриншот экрана

Нумеруем составные части, показываем их центры тяжести (С1, С2, С3) и собственные центральные оси каждой из них (х1,у1; х2,у2; х3,у3).

2.  Поскольку сечение имеет одну ось симметрии, то она – одна из главных центральных (у0). Найдем положение центра тяжести на этой оси. Для этого выберем вспомогательную ось х‘, перпендикулярную оси симметрии, и реализуем формулу:2014-09-20 22-09-05 Скриншот экрана

которая и определит расстояние от оси х‘ до искомого центра тяжести.

Тогда А=А1+А2+А3=2×20+14,3+28,83=83,15 см2,

2014-09-20 22-10-43 Скриншот экрана

тогда

2014-09-20 22-11-37 Скриншот экрана

Показываем на схеме центр тяжести «С» и проводим вторую главную центральную ось х0.

Ординаты собственных центров тяжести простых фигур в системе главных центральных осей:

2014-09-20 22-13-07 Скриншот экрана

3. Вычисляем главные центральные моменты инерции2014-09-20 22-14-19 Скриншот экрана

2014-09-20 22-15-21 Скриншот экрана

Итак, 

2014-09-20 22-16-24 Скриншот экрана

Определить главные центральные моменты инерции сечения.

Составные простые части сечения: прямоугольник 100×60см (I),  полукруг r=30см  (IIи III), треугольник 100×30см (IV). 

2014-12-11 21-59-04 Скриншот экрана

Вертикальная ось симметрии у0 является одной из главных центральных осей.

  1. Найдем положение центра тяжести сечения на оси симметрии. Для этого выберем вспомогательную ось х, перпендикулярную оси симметрии. Пусть она совпадает с осями: х1, х2, х3

.2014-09-20 21-42-01 Скриншот экрана

Общая площадь А = А1 А2 А3 + А4 = 6000 – 1415 – 1415 + 1500 = 4670см2.

Статический момент относительно вспомогательной оси х‘:

2014-09-20 21-43-50 Скриншот экрана

Тогда2014-09-20 21-44-43 Скриншот экрана

значит, центр тяжести сечения располагается на 12,8см выше вспомогательной оси х‘.

2. Вычисляем осевые моменты инерции     2014-09-20 21-46-11 Скриншот экрана

Они и будут главными центральными моментами инерции сечения.

2014-09-20 21-47-46 Скриншот экрана

Здесь применялись формулы:

2014-09-20 22-03-17 Скриншот экрана

Найти главные центральные моменты инерции сечения, состоящего из листа 40×2см и двух уголков №14/9.

2014-12-11 22-00-38 Скриншот экрана

Исходные данные из сортамента для неравнобокого уголка №14/9.

2014-09-20 21-31-46 Скриншот экрана

Сечение имеет одну ось симметрии. Она – одна из главных центральных. Обозначаем её х0. Чтобы показать вторую главную центральную ось, надо найти положение центра тяжести на оси симметрии:

2014-09-20 21-32-48 Скриншот экрана

Выбираем вспомогательную ось у‘, перпендикулярную к оси симметрии и вычисляем статический момент сложного сечения относительно этой оси:

2014-09-20 21-34-33 Скриншот экрана

Проводим главную центральную ось у0 через найденный центр тяжести. 

Вычисляем непосредственно главные центральные моменты инерции:

2014-09-20 21-35-34 Скриншот экрана

Таким образом, 

2014-09-20 21-36-42 Скриншот экрана

Требуется найти главные центральные моменты инерции.

2014-12-11 22-01-56 Скриншот экрана

Сечение имеет две оси симметрии. Следовательно, центр тяжести совпадает с точкой пересечения этих осей, а сами они оказываются главными центральными осями.

Остается лишь вычислить осевые моменты инерции относительно осей х0 и у0.

«Разбиваем» сечение на простые фигуры: прямоугольник 6×8см и два круга r=1см. Тогда:

2014-09-20 21-27-15 Скриншот экрана

Итак

,2014-09-20 21-28-23 Скриншот экрана

Требуется определить величины главных центральных моментов инерции.

Сечение имеет одну ось  симметрии.

2014-12-11 22-04-07 Скриншот экрана

На основании первого признака главных осей для симметричных сечений можно утверждать, что ось симметрии является одной из главных центральных осей. Обозначаем ее «у0». Значит, вторая главная центральная ось, перпендикулярная оси симметрии, должна проходить через центр тяжести сечения.

Следовательно, нам достаточно только найти положение центра тяжести на оси симметрии, а для этого необходимо вычислить одну лишь координату его по формуле:2014-09-20 21-15-38 Скриншот экрана

С этой целью выбираем вспомогательную ось х, «разбиваем» сложное сечение на прямоугольник со сторонами 10 и 4см и треугольник с основанием 4см и высотой 3см.

Тогда:2014-09-20 21-17-08 Скриншот экрана

Проводим через найденный центр тяжести вторую главную центральную ось х0.

Расстояние между осями х1 и х0: а1=5 — 4,3 =0,7см, а расстояние между осями х2 и х0: а2=10 – 1 — 4,3 = 4,7см.

Таким образом, положение главных центральных осей найдено, осталось вычислить величины главных центральных моментов инерции:

2014-09-20 21-18-46 Скриншот экрана

х‘, у – вспомогательные оси при определении положения центра тяжести сечения,

Sх’, Sу’ – статические моменты относительно вспомогательных осей,

хс, ус – координаты центра тяжести сечения, а также и обозначение случайных (т.е. не главных) центральных осей,

х0, у0 – главные центральные оси,

α0 – угол поворота главных центральных осей от случайных центральных осей хс и ус,

2014-09-09 22-32-02 Скриншот экрана, — главные центральные моменты инерции,

сi – центры тяжести отдельных фигур, из которых состоит сечение сложной формы,

хi, уi – собственные центральные оси отдельных фигур, а также и координаты центров тяжести отдельных фигур в системе вспомогательных осей х‘, у‘,

аi, вi – расстояния между собственными центральными осями отдельных фигур хi, уi и случайными центральными осями всего сечения хс, ус.

Требуется определить положение главных центральных осей и величины главных центральных моментов инерции.

Сечение имеет сложную форму, состоит их 4х простых фигур:

I – швеллера №30а,

II – прямоугольника 2×40см,

III – двутавра №20а,

IV – равнобокого уголка №12 (d=10мм).

Всё начинается с подготовки исходных данных. С этой целью необходимо сделать выписки из таблиц Сортамента прокатных сечений (см. рубрику «Таблицы»).

2014-12-11 22-06-46 Скриншот экрана

Этап 0. Подготовительный

Фигура I. Швеллер №30а

2014-09-11 22-28-17 Скриншот экрана

Фигура II – прямоугольник 2×40см, В сортаменте прокатной стали этой фигуры нет, поскольку все геометрические характеристики ее свободно вычисляются

Фигура III. Двутавр №20а.

2014-09-11 22-30-52 Скриншот экрана

Фигура IV. Равнобокий уголок №12 (d=10мм).

2014-09-11 22-31-57 Скриншот экрана

Пользуясь данными сортамента, на схеме сечения, вычерченной в достаточно крупном масштабе, показываем положение центров тяжести каждой из фигур и собственные центральные оси хi, уi.

Этап 1. Определение положения центра тяжести сечения. Сечение не имеет осей симметрии. Поэтому придётся определять две координаты центра тяжести, используя формулы:

2014-09-11 22-33-07 Скриншот экрана

Для реализации этих формул выбираем вспомогательные оси х‘ и у (см.схему сечения).

Площади отдельных фигур: А1=43,89см2, А2=2×40=80см2,

А3=35,5см2, А4=23,3см2.

Координаты центров тяжести отдельных фигур:2014-09-11 22-34-23 Скриншот экрана

Площадь всего сечения А=182,7см2.

2014-09-11 22-35-49 Скриншот экрана

Тогда координаты собственных центров тяжести отдельных фигур в системе случайных центральных осей хс, усбудут:

а1=2,66см,                            b1=-7,5см

а2=-2,34см,                           b2=-1,93см

а3=-7,34см,                           b3=9,07см

а4=14,33см,                           b4=2,4см.

Этап 2.  Определение моментов инерции относительно случайных центральных осей  хс, ус.

2014-09-11 22-37-33 Скриншот экрана

Справочные сведения о знаке собственного центробежного момента инерции уголка (равнобокого и неравнобокого):

2014-09-11 22-39-01 Скриншот экрана

Справочные сведения для определения собственного центробежного момента инерции неравнобокого уголка:  

2014-09-11 22-40-34 Скриншот экрана

Этап 3. Определение положения главных центральных осей

2014-09-11 22-41-31 Скриншот экрана

Положительный угол  α0 соответствует повороту против часовой стрелки главных осей относительно случайных (см.схему).

Этап 4. Определение величин главных центральных моментов инерции

2014-09-11 22-42-40 Скриншот экрана

Правило: Ось с максимальным главным моментом инерции «тяготеет» к более тяжелой случайной оси. Поэтому в нашем случае:

2014-09-11 22-44-28 Скриншот экрана

тогда 2014-09-11 22-45-35 Скриншот экрана

Проверки.

  1. Выполнение закона суммы осевых моментов инерции.

Для этого сравним

.2014-09-11 22-47-00 Скриншот экрана

получаем:

2014-09-11 22-48-25 Скриншот экрана

Разница в последней цифре дает незначительную погрешность <<5%, что вполне допустимо в инженерных расчетах.

2. Проверка правильности вычислений.

Суть ее в том, что если все сделано правильно, то центробежный момент инерции сечения относительно найденных нами главных осей должен равняться нулю.

2014-09-11 22-50-10 Скриншот экрана

Подставляя сюда  2014-09-11 22-51-18 Скриншот экрана  и sin13˚20’=0,2306,                                                    cos13˚20’=0,9730,имеем

2014-09-11 22-52-55 Скриншот экрана

погрешность составляет:

2014-09-11 22-53-57 Скриншот экрана

И эта проверка выполняется.

Зачем нужен момент инерции сечения

Несмотря на то, что наука о прочности давно уже шагнула вперёд, и давно уже развиваются многие её направления (строительная механика, механика разрушения, теория упругости и другие), а также несмотря на то, что всё чаще расчеты сложных конструкций выполняются при помощи метода конечного элемента посредством специализированных программных комплексов, прикидочные расчеты на основе методов сопромата не утратили своей актуальности. Ведь именно они, во-первых, позволяют дать оценку прочности конструкции «в полевых условиях» (без трудоёмкого построения конечно-элементной модели, без сложных математических выкладок), а во-вторых — позволяют это сделать достаточно быстро.

В основном, расчеты в сопротивлении материалов имеют целью проверить общую (а не местную) прочность балок. Поэтому расчетная схема принимается упрощенной, и многими конструктивными элементами, даже являющимися концентраторами напряжений, в ней пренебрегают. Тем не менее, несмотря на ряд упрощений в схеме и принятые допущения (гипотезы, принятые для построения теории сопротивления материалов), в этой науке разработаны методы, позволяющие с довольно большой точностью определить опасные сечения и напряжения, возникающие в них.

Вообще, поперечное сечение балки может представлять собой тавр, швеллер, двутавр, круг, прямоугольник, кольцо, полый прямоугольник и т.п. или может быть составным, т.е. составленным из нескольких однотипных или различных профилей. От его формы и размеров зависит прочность и жесткость балки. Площадь поперечного сечения является важной характеристикой, но знать только лишь её достаточно разве что для задач на центральное растяжение. Если же балка испытывает изгиб или кручение, то знать только лишь площадь поперечного сечения оказывается недостаточно. Балка может «проходить» (т.е. обладать достаточной прочностью и жесткостью) с одним типом сечения и «не проходить» с другим типом сечения такой же площади. В процессе решения задач по сопромату, касающихся определения напряжений в балке при её изгибе или кручении, проверке устойчивости сжатых стержней, а также при решении некоторых других задач требуется знать не только площадь, но и другие геометрические характеристики сечения (момент инерции площади сечения, момент сопротивления площади сечения, полярный момент инерции площади сечения). Во-первых, они требуются для решения конкретной задачи об определении напряжений в данной балке с заданными размерами поперечного сечения. Во-вторых, они нужны для выполнения сравнительного анализа разных типов сечений (например, выбора среди нескольких различных сечений с одинаковой площадью именно того сечения, которое будет лучше сопротивляться изгибу или кручению), для подбора оптимального сечения для балки, работающей в конкретно заданных условиях. Поскольку нахождение геометрических характеристик сечения требует определенных знаний и практических навыков, в любом учебнике или справочнике по сопромату выделен раздел, посвященный определению этих характеристик, а в любом задачнике по сопромату приведены задачи по нахождению момента инерции или момента сопротивления сечения.

Что такое момент инерции сечения

Обычно, когда речь идёт о геометрических характеристиках сечения, слово «площадь» опускают, чтобы не было нагромождения слов, и говорят не «момент инерции площади сечения», «момент сопротивления площади сечения», а просто «момент инерции сечения», «момент сопротивления сечения» или даже просто «момент инерции», «момент сопротивления». При этом различают осевой, полярный и центробежный момент инерции площади сечения.

Осевой момент инерции площади фигуры (сечения) — это интеграл произведений элементарных площадок данного сечения на квадраты их расстояний от рассматриваемой оси. Другое, менее распространенное его название – экваториальный момент инерции. Величина осевого момента инерции всегда положительна.

Полярный момент инерции площади фигуры (сечения) относительно данной точки (полюса) — это интеграл произведений элементарных площадок на квадраты их расстояний от полюса. Величина полярного момента инерции всегда положительна.

Центробежный момент инерции площади фигуры — это интеграл произведений элементарных площадок на их расстояния от координатных осей. В зависимости от положения осей центробежный момент инерции может быть положительным или отрицательным, а также равным нулю. При повороте осей вокруг начала координат на 90 градусов знак центробежного момента инерции меняется на обратный.

Задавая вопросы «в чем измеряется момент инерции», «какова единица измерения момента инерции», «как обозначается момент инерции» необходимо четко представлять, что именно имеется в виду: момент инерции сечения (о котором идёт речь в сопромате и, в частности, в настоящей статье) или же момент инерции тела (который упоминается в физике и в теории механизмов и машин). Размерность момента инерции сечения – это размерность длины в четвертой степени (например, см4, м4, мм4). Моменты инерции сечений стандартных профилей (швеллеров, уголков, тавров, двутавров) приведены в справочных таблицах в размерности «см4». При необходимости, данную в таблице величину можно представить в другой единице измерения. Обычно при решении задач возникает необходимость перевода этой величины в «мм4». Обозначается момент инерции сечения буквой I с нижним индексом, который указывает, относительно какой оси вычислена данная характеристика (например, Ix, Iy). Момент сопротивления сечения обозначается буквой W, также с нижним индексом, указывающим на ось, относительно которой дана эта величина (например, Wx, Wy). 

Что такое главные оси

Главные оси инерции оси, относительно которых центробежный момент инерции равен нулю.

Главные центральные оси — главные оси, проходящие через центр тяжести сечения.

Как найти момент инерции сечения

При вычислении момента инерции сечения можно воспользоваться непосредственно определением момента инерции и вычислить эту характеристику сечения путём нахождения интеграла по площади. Так и поступают при нахождении момента инерции треугольника, круга, прямоугольника, кругового сектора и других простых фигур.

Обозначив характерные размеры сечения через параметры (т.е. буквами) и выполнив соответствующее интегрирование по площади, получают формулы для определения моментов инерции этих сечений. Ход решения показан, например, в учебнике по сопромату Г.С. Писаренко на примере вывода формул для определения момента инерции прямоугольника, треугольника, кругового сектора и эллипса. Такие формулы приведены во многих справочниках по сопромату (например, в книге Писаренко Г.С., Яковлев А.П. Матвеев В.В. Справочник по сопротивлению материалов. – К: Наукова думка, 1975, на страницах 24 — 77) для многих типов сечений (квадрат, полый квадрат, прямоугольник, полый прямоугольник, прямоугольник с круглым отверстием, прямоугольник с двумя отверстиями, прямоугольник с полукруглыми вырезами, повернутый прямоугольник, крестовина, корытное сечение, треугольник, трапеция, круг, кольцо, круговое незамкнутое тонкостенное кольцо, полукруг, четверть круга, круговой сектор, круговой сегмент, полукольцо, сектор кольца, круг с лыской, правильный шестиугольник, правильный многоугольник, круговое сечение с одной или с двумя шпоночными канавками, эллипс, полуэллипс, четверть эллипса, полый эллипс, параболический сегмент, параболический полусегмент, круговой треугольник, сечение железнодорожного рельса). Готовыми формулами из справочника пользоваться намного проще, чем выводить каждый раз нужную формулу самостоятельно путём интегрирования.

В этом же справочнике приведены и формулы для приближенного вычисления геометрических характеристик (F, I, W) сечений стандартных прокатных профилей: уголков (равнобокого и неравнобокого), швеллера, тавра, двутавра, однако на практике этими формулами пользуются весьма редко, т.к. все необходимые характеристики стандартных сечений уже вычислены и приведены в соответствующих нормативных документах (см. ГОСТ 8240-97 для швеллеров, ГОСТ 8509-93 для равнополочных уголков, ГОСТ 8510-86 для неравнополочных уголков, ГОСТ 26020-83 и ГОСТ 8239-89 для двутавров). Выдержки из перечисленных выше стандартов приведены во многих справочниках, учебниках и решебниках по сопромату.

Скачать примеры решения задач, касающиеся того, как найти момент инерции и момент сопротивления, можно здесь (бесплатно, без регистрации):

При вычислении моментов инерции сложных сечений их разбивают на отдельные простые части, моменты инерции которых известны.

Момент инерции относительно любой оси равен моменту инерции относительно центральной оси, параллельной данной, плюс произведение площади фигуры на квадрат расстояния между осями.

Центробежный момент инерции относительно любой системы прямоугольных осей равен центробежному моменту инерции относительно системы центральных осей, параллельных данным, плюс произведение площади фигуры на координаты ее центра тяжести в новых осях.

При повороте прямоугольных осей сумма осевых моментов инерции не изменяется и равна полярному моменту инерции относительно начала координат.

Момент инерции фигуры относительно какой-либо оси можно представить в виде произведения площади фигуры на квадрат некоторой величины, называемой радиусом инерции.

Осевым моментом сопротивления называется отношение момента инерции относительно данной оси к расстоянию до наиболее удаленной точки поперечного сечения.

Размерность моментов сопротивления – единица длины в кубе (например, см3, м3, мм3).

Практическое значение имеют моменты сопротивления относительно главных центральных осей, которые обычно называются просто моментами сопротивления. Полярным моментом сопротивления называется отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения.

Источники:

  • Н.М. Беляев. Сопротивление материалов.
  •  Г.С. Писаренко, А.П. Яковлев, В.В. Матвеев. Справочник по сопротивлению материалов.
  • А.В. Александров, В.Д. Потапов, Б.П. Державин. Сопротивление материалов.
  • reshusam.ucoz.ru  Примеры определения моментов инерции сечений.

Дополнительно на Геноне:

  • Что такое сопромат

Добавить комментарий