Как найти положительный член последовательности

Прогрессия — это последовательность величин, каждая последующая из них находится в некоторой, общей для всей прогрессии, зависимости от предыдущей.

Содержание:

Числовая последовательность

В жизни мы часто встречаемся с функциями, областью определения которых является множество натуральных чисел. Например, стоимость проезда в пригородном транспорте зависит от дальности поездки и задается функцией Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Функция стоимости проезда задана таблично, областью определения функции является множество натуральных чисел Прогрессии в математике - с примерами решения В таком случае говорят, что рассматривается функция натурального аргумента, или числовая последовательность.

Примером числовой последовательности является последовательность положительных четных чисел: 2; 4; 6; 8; … . Число 2 — первый член последовательности, число 4 — второй и т. д. Ясно, что на 5-м месте будет число 10 (пятый член последовательности), а на 100-м — число 200 (сотый член последовательности).

Еще один пример — последовательность чисел, обратных натуральным числам: Прогрессии в математике - с примерами решения На Прогрессии в математике - с примерами решения месте запишется число Прогрессии в математике - с примерами решения которое является Прогрессии в математике - с примерами решения членом данной последовательности.

Последовательности могут быть конечными и бесконечными. Например, последовательность двузначных чисел 10; 11; …; 99 является конечной, так как содержит конечное число членов. А последовательность нечетных натуральных чисел — бесконечная.

Определение числовой последовательности

Определение:

Числовой последовательностью называется функция, определенная на множестве Прогрессии в математике - с примерами решения натуральных чисел, т. е. зависимость, при которой каждому натуральному числу ставится в соответствие единственное действительное число.

Числа, образующие последовательность (значения функции), называются членами последовательности. Они записываются буквами с индексами, обозначающими номер члена последовательности: Прогрессии в математике - с примерами решения — первый член последовательности, Прогрессии в математике - с примерами решения — второй член последовательности, Прогрессии в математике - с примерами решения член последовательности. Последовательность с Прогрессии в математике - с примерами решения членом Прогрессии в математике - с примерами решения обозначается Прогрессии в математике - с примерами решения Для обозначения последовательности можно использовать любую букву латинского алфавита. Например, последовательность Прогрессии в математике - с примерами решения имеет вид Прогрессии в математике - с примерами решения

Если Прогрессии в математике - с примерами решения — последовательность нечетных натуральных чисел Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Последовательности, так же как и функции, могут быть заданы различными способами.

Аналитический способ — это задание последовательности с помощью формулы ее Прогрессии в математике - с примерами решения члена. Например, последовательность четных натуральных чисел можно задать с помощью формулы Прогрессии в математике - с примерами решения а последовательность чисел, обратных натуральным числам, задается формулой Прогрессии в математике - с примерами решения

С помощью формулы Прогрессии в математике - с примерами решения члена можно найти любой член последовательности.

Например, пусть последовательность Прогрессии в математике - с примерами решения задана формулой Прогрессии в математике - с примерами решения тогда

Прогрессии в математике - с примерами решения

Чтобы найти некоторый член последовательности с помощью формулы Прогрессии в математике - с примерами решения члена, нужно вместо п подставить в формулу натуральное число, равное номеру искомого члена (индексу в его обозначении).

Для задания последовательностей часто используется рекуррентный способ (от лат. recurrentis — возвращающийся). Он заключается в вычислении следующих членов последовательности по предыдущим.

Например, условия Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения определяют бесконечную последовательность: Прогрессии в математике - с примерами решения т. е. Прогрессии в математике - с примерами решения

Пример №1

Найдите несколько членов последовательности Прогрессии в математике - с примерами решения где Прогрессии в математике - с примерами решения

Решение:

Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Запишем несколько членов этой последовательности в ряд: 1; 1; 2; 3; 5; … .

Полученную последовательность чисел называют последовательностью Фибоначчи по имени итальянского математика Леонардо Фибоначчи (1180—1240).

Формула n-го члена последовательности

Пример №2

Последовательность Прогрессии в математике - с примерами решения задана формулой Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения Найдите: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Решение:

Прогрессии в математике - с примерами решения

Пример №3

Последовательность задана формулой Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения Является ли членом этой последовательности число:

а) -2; б) -7?

Решение:

Для того чтобы определить, является ли число членом последовательности, нужно определить, имеет ли натуральные корни уравнение:

а) Прогрессии в математике - с примерами решения значит, число -2 не является членом последовательности;

б) Прогрессии в математике - с примерами решения значит, число -7 является членом последовательности с номером 5.

Пример №4

Для каких членов последовательности Прогрессии в математике - с примерами решения заданной формулой Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения выполняется неравенство Прогрессии в математике - с примерами решения?

Решение:

Подставим в неравенство Прогрессии в математике - с примерами решения выражение для Прогрессии в математике - с примерами решения члена, получим Прогрессии в математике - с примерами решения Решение полученного квадратного неравенства есть отрезок [-4; 1], выберем из этого отрезка только натуральные числа, получим Прогрессии в математике - с примерами решения. Значит, данное неравенство выполняется только для первого члена последовательности.

Рекуррентный способ задания последовательности

Пример №5

Запишите 5 первых членов последовательности Прогрессии в математике - с примерами решения, если Прогрессии в математике - с примерами решения

Решение:

Прогрессии в математике - с примерами решения

Пример №6

Запишите несколько первых членов последовательности Прогрессии в математике - с примерами решения, если Прогрессии в математике - с примерами решения

Задайте эту последовательность формулой Прогрессии в математике - с примерами решения члена.

Решение:

Прогрессии в математике - с примерами решения

Получим следующую последовательность: 8; -8; 8; -8; …. На нечетных местах этой последовательности стоят члены, равные числу 8, а на четных — числу -8, значит, формула Прогрессии в математике - с примерами решения члена имеет вид Прогрессии в математике - с примерами решения

Арифметическая прогрессия

Рассмотрим задачу. В горной местности температура воздуха летом при подъеме на каждые 100 м в среднем понижается на 0,7 °С. У подножия горы температура равна 26 °С. Найдите температуру воздуха на высоте 100 м; 200 м; 300 м.

Решение:

Температура воздуха на высоте 100 м равна 26 °С – 0,7 °С = 25,3 °С. На высоте 200 м температура будет равна 25,3 °С – 0,7 °С = 24,6 °С, а на высоте 300 м — 24,6 °С – 0,7 °С = 23,9 °С.

Ответ: 25,3 °С; 24,6 °С; 23,9 °С.

Решая задачу, мы получили последовательность 26; 25,3; 24,6; … . Каждый член этой последовательности равен предыдущему, сложенному с числом -0,7. Многие практические задачи приводят к последовательностям такого вида. Они называются арифметическими прогрессиями (от лат. progression — движение вперед).

Определение арифметической прогрессией

Определение:

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же для данной последовательности числом, т. е.

Прогрессии в математике - с примерами решения

Число Прогрессии в математике - с примерами решения называется разностью арифметической прогрессии.

Из равенства Прогрессии в математике - с примерами решения следует, что Прогрессии в математике - с примерами решения

Чтобы задать арифметическую прогрессию Прогрессии в математике - с примерами решения, достаточно задать ее первый член Прогрессии в математике - с примерами решения и разность Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Например, если Прогрессии в математике - с примерами решения то получится арифметическая прогрессия 3; 7; 11; 15; … .

Если Прогрессии в математике - с примерами решения то арифметическая прогрессия имеет вид 2; -1; -4; -7; -10; … .

Если Прогрессии в математике - с примерами решения то все члены арифметической прогрессии равны между собой: -7; -7; -7; -7; … .

Чтобы вычислить любой член арифметической прогрессии, не вычисляя все предыдущие члены, используют формулу Прогрессии в математике - с примерами решения члена арифметической прогрессии

Прогрессии в математике - с примерами решения

Выведем эту формулу. Если Прогрессии в математике - с примерами решения — арифметическая прогрессия с разностью Прогрессии в математике - с примерами решения то, используя определение, получим верные равенства:

Прогрессии в математике - с примерами решения

Сложим эти равенства:

Прогрессии в математике - с примерами решения

После упрощения получим:

Прогрессии в математике - с примерами решения

Так как число слагаемых Прогрессии в математике - с примерами решения равно Прогрессии в математике - с примерами решения, то равенство примет вид

Прогрессии в математике - с примерами решения

Получили формулуПрогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения члена арифметической прогрессии Прогрессии в математике - с примерами решения

Формула Прогрессии в математике - с примерами решения члена арифметической прогрессии Прогрессии в математике - с примерами решения позволяет вычислить любой член прогрессии, зная ее первый член Прогрессии в математике - с примерами решения, номер члена Прогрессии в математике - с примерами решения и разность прогрессии Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Пример №7

Последовательность Прогрессии в математике - с примерами решения — арифметическая прогрессия, Прогрессии в математике - с примерами решения Найдите 100-й член прогрессии.

Решение:

По формуле Прогрессии в математике - с примерами решения члена получим:

Прогрессии в математике - с примерами решения

Ответ: 249,5.

Пример №8

Последовательность Прогрессии в математике - с примерами решения — арифметическая прогрессия, Прогрессии в математике - с примерами решения Является ли членом этой прогрессии число: а) 168; б) 201?

Решение:

а) По условию Прогрессии в математике - с примерами решения Подставим эти значения в формулу Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения и получим уравнение Прогрессии в математике - с примерами решения Решив его, получим, что Прогрессии в математике - с примерами решения — корень уравнения. Так как 67 — натуральное число, то число 168 является членом этой прогрессии с номером 67.

б) Подставим значения Прогрессии в математике - с примерами решения в формулу Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения и получим уравнение Прогрессии в математике - с примерами решения Решим его: Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения Так как корень уравнения 80,2 — не натуральное число, то число 201 не является членом этой прогрессии.

Ответ: а) число 168 является членом этой прогрессии; б) число 201 не является членом этой прогрессии.

Характеристическое свойство арифметической прогрессии

В арифметической прогрессии каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего (соседних с ним)

членов, т. е. Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решенияпри Прогрессии в математике - с примерами решения

Доказательство. В арифметической прогрессии Прогрессии в математике - с примерами решения для члена Прогрессии в математике - с примерами решения запишем по формуле Прогрессии в математике - с примерами решения члена предыдущий и последующий члены, т. е. Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения:

Прогрессии в математике - с примерами решения

Найдем их среднее арифметическое:

Прогрессии в математике - с примерами решения

Справедливо и обратное утверждение:

если в последовательности каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего (соседних с ним) членов, то последовательность является арифметической прогрессией.

Доказательство:

Пусть в некоторой числовой последовательности Прогрессии в математике - с примерами решения каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов, т. е. Прогрессии в математике - с примерами решения. Тогда Прогрессии в математике - с примерами решения,

Прогрессии в математике - с примерами решения значит, разность каждого ее члена с предыдущим членом есть одно и то же число. Обозначим его Прогрессии в математике - с примерами решения получим Прогрессии в математике - с примерами решения при любом натуральном Прогрессии в математике - с примерами решения, следовательно, Прогрессии в математике - с примерами решения Значит, по определению последовательность Прогрессии в математике - с примерами решения — арифметическая прогрессия.

Оба утверждения можно объединить в одно, которое называется характеристическим свойством арифметической прогрессии:

числовая последовательность является арифметической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов: Прогрессии в математике - с примерами решения

Пример №9

Проверьте, является ли арифметической прогрессией последовательность, заданная формулой

Прогрессии в математике - с примерами решения

Решение:

Запишем для Прогрессии в математике - с примерами решения предыдущий и последующий члены последовательности:

Прогрессии в математике - с примерами решения

Найдем среднее арифметическое этих членов: Прогрессии в математике - с примерами решения

По характеристическому свойству арифметической прогрессии последовательность Прогрессии в математике - с примерами решения является арифметической прогрессией.

Решение арифметической прогрессии

Пример №10

Последовательность 2; 12; 22; … является арифметической прогрессией. Продолжите последовательность.

Решение:

Так как последовательность является арифметической прогрессией, то найдем ее разность Прогрессии в математике - с примерами решения Тогда каждый следующий член последовательности равен предыдущему, сложенному с числом 10: 2; 12; 22; 32; 42;….

Пример №11

Известны члены арифметической прогрессии: Прогрессии в математике - с примерами решения Найдите разность этой прогрессии.

Решение:

Найдем разность арифметической прогрессии:

Прогрессии в математике - с примерами решения

Формула n-го члена арифметической прогрессии

Пример №12

Последовательность Прогрессии в математике - с примерами решения — арифметическая прогрессия. Найдите двадцатый член прогрессии, если Прогрессии в математике - с примерами решения

Решение:

По формуле Прогрессии в математике - с примерами решения члена арифметической прогрессии Прогрессии в математике - с примерами решения получим: Прогрессии в математике - с примерами решения

Пример №13

Запишите формулу Прогрессии в математике - с примерами решения члена для арифметической прогрессии -15,5; -14,9; -14,3; … и найдите ее двадцатый член.

Решение:

По условию Прогрессии в математике - с примерами решения тогда Прогрессии в математике - с примерами решения Запишем формулу Прогрессии в математике - с примерами решения члена данной арифметической прогрессии, подставив в формулу Прогрессии в математике - с примерами решения значения для Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения:

Прогрессии в математике - с примерами решения

Подставим Прогрессии в математике - с примерами решения в формулу Прогрессии в математике - с примерами решения члена данной арифметической прогрессии и найдем ее двадцатый член: Прогрессии в математике - с примерами решения

Пример №14

В арифметической прогрессии Прогрессии в математике - с примерами решения известно, что Прогрессии в математике - с примерами решения Число 16 является членом этой прогрессии. Найдите его номер.

Решение:

Так как Прогрессии в математике - с примерами решения то Прогрессии в математике - с примерами решения По условию Прогрессии в математике - с примерами решения Воспользуемся формулой Прогрессии в математике - с примерами решения тогда

Прогрессии в математике - с примерами решения

Пример №15

В арифметической прогрессии Прогрессии в математике - с примерами решения Найдите разность прогрессии и ее первый член.

Решение:

По условию Прогрессии в математике - с примерами решения

Решим систему уравнений

Прогрессии в математике - с примерами решения

Вычтем из второго уравнения первое, получим Прогрессии в математике - с примерами решения откуда Прогрессии в математике - с примерами решения Подставим Прогрессии в математике - с примерами решения в первое уравнение системы, получим Прогрессии в математике - с примерами решения

Характеристическое свойство арифметической прогрессии

Пример №16

Найдите восьмой член арифметической прогрессии Прогрессии в математике - с примерами решения если Прогрессии в математике - с примерами решения

Решение:

По характеристическому свойству арифметической прогрессии Прогрессии в математике - с примерами решения т. е. Прогрессии в математике - с примерами решения

Пример №17

При каком значении Прогрессии в математике - с примерами решения последовательность Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения является арифметической прогрессией?

Решение:

По характеристическому свойству прогрессии последовательность является арифметической прогрессией, если каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов:

Прогрессии в математике - с примерами решения

Решим полученное уравнение:

Прогрессии в математике - с примерами решения

Формула суммы n первых членов арифметической прогрессии

Рассмотрим задачу. Двое друзей решили улучшить знание английского языка и каждый день учить на 3 новых слова больше, чем в предыдущий. Сколько слов выучит каждый из друзей за 10 дней, если они начнут с одного слова?

Для решения этой задачи нужно найти сумму десяти первых членов арифметической прогрессии Прогрессии в математике - с примерами решения у которой Прогрессии в математике - с примерами решения

Возникает вопрос: как найти эту сумму, не вычисляя всех десяти членов прогрессии?

В общем виде эта задача приводит к необходимости вывода формулы суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии: Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Для того чтобы вывести эту формулу, докажем свойство: суммы двух членов конечной арифметической прогрессии, равноудаленных от ее концов, равны между собой и равны сумме первого и последнего ее членов, т. е. Прогрессии в математике - с примерами решения

В общем виде: Прогрессии в математике - с примерами решения

Доказательство:

Преобразуем слагаемые в левой части равенства, воспользовавшись формулой Прогрессии в математике - с примерами решения члена: Прогрессии в математике - с примерами решения

Тогда получим:

Прогрессии в математике - с примерами решения

С помощью доказанного свойства найдем, например, сумму всех натуральных чисел от 1 до 50.

Натуральные числа от 1 до 50 составляют арифметическую прогрессию 1; 2; 3; …; 50. Первый член этой прогрессии равен 1, последний равен 50. Всего в этой прогрессии 50 членов.

Поскольку Прогрессии в математике - с примерами решения то и Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения (рис. 94), то искомая сумма равна Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Выведем формулу суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии.

Обозначим Прогрессии в математике - с примерами решения через Прогрессии в математике - с примерами решения и запишем эту сумму дважды: с первого члена до Прогрессии в математике - с примерами решения и с Прогрессии в математике - с примерами решения члена до первого:

Прогрессии в математике - с примерами решения

Сложим эти два равенства и получим:

Прогрессии в математике - с примерами решения

По свойству Прогрессии в математике - с примерами решения заменим каждую сумму в скобках на Прогрессии в математике - с примерами решения

Число всех таких пар сумм равно Прогрессии в математике - с примерами решения значит, удвоенная искомая сумма равна:

Прогрессии в математике - с примерами решения т. е. Прогрессии в математике - с примерами решенияформула суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии.

Идея такого доказательства принадлежит выдающемуся немецкому математику К. Гауссу (1777—1855).

Формулу суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии можно записать и в другом виде. Для этого по формуле Прогрессии в математике - с примерами решения члена арифметической прогрессии выразим Прогрессии в математике - с примерами решения через Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения и получим:

Прогрессии в математике - с примерами решения

Если известен первый член прогрессии и разность, то удобно использовать формулу Прогрессии в математике - с примерами решения

Применим эту формулу к задаче о количестве выученных иностранных слов и получим: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения Каждый из друзей выучил по 145 новых слов.

Прогрессии в математике - с примерами решения

Пример №18

Найдите сумму пятидесяти первых членов арифметической прогрессии 3; 7; 11; 15; … .

Решение:

В этой прогрессии первый член равен 3, а разность Прогрессии в математике - с примерами решения Применим формулу суммы

Прогрессии в математике - с примерами решения

для и получим:

Прогрессии в математике - с примерами решения

Ответ: 5050.

Пример №19

В арифметической прогрессии Прогрессии в математике - с примерами решения Найдите сумму 85 первых членов арифметической прогрессии.

Решение:

Применим формулу суммы Прогрессии в математике - с примерами решения и получим: Прогрессии в математике - с примерами решения

Ответ: 1785.

Пример №20

Найдите сумму шести первых членов арифметической прогрессии, если ее первый член равен -2, а разность прогрессии равна 0,4.

Решение:

Воспользуемся формулой

Прогрессии в математике - с примерами решения

так как Прогрессии в математике - с примерами решения то Прогрессии в математике - с примерами решения

Пример №21

Найдите сумму 4 + 7 + 10+ … + 100, если ее слагаемые — последовательные члены арифметической прогрессии.

Решение:

Последовательность 4, 7, 10, …, 100 является арифметической прогрессией, в которой Прогрессии в математике - с примерами решения По формуле Прогрессии в математике - с примерами решения члена арифметической прогрессии Прогрессии в математике - с примерами решения найдем количество членов этой прогрессии: Прогрессии в математике - с примерами решения

Воспользуемся формулой суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии Прогрессии в математике - с примерами решения п и найдем искомую сумму: Прогрессии в математике - с примерами решения

Пример №22

Найдите количество членов арифметической прогрессии, зная, что их сумма равна 430, первый член прогрессии равен -7, а разность прогрессии равна 3.

Решение:

Воспользуемся формулой суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии Прогрессии в математике - с примерами решения Так как Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения,то составим и решим уравнение:

Прогрессии в математике - с примерами решения

Так как Прогрессии в математике - с примерами решения — натуральное число, то Прогрессии в математике - с примерами решения

Пример №23

В арифметической прогрессии Прогрессии в математике - с примерами решения Найдите сумму членов этой прогрессии с четвертого по семнадцатый включительно.

Решение:

Найдем Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения Поскольку Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решениято составим систему уравнений

Прогрессии в математике - с примерами решения

Решим полученную систему способом сложения:

Прогрессии в математике - с примерами решения

Тогда Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Примем четвертый член данной прогрессии за первый член некоторой другой прогрессии, тогда семнадцатый член данной прогрессии станет четырнадцатым (17 – 4 + 1 = 14) членом новой прогрессии. Искомая сумма равна: Прогрессии в математике - с примерами решения

Пример №24

Найдите сумму всех четных натуральных чисел, не превосходящих 300, которые при делении на 13 дают в остатке 5.

Решение:

Первое число в последовательности всех четных натуральных чисел, не превосходящих 300, которые при делении на 13 дают в остатке 5, — это число 18. Каждое следующее число равно предыдущему, сложенному с числом 26. Последнее четное число, которое при делении на 13 дает в остатке 5, — это число 278. Поскольку рассматриваются только четные числа, то разность прогрессии равна 26. Найдем номер числа прогрессии, равного 278: Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения откуда Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Геометрическая прогрессия

Рассмотрим задачу. Вкладчик положил в банк 1000 р. на

депозит, по которому сумма вклада увеличивается ежегодно на 5 %. Какая сумма будет у него через 1 год, 2 года, 6 лет?

Решение:

Начальная сумма в 1000 р. через год увеличится на 5 % и составит 105 % от 1000 р. Найдем 105 % = 1,05 от 1000 р.: 1000 • 1,05 = 1050 (р.).

Через два года сумма вклада станет равной Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения (р.), через три года — Прогрессии в математике - с примерами решения (р.) и т. д. Получим числовую последовательность: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Через шесть лет сумма будет равна Прогрессии в математике - с примерами решения

Многие практические задачи приводят к последовательностям такого вида. Они называются геометрическими прогрессиями.

Определение геометрической прогрессии

Определение:

Геометрической прогрессией называется числовая последовательность, первый член которой отличен от нуля, а каждый следующий, начиная со второго, равен предыдущему, умноженному на одно и то же для данной последовательности число, не равное нулю, т. е.

Прогрессии в математике - с примерами решения

Число Прогрессии в математике - с примерами решения называется знаменателем геометрической прогрессии.

Из равенства Прогрессии в математике - с примерами решения следует, что Прогрессии в математике - с примерами решения

Чтобы задать геометрическую прогрессию Прогрессии в математике - с примерами решения достаточно задать ее первый член Прогрессии в математике - с примерами решения, и знаменатель Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Например, если Прогрессии в математике - с примерами решения то получится геометрическая прогрессия 3; 6; 12; 24; … .

Если Прогрессии в математике - с примерами решения то получится геометрическая прогрессия, знаки членов у которой чередуются, так как знаменатель прогрессии является отрицательным числом: 3; -6; 12; -24; … .

Если Прогрессии в математике - с примерами решения то геометрическая прогрессия имеет

вид Прогрессии в математике - с примерами решения

ЕслиПрогрессии в математике - с примерами решения то все члены геометрической прогрессии равны между собой: 3; 3; 3; 3; … .

Чтобы вычислить любой член геометрической прогрессии, не вычисляя все предыдущие члены, используют формулу Прогрессии в математике - с примерами решения члена геометрической прогрессии

Прогрессии в математике - с примерами решения

Выведем эту формулу. Если Прогрессии в математике - с примерами решения — геометрическая прогрессия и Прогрессии в математике - с примерами решения — ее знаменатель, то по определению верны равенства:

Прогрессии в математике - с примерами решения

Перемножим эти равенства между собой:

Прогрессии в математике - с примерами решения

Разделим обе части равенства на произведение Прогрессии в математике - с примерами решения и получим Прогрессии в математике - с примерами решения

Так как число множителей Прогрессии в математике - с примерами решения равно Прогрессии в математике - с примерами решения то равенство примет вид

Прогрессии в математике - с примерами решения

Получили формулу Прогрессии в математике - с примерами решениячлена геометрической прогрессии.

Формула Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения позволяет вычислить любой член прогрессии, зная ее первый член, номер члена и знаменатель прогрессии.

Прогрессии в математике - с примерами решения

Пример №25

Последовательность Прогрессии в математике - с примерами решения — геометрическая прогрессия, Прогрессии в математике - с примерами решения Найдите 8-й член прогрессии.

Решение:

По формулеПрогрессии в математике - с примерами решения члена получим:

Прогрессии в математике - с примерами решения

Ответ: 4374.

Пример №26

Последовательность Прогрессии в математике - с примерами решения — геометрическая прогрессия, Прогрессии в математике - с примерами решения Является ли число 320 членом этой прогрессии?

Решение:

По условию Прогрессии в математике - с примерами решения Подставим эти значения в формулу Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения и получим уравнение Прогрессии в математике - с примерами решения

Решим это уравнение: Прогрессии в математике - с примерами решения

Так как 8 — натуральное число, то число 320 является членом этой прогрессии с номером 8.

Ответ: число 320 является членом этой прогрессии.

  • Заказать решение задач по высшей математике

Характеристическое свойство геометрической прогрессии

В геометрической прогрессии модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего (соседних с ним) ее членов, т. е. Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

или Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения

Доказательство:

В геометрической прогрессии Прогрессии в математике - с примерами решения для члена Прогрессии в математике - с примерами решения запишем по формуле Прогрессии в математике - с примерами решения члена предыдущий и последующий (соседние) члены, т. е. Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения:

Прогрессии в математике - с примерами решения

Найдем среднее пропорциональное (среднее геометрическое) соседних с Прогрессии в математике - с примерами решениячленов геометрической прогрессии. Для этого перемножим равенства Прогрессии в математике - с примерами решения и получим:

Прогрессии в математике - с примерами решения

Выполним преобразования в правой части равенства:

Прогрессии в математике - с примерами решения

откуда получим, что

Прогрессии в математике - с примерами решения или Прогрессии в математике - с примерами решения

Справедливо и обратное утверждение:

  • если в последовательности чисел, отличных от нуля, модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего (соседних с ним) ее членов, то последовательность является геометрической прогрессией.

Доказательство:

Пусть в некоторой числовой последовательности Прогрессии в математике - с примерами решения модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего ее членов, т. е. Прогрессии в математике - с примерами решения.

Тогда Прогрессии в математике - с примерами решения значит, Прогрессии в математике - с примерами решения т. е. частное от деления каждого члена последовательности на предшествующий ему член есть одно и то же число, отличное от нуля. Обозначим его Прогрессии в математике - с примерами решения получим Прогрессии в математике - с примерами решения при любом натуральном Прогрессии в математике - с примерами решения следовательно, Прогрессии в математике - с примерами решения Значит, по определению последовательность Прогрессии в математике - с примерами решения — геометрическая прогрессия.

Оба утверждения можно объединить в одно, которое называется характеристическим свойством геометрической прогрессии:

  • числовая последовательность, все члены которой отличны от нуля, является геометрической прогрессией тогда и только тогда, когда модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего ее членов:

Прогрессии в математике - с примерами решения

Пример №27

Проверьте, является ли геометрической прогрессией последовательность, заданная формулой Прогрессии в математике - с примерами решения

Решение:

Запишем для Прогрессии в математике - с примерами решения предыдущий и последующий члены последовательности:

Прогрессии в математике - с примерами решения

Найдем среднее пропорциональное этих членов:

Прогрессии в математике - с примерами решения

По характеристическому свойству геометрической прогрессии последовательность Прогрессии в математике - с примерами решения является геометрической прогрессией.

Решение геометрической прогрессии

Пример №28

Последовательность 2; 10; 50; … является геометрической прогрессией. Продолжите последовательность.

Решение:

Так как последовательность является геометрической прогрессией, то найдем ее знаменатель Прогрессии в математике - с примерами решения Тогда каждый следующий член равен предыдущему, умноженному на число 5: 2; 10; 50; 250; 1250; 6250; ….

Пример №29

Известны члены геометрической прогрессии: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Найдите знаменатель этой прогрессии.

Решение:

Так как знаменатель геометрической прогрессии равен отношению любого ее члена к предыдущему, то Прогрессии в математике - с примерами решения

Формула n-го члена геометрической прогрессии:

Пример №30

Последовательность Прогрессии в математике - с примерами решения — геометрическая прогрессия. Найдите пятый член этой прогрессии, если Прогрессии в математике - с примерами решения

Решение:

По формуле Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения получим:

Прогрессии в математике - с примерами решения

Пример №31

Запишите формулу Прогрессии в математике - с примерами решения члена для геометрической прогрессии -216; 36; -6; … и найдите ее седьмой член.

Решение:

По условию Прогрессии в математике - с примерами решения тогда Прогрессии в математике - с примерами решения Запишем формулу Прогрессии в математике - с примерами решения члена данной геометрической прогрессии, подставив в формулу Прогрессии в математике - с примерами решениязначения для Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения

Подставим Прогрессии в математике - с примерами решения в формулу Прогрессии в математике - с примерами решения члена данной геометрической прогрессии и найдем ее седьмой член:

Прогрессии в математике - с примерами решения

Пример №32

Найдите номер члена геометрической прогрессии 0,1; 0,3; …, равного 218,7.

Решение:

Найдем знаменатель прогрессии:

Прогрессии в математике - с примерами решения

Известно, что Прогрессии в математике - с примерами решения По формуле Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения получим:

Прогрессии в математике - с примерами решения

Пример №33

Найдите знаменатель и первый член геометрической прогрессии Прогрессии в математике - с примерами решения если Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Решение:

По условию Прогрессии в математике - с примерами решения

Составим систему уравнений

Прогрессии в математике - с примерами решения

Разделим второе уравнение на первое и получим: Прогрессии в математике - с примерами решения

Подставим это значение Прогрессии в математике - с примерами решения в первое уравнение системы и получим Прогрессии в математике - с примерами решения

Характеристическое свойство геометрической прогрессии

Пример №34

Найдите сорок девятый член геометрической прогрессии, если сорок восьмой ее член равен 4, а пятидесятый ее член равен 9.

Решение:

Воспользуемся характеристическим свойством геометрической прогрессии Прогрессии в математике - с примерами решения и получим Прогрессии в математике - с примерами решения Тогда Прогрессии в математике - с примерами решения или Прогрессии в математике - с примерами решения

Пример №35

При каком значении Прогрессии в математике - с примерами решения последовательность Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения является геометрической прогрессией?

Решение:

По характеристическому свойству прогрессии последовательность является геометрической прогрессией, если каждый ее член, начиная со второго, равен среднему пропорциональному предыдущего и последующего членов:

Прогрессии в математике - с примерами решения

Решим полученное уравнение: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Формула суммы n первых членов геометрической прогрессии

Немало легенд связано с геометрической прогрессией.

Наиболее известная из них рассказывает об изобретателе шахмат.

По легенде, когда создатель шахмат показал свое изобретение правителю страны, тому так понравилась игра, что он дал изобретателю право самому выбрать награду. Мудрец попросил у правителя за первую клетку шахматной доски заплатить ему одно зерно пшеницы, за вторую — два, за третью — четыре и т. д., удваивая количество зерен на каждой следующей клетке (рис. 96).

Прогрессии в математике - с примерами решения

Правитель быстро согласился и приказал казначею выдать мудрецу нужное количество зерна. Однако когда казначей показал расчеты, то оказалось, что расплатиться невозможно, разве только осушить моря и океаны и засеять все пшеницей.

Число зерен, которое попросил мудрец, равно сумме членов геометрической прогрессии Прогрессии в математике - с примерами решения т. е. Прогрессии в математике - с примерами решения

Выведем формулу, по которой можно находить сумму Прогрессии в математике - с примерами решения первых членов геометрической прогрессии.

Обозначим сумму Прогрессии в математике - с примерами решения первых членов геометрической прогрессии Прогрессии в математике - с примерами решения через Прогрессии в математике - с примерами решения тогда:

Прогрессии в математике - с примерами решения

Умножим обе части этого равенства на знаменатель прогрессии Прогрессии в математике - с примерами решения и получим:

Прогрессии в математике - с примерами решения

Вычтем из второго равенства первое и получим:

Прогрессии в математике - с примерами решения

т. e. Прогрессии в математике - с примерами решения Выразим из этого равенства Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения и получим формулу суммы Прогрессии в математике - с примерами решения первых членов геометрической прогрессии Прогрессии в математике - с примерами решения

Если Прогрессии в математике - с примерами решения то все члены прогрессии равны первому члену, и сумму Прогрессии в математике - с примерами решения первых прогрессии членов такой геометрической прогрессии можно найти по формуле Прогрессии в математике - с примерами решения

Формула суммы n первых членов геометрической прогрессии:

Прогрессии в математике - с примерами решения

Вычислим по формуле суммы Прогрессии в математике - с примерами решения первых членов геометрической прогрессии число зерен, которое запросил в награду мудрец, т. е. сумму

Прогрессии в математике - с примерами решения

Первый член геометрической прогрессии Прогрессии в математике - с примерами решения знаменатель Прогрессии в математике - с примерами решения количество членов прогрессии равно 64.

Тогда Прогрессии в математике - с примерами решения

Такого количества пшеницы человечество не собрало за всю свою историю.

Пример №36

Найдите сумму десяти первых членов геометрической прогрессии Прогрессии в математике - с примерами решения в которой Прогрессии в математике - с примерами решения

Решение:

Применим формулу суммы Прогрессии в математике - с примерами решения для

Прогрессии в математике - с примерами решения получим Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Ответ: 511,5.

Пример №37

Найдите сумму двенадцати первых членов геометрической прогрессии 3; -6; 12; -24; … .

Решение:

Подставим в формулу Прогрессии в математике - с примерами решения значения Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Ответ. -4095.

Пример №38

Найдите сумму пяти первых членов геометрической прогрессии Прогрессии в математике - с примерами решения если

Прогрессии в математике - с примерами решения

Решение:

Найдем знаменатель и первый член геометрической прогрессии:

Прогрессии в математике - с примерами решения тогда Прогрессии в математике - с примерами решения

По формуле Прогрессии в математике - с примерами решения найдем

Прогрессии в математике - с примерами решения

Пример №39

Сумма членов геометрической прогрессии равна 605. Найдите количество членов прогрессии, если Прогрессии в математике - с примерами решения

Решение:

Подставим в формулу Прогрессии в математике - с примерами решения значения Прогрессии в математике - с примерами решения и найдем Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Пример №40

В геометрической прогрессии Прогрессии в математике - с примерами решения известно, что Прогрессии в математике - с примерами решения Найдите Прогрессии в математике - с примерами решения

Решение:

Найдем знаменатель прогрессии:

Прогрессии в математике - с примерами решения

Подставим в формулу Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения и найдем первый член прогрессии:

Прогрессии в математике - с примерами решения

По формуле Прогрессии в математике - с примерами решения найдем сумму трех первых членов геометрической прогрессии: Прогрессии в математике - с примерами решения

Пример №41

В геометрической прогрессии Прогрессии в математике - с примерами решения известно, что Прогрессии в математике - с примерами решения Найдите сумму п первых членов этой прогрессии.

Решение:

Зная, что третий член геометрической прогрессии равен 16, а ее знаменатель равен 2, по формуле Прогрессии в математике - с примерами решения найдем первый член прогрессии: Прогрессии в математике - с примерами решения Воспользуемся формулой Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения и найдем Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

По формуле суммы Прогрессии в математике - с примерами решения первых членов геометрической прогрессии найдем Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Сумма бесконечно убывающей геометрической прогрессии

Любую обыкновенную дробь можно записать в виде десятичной дроби — конечной или бесконечной периодической дроби. Например, Прогрессии в математике - с примерами решения — конечная десятичная дробь. Бесконечная периодическая десятичная дробь получается в случае, когда деление «не заканчивается», например Прогрессии в математике - с примерами решения

Вы рассматривали правило записи конечной десятичной дроби в виде обыкновенной дроби (например, Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения ит. п.).

Выясним, как бесконечную периодическую десятичную дробь записать в виде обыкновенной дроби.

Рассмотрим, например, бесконечную периодическую десятичную дробь 0,(7) = 0,7777… . Определим, какой обыкновенной дроби равно это число.

Запишем дробь 0,(7) в виде суммы разрядных слагаемых:

Прогрессии в математике - с примерами решения

В данном случае необходимо найти сумму бесконечного числа слагаемых.

Слагаемые этой суммы являются членами бесконечной

геометрической прогрессии со знаменателем Прогрессии в математике - с примерами решения Такие геометрические прогрессии называются бесконечно убывающими геометрическими прогрессиями.

Определение. Бесконечно убывающей геометрической прогрессией называется такая бесконечная геометрическая прогрессия, у которой знаменатель Прогрессии в математике - с примерами решения

Например, геометрическая прогрессия Прогрессии в математике - с примерами решения является бесконечно убывающей геометрической прогрессий, так как Прогрессии в математике - с примерами решения

Геометрическая прогрессия Прогрессии в математике - с примерами решения также является бесконечно убывающей геометрической прогрессией, поскольку Прогрессии в математике - с примерами решения

Для того чтобы представить бесконечную периодическую десятичную дробь в виде обыкновенной, нужно найти сумму бесконечно убывающей геометрической прогрессии. Ее обозначают буквой Прогрессии в математике - с примерами решения и находят по формуле

Прогрессии в математике - с примерами решения

Покажем идею вывода формулы суммы бесконечно убывающей геометрической прогрессии.

Рассмотрим бесконечную геометрическую прогрессию Прогрессии в математике - с примерами решения у которой Прогрессии в математике - с примерами решения Сумма Прогрессии в математике - с примерами решения первых членов данной прогрессии Прогрессии в математике - с примерами решения вычисляется по формуле Прогрессии в математике - с примерами решения Запишем эту формулу в виде

Прогрессии в математике - с примерами решения

Представим, что п неограниченно возрастает (говорят, что стремится к бесконечности, и записывают Прогрессии в математике - с примерами решения). Поскольку Прогрессии в математике - с примерами решения то при неограниченном увеличении числа Прогрессии в математике - с примерами решения степень Прогрессии в математике - с примерами решения стремится к нулю, а значение разности Прогрессии в математике - с примерами решения стремится к единице. Значит, при неограниченном увеличении числа Прогрессии в математике - с примерами решения сумма Прогрессии в математике - с примерами решения стремится к числу Прогрессии в математике - с примерами решения что можно записать в виде Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения

Число Прогрессии в математике - с примерами решения называют суммой бесконечно убывающей геометрической прогрессии Прогрессии в математике - с примерами решения у которой Прогрессии в математике - с примерами решения Таким образом,

Прогрессии в математике - с примерами решения

Обозначим сумму бесконечно убывающей геометрической прогрессии буквой Прогрессии в математике - с примерами решенияи получим формулу: Прогрессии в математике - с примерами решения

Вычислим по этой формуле сумму разрядных слагаемых:

Прогрессии в математике - с примерами решения

Слагаемые этой суммы образуют бесконечно убывающую геометрическую прогрессию Прогрессии в математике - с примерами решения первый член которой равен Прогрессии в математике - с примерами решения

а знаменатель равен Прогрессии в математике - с примерами решения

Сумма бесконечно убывающей геометрической прогрессии:

Прогрессии в математике - с примерами решения

Так как Прогрессии в математике - с примерами решения то можем найти сумму этой бесконечной прогрессии. Подставим Прогрессии в математике - с примерами решения в формулу Прогрессии в математике - с примерами решения и получим: Прогрессии в математике - с примерами решения

Значит, Прогрессии в математике - с примерами решения

Таким образом, бесконечную периодическую десятичную дробь 0,(7) можно записать в виде обыкновенной дроби Прогрессии в математике - с примерами решения, т. е. Прогрессии в математике - с примерами решения

Таким же способом можно любую бесконечную периодическую десятичную дробь представить в виде обыкновенной дроби.

Чтобы записать бесконечную периодическую десятичную дробь в виде обыкновенной дроби, нужно:

  1. Представить число в виде суммы разрядных слагаемых.
  2. Выделить сумму бесконечно убывающей геометрической прогрессии.
  3. Указать первый член Прогрессии в математике - с примерами решения, и найти знаменатель этой прогрессии Прогрессии в математике - с примерами решения
  4. Найти сумму бесконечно убывающей геометрической прогрессии по формулеПрогрессии в математике - с примерами решения
  5. Вычислить сумму первых слагаемых и найденного значения суммы бесконечно убывающей геометрической прогрессии.

Запишите в виде обыкновенной дроби число Прогрессии в математике - с примерами решения

(1) Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

(2) Прогрессии в математике - с примерами решения

(3) Прогрессии в математике - с примерами решения

(4) Прогрессии в математике - с примерами решения

(5) Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Бесконечно убывающая геометрическая прогрессия

Пример №42

В бесконечной геометрической прогрессии Прогрессии в математике - с примерами решения Является ли эта прогрессия бесконечно убывающей геометрической прогрессией?

Решение:

Найдем знаменатель прогрессии: Прогрессии в математике - с примерами решения Так как Прогрессии в математике - с примерами решения то данная прогрессия является бесконечно убывающей геометрической прогрессией.

Пример №43

Является ли бесконечно убывающей геометрическая прогрессия:

а) Прогрессии в математике - с примерами решения

б) Прогрессии в математике - с примерами решения

в) Прогрессии в математике - с примерами решения

Решение:

а) Каждый член этой геометрической прогрессии, начиная со второго, равен предыдущему, умноженному на число Прогрессии в математике - с примерами решения Так как Прогрессии в математике - с примерами решения то прогрессия является бесконечно убывающей геометрической прогрессией.

б) ПосколькуПрогрессии в математике - с примерами решения, то прогрессия является бесконечно убывающей геометрической прогрессией.

в) Знаменатель прогрессии Прогрессии в математике - с примерами решения Так-как Прогрессии в математике - с примерами решения то прогрессия не является бесконечно убывающей геометрической прогрессией.

Пример №44

Найдите сумму бесконечно убывающей геометрической прогрессии, в которой Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения

Решение:

По формуле Прогрессии в математике - с примерами решения получим: Прогрессии в математике - с примерами решения

Пример №45

В бесконечно убывающей геометрической прогрессии Прогрессии в математике - с примерами решения Найдите первый член этой прогрессии.

Решение:

В формулу суммы бесконечно убывающей геометрической прогрессии Прогрессии в математике - с примерами решенияподставим Прогрессии в математике - с примерами решения и получим Прогрессии в математике - с примерами решения Решим полученное уравнение:

Прогрессии в математике - с примерами решения

Пример №46

Запишите бесконечную периодическую десятичную дробь 15,2(3) в виде обыкновенной дроби.

Решение:

(1) Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

(2) Прогрессии в математике - с примерами решения

(3) Прогрессии в математике - с примерами решения

(4) Прогрессии в математике - с примерами решения

(5) Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

  • Единичная окружность – в тригонометрии
  • Определение синуса и косинуса произвольного угла
  • Определение тангенса и котангенса произвольного угла
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
  • Наибольшее и наименьшее значения функции
  • Раскрытие неопределенностей
  • Дробно-рациональные уравнения
  • Дробно-рациональные неравенства

Числовой последовательностью называют ряд чисел, полученных по некоторому правилу или формуле.

Например, правило «все положительные четные числа по возрастанию начиная с двойки» задает последовательность: (2; 4; 6; 8; 10…) А правило «первое число равно (3), а каждое следующее число в два раза больше предыдущего» формирует последовательность: (3; 6; 12; 24; 48….)

Ниже разобраны несколько разных способов задания числовых последовательностей.

Числа, образующие последовательность, называются ее членами
(или элементами). И каждое из этих чисел имеет свой порядковый номер.

Например, в последовательности (3; 6; 12; 24; 48…) тройка является первым членом (порядковый номер – один), шестерка – вторым (ее номер по порядку равен двум), двенадцать – третьим и т.д.

В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.

То есть, если последовательность (3; 6; 12; 24; 48…) обозначить как (a_n), то можно записать, что (a_1=3), (a_2=6), (a_3=12), (a_4=24) и так далее.

Иными словами, для последовательности (a_n={ 3;: 6; :12; : 24; : 48; : 96; : 192; : 384…}).

порядковый номер элемента

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

обозначение элемента

(a_1)

(a_2)

(a_3)

(a_4)

(a_5)

(a_6)

(a_7)

(a_8)

значение элемента

(3)

(6)

(12)

(24)

(48)

(96)

(192)

(384)

Отметим, что членами последовательности необязательно должны быть различные числа. Она может состоять из одних и тех же чисел, например, выглядеть вот так: (1; : 1; : 1; : 1…) .

Способы задания числовых последовательностей

Все способы формирования числовых последовательностей можно разделить на три большие группы:

– I способ: словесный. Здесь все просто – в буквальном смысле словами описывается каким образом можно вычислить элементы искомой последовательности.

Пример: Напишите первые пять членов последовательности квадратов натуральных чисел.

Решение: Натуральными называют числа, возникающие естественным образом при счете количества предметов, то есть: (1; : 2; : 3; : 4; : 5) и т.д. Нашу же последовательность формируют квадраты этих чисел, то есть (1^2;: 2^2; : 3^2; : 4^2; : 5^2…) . Таким образом, имеем ответ: (1; : 4; : 9; : 16; : 25…)

Ответ: (1; : 4; : 9; : 16; : 25…)

Отметим, что последовательности в начале статьи заданы именно словесным способом.

– II способ: аналитический (формулой энного члена). Тут значение каждого элемента последовательности вычисляется по некоторой формуле, в которую подставляется порядковый номер этого элемента.

Пример: Последовательность задана формулой: (b_n=frac{n-1}{n^2}). Вычислите первые пять членов этой последовательности.

Решение: Вычислим (b_1). Это первый член последовательности, то есть его порядковый номер (n) равен единице. Тогда его значение равно (b_1=frac{1-1}{1^2} =frac{0}{1}=0).
У второго члена (n=2), то есть его значение равно (b_2=frac{2-1}{2^2} =frac{1}{4}).
Третий ((n=3)):    (b_3=frac{3-1}{3^2} =frac{2}{9}).
Четвертый ((n=4)):     (b_4=frac{4-1}{4^2} =frac{3}{16}).
Пятый ((n=5)):     (b_5=frac{5-1}{5^2} =frac{4}{25}) .
Готово. Можно писать ответ.

Ответ: (b_n= {0; : frac{1}{4}; : frac{2}{9}; : frac{3}{16}; : frac{4}{25}…}).

Обратите внимание, что при таком задании последовательности, значение каждого элемента зависит только от его порядкового номера. И поэтому, если нам нужно вычислить, например, пятнадцатый элемент, мы можем это сделать сразу, не вычисляя предыдущие четырнадцать.

Пример: Последовательность задана формулой: (a_n=8+5n-n^2). Вычислите (a_9).

Решение: Нужно вычислить значение девятого элемента, то есть порядковый номер (n=9). Подставляем в формулу: (a_9=8+5·9-9^2=8+45-81=-28).

Ответ: (a_9=-28).

III способ: рекуррентное соотношение. Звучит страшно, но суть проста – здесь дается начало последовательности (один или несколько первых элементов) и правило, по которому из предыдущего (или нескольких предыдущих) членов последовательности можно вычислить следующий.

Пример: Последовательность задана условиями: (c_1=4), (c_{n+1}=c_n+3). Вычислите первые пять членов этой последовательности.

Решение: Первый член нам известен: (c_1=4).
Второй мы получим, подставив в формулу вместо (n) единицу: (c_{1+1}=c_1+3)
                                                                                                                     (c_2=c_1+3=4+3=7)
Третий ((n=2)):   (c_{2+1}=c_2+3 )
                                 (c_3=c_2+3=7+3=10).

Четвертый ((n=3)):     (c_{3+1}=c_3+3)
                                         (c_4=c_3+3=10+3=13).

Пятый ((n=4)):   (c_{4+1}=c_4+3)
                              (c_5=c_4+3=13+3=16).

Нужные пять элементов вычислены. Теперь можно записывать ответ.

Ответ: (c_n={4; : 7; : 10; : 13; : 16…}).

В этом примере мы по сути получали следующий элемент из предыдущего путем прибавления к предыдущему тройки. Логично, ведь формула (c_{n+1}=c_n+3) требовала именно этого. В ней (c_n) – это предыдущий элемент, а (c_{n+1}) – следующий за ним (ведь его номер на единицу больше).

На практике могут встречаться более сложные формулы, в которых следующий элемент вычисляется из двух, трех или даже большего количества предыдущих.

Пример: У последовательности известны первые два элемента (z_1=2;)   (z_2=5). Так же известна формула следующего элемента (z_{n+2}=3z_{n+1}-z_n). Вычислите значения третьего, четвертого и пятого членов.

Решение: Слева будем писать текущую последовательность, а справа вести вычисления очередного элемента.

Последовательность на данный момент:

Вычисления:

(z_1) (z_2) (z_3) (z_4) (z_5) (…)
(2) (5) ? ? ? (…)

Так как формула дана для элемента с номером (n+2), то чтобы найти (z_3) нужно подставлять вместо (n) единицу:
(z_{1+2}=3z_{1+1}-z_1)
(z_3=3z_2-z_1=3·5-2=13)

(z_1) (z_2) (z_3) (z_4) (z_5) (…)
(2) (5) (13) ? ? (…)

Теперь найдем (z_4), подставив вместо (n) двойку:
(z_{2+2}=3z_{2+1}-z_2)
(z_4=3z_3-z_2=3·13-5=34)
(z_1) (z_2) (z_3) (z_4) (z_5) (…)
(2) (5) (13) (34) ? (…)
Наконец вычисляем (z_5), подставляя вместо (n) тройку:
(z_{3+2}=3z_{3+1}-z_3)
(z_5=3z_4-z_3=3·34-13=89)
(z_1) (z_2) (z_3) (z_4) (z_5) (…)
(2) (5) (13) (34) (89) (…)
Готово. Можно писать ответ.

Ответ: (c_3=13); (c_4=34); (c_5=89).

Важное отличие рекуррентного способа задания последовательности от аналитического – при рекуррентном мы не можем посчитать следующий элемент, не зная предыдущих. То есть, если нам нужно вычислить, например, пятнадцатый элемент, придется сначала вычислить все, что идут до него.

Как определить является ли число элементом последовательности?

Во всех предыдущих примерах мы находили значения элементов последовательности – чему равен третий, пятый или девятый член. Иначе говоря, выясняли какое именно число стоит в последовательности на таком-то месте.

Но в практике встречается также обратная задача – значение известно и надо выяснить, есть ли оно среди элементов некоторой последовательности? А если есть, то на каком месте?

Пример (ОГЭ): Какое из чисел ниже есть среди членов последовательности (a_n=n^2-n):

а) (1)               б) (3)               в) (6)              г) (10) ?

Решение: Из условия задачи понятно, что одно из этих чисел точно является элементом последовательности. Поэтому мы можем просто вычислять элементы по очереди, пока не найдем нужный:

(a_1=1^2-1=0) – мимо.

(a_2=2^2-2=2) – тоже не то.

(a_3=3^2-3=6) – есть!

Нужный элемент найден.

Ответ: (6).

Такой метод решения годится только если заранее известно, что элемент точно в последовательности есть. Потому что если его вдруг там нет – это можно проверять вечность, последовательность ведь бесконечна!

Поэтому в такой ситуации пользуются следующим алгоритмом:

  1. Подставляют заданное число в формулу (n) -го члена вместо (a_n); 

  2. Решая полученное уравнение, находят неизвестное (n); 

  3. Если (n) – натуральное, то данное число – член последовательности.

Пример: Выяснить, является ли число (3) членом последовательности (a_n=)(frac{51+2n}{n+4}) ?

Решение:

(a_n=)(frac{51+2n}{n+4})

Если число (3) – член последовательности, то значит при некотором значении (n), формула (frac{51+2n}{n+4}) должна дать нам тройку. Найдем это (n) по алгоритму выше.
Подставляем тройку вместо (a_n).

(3=)(frac{51+2n}{n+4})

Решаем это уравнение. Умножаем левую и правую части на знаменатель ((n+4)).

(3cdot (n+4)=51+2n)

Получилось линейное уравнение
Раскрываем скобки слева.

(3n+12=51+2n)

Собираем неизвестные слева, числа справа…

(3n-2n=51-12)

…и приводим подобные слагаемые.

(n=39)

Готово. Найденное значение – это то число, которое надо подставить вместо (n) в формулу (frac{51+2n}{n+4}), чтоб получилось тройка (можете проверить это сами). Значит (39)-ый член последовательности равен трем.

Ответ: Да, число (3) является элементом данной последовательности.

Смотри также:
Арифметическая прогрессия
Геометрическая прогрессия


Download Article


Download Article

An arithmetic sequence is any list of numbers that differ, from one to the next, by a constant amount. For example, the list of even numbers, 0,2,4,6,8… is an arithmetic sequence, because the difference from one number in the list to the next is always 2.[1]
If you know you are working with an arithmetic sequence, you may be asked to find the very next term from a given list. You may also be asked to fill in a gap where a term is missing. Finally, you might want to know, for example, the 100th term, without actually writing out all 100 terms. A few simple steps can help you do any of these.

  1. Image titled Find Any Term of an Arithmetic Sequence Step 1

    1

    Find the common difference for the sequence. When you are presented with a list of numbers, you may be told that the list is an arithmetic sequence, or you may need to figure that out for yourself. The first step is the same in either case. Select the first two consecutive terms in the list. Subtract the first term from the second term. The result is the common difference of your sequence.[2]

  2. Image titled Find Any Term of an Arithmetic Sequence Step 2

    2

    Check that the common difference is consistent. Finding the common difference for just the first two terms does not ensure that your list is an arithmetic sequence. You need to make sure that the difference is consistent for the whole list.[3]
    Check the difference by subtracting two different consecutive terms in the list. If the result is consistent for one or two other pairs of terms, then you probably have an arithmetic sequence.

    Advertisement

  3. Image titled Find Any Term of an Arithmetic Sequence Step 3

    3

    Add the common difference to the last given term. Finding the next term of an arithmetic sequence after you know the common difference is easy. Simply add the common difference to the last term of the list, and you will get the next number.[4]

  4. Advertisement

  1. Image titled Find Any Term of an Arithmetic Sequence Step 4

    1

    Verify that you are starting with an arithmetic sequence. In some cases, you may have a list of numbers with a missing term in the middle. Begin, as before, by checking that your list is an arithmetic sequence. Select any two consecutive terms and find the difference between them. Then check this against two other consecutive terms in the list. If the differences are the same, you can presume that you are working with an arithmetic sequence and proceed.

  2. Image titled Find Any Term of an Arithmetic Sequence Step 5

    2

    Add the common difference to the term before the space. This is similar to adding a term to the end of a sequence. Find the term that immediately precedes the space in your sequence. This is the “last” number that you know. Add your common difference to this term, to find the number that should fill in the space.[5]

  3. Image titled Find Any Term of an Arithmetic Sequence Step 6

    3

    Subtract the common difference from the term following the space. To be sure that you have the correct answer, check from the other direction. An arithmetic sequence should be consistent going in either direction. If you move from left to right and add 4, then going in the opposite direction, from right to left, you would do the opposite and subtract 4.[6]

  4. Image titled Find Any Term of an Arithmetic Sequence Step 7

    4

    Compare your results. The two results that you get, from adding up from the bottom or from subtracting down from the top should match. If they do, then you have found the value for the missing term. If they do not, then you need to check your work. You may not have a true arithmetic sequence.

  5. Advertisement

  1. Image titled Find Any Term of an Arithmetic Sequence Step 8

    1

    Identify the first term of the sequence. Not every sequence begins with the numbers 0 or 1. Look at the list of numbers that you have and find the first term. This is your starting point, which can be designated using variables as a(1).

  2. Image titled Find Any Term of an Arithmetic Sequence Step 9

    2

    Define your common difference as d. Find the common difference for the sequence as before. In this working example, the common difference is 8-3, which is 5. Checking with other terms in the sequence provides the same result. We will note this common difference with the algebraic variable d.[7]

  3. Image titled Find Any Term of an Arithmetic Sequence Step 10

    3

    Use the explicit formula. An explicit formula is an algebraic equation that you can use to find any term of an arithmetic sequence, without having to write out the full list. The explicit formula for an algebraic sequence is a(n)=a(1)+(n-1)d.[8]

    • The term a(n) can be read as “the nth term of a,” where n represents which number in the list you want to find and a(n) is the actual value of that number. For example, if you are asked to find the 100th item in an arithmetic sequence, then n will be 100. Note that n is 100, in this example, but a(n) will be the value of the 100th term, not the number 100 itself.
  4. Image titled Find Any Term of an Arithmetic Sequence Step 11

    4

    Fill in your information to solve the problem. Using the explicit formula for your sequence, fill in the information that you know to find the term that you need.[9]

  5. Advertisement

  1. Image titled Find Any Term of an Arithmetic Sequence Step 12

    1

    Rearrange the explicit formula to solve for other variables. Using the explicit formula[10]
    and some basic algebra, you can find several pieces of information about an arithmetic sequence. In its original form, a(n)=a(1)+(n-1)d, the explicit formula is designed to solve for an and give you the nth term of a sequence. However, you can algebraically manipulate this formula and solve for any of the variables.

  2. Image titled Find Any Term of an Arithmetic Sequence Step 13

    2

    Find the first term of a sequence. You may know that the 50th term of an arithmetic sequence is 300, and you know that the terms have been increasing by 7 (the “common difference”), but you want to find out what the first term of the sequence was. Use the revised explicit formula that solves for a1 to find your answer.[11]

    • Use the equation a(1)=(n-1)d-a(n), and fill in the information that you know. Since you know that the 50th term is 300, then n=50, n-1=49 and a(n)=300. You also are given that the common difference, d, is 7. Therefore, the formula becomes a(1)=(49)(7)-300. This works out to 343-300=43. The sequence that you have began at 43, and counted up by 7. Therefore, it looks like 43,50,57,64,71,78…293,300.
  3. Image titled Find Any Term of an Arithmetic Sequence Step 14

    3

    Find the length of a sequence. Suppose you know all about the start and end of an arithmetic sequence, but you need to find out how long it is. Use the revised formula n={frac  {a(n)-a(1)}{d}}+1.[12]

    • Suppose you know that a given arithmetic sequence begins at 100 and increases by 13. You are also told that the final term is 2,856. To find the length of the sequence, use the terms a1=100, d=13, and a(n)=2856. Insert these terms into the formula to give n={frac  {2856-100}{13}}+1. If you work this out, you get n={frac  {2756}{13}}+1, which equals 212+1, which is 213. There are 213 terms in that sequence.
    • This sample sequence would look like 100, 113, 126, 139… 2843, 2856.
  4. Advertisement

Add New Question

  • Question

    Given only the 10th and 15th term, how do I find the first three terms?

    Donagan

    Subtract the 10th term from the 15th term and divide by 5: that gives you D, the difference between any two consecutive terms. Multiply D by 9, and subtract that amount from the 10th term; that gives you the first term.

  • Question

    What is the formula for the sequence 8,16,32,64,___?

    Donagan

    This is not an arithmetic sequence. Look up geometric sequences for whatever formula you’re interested in.

  • Question

    How do I calculate the 5 terms of an arithmetic sequence if the first term is 8 and the last term is 100?

    Donagan

    Subtract 8 from 100 = 92. Divide 92 by 4 (because with five terms there will be four intervals between the first and last term). That gives you 23, the size of each interval. So the sequence begins with 8 and has a common difference of 23.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • There are different kinds of sequences of numbers. Do not assume that a list of numbers is an arithmetic sequence. Always check at least two pairs of terms, or preferably three or four, to find the common difference between terms.

Advertisement

Video

  • Remember that d can be either positive or negative, depending if it is being added or subtracted.

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

To find a term in an arithmetic sequence, determine the common difference by subtracting the first number from the second number. Then, confirm that the difference is consistent between each number in the sequence by repeating the above equation with the second and third numbers, the third and fourth numbers, and so on. Once you’ve confirmed the common difference, all you have to do to find the missing number is add the common difference to preceding term in the sequence. If you want to learn how to find a term later on in a sequence of numbers, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 339,698 times.

Did this article help you?

Числовая последовательность

Определение 1. Числовой последовательностью называется функция, аргументом которой является множество всех натуральных чисел, или множество первых n натуральных чисел.

Обозначается числовая последовательность так:

или

где i-ый член последовательности.

Последовательности можно задавать тремя способами: словестно, аналитически и рекуррентно.

При словестном задании последовательности, описывается из каких элементов она состоит.

Последовательность нечетных чисел:

Последовательность простых чисел :

и т.д.

Последовательности (1) и (2) мы задали словестно.

Последовательность называется заданной аналитически, если указана формула ее n-го члена.

Последовательность нечетных чисел аналитически задается формулой

Действительно. Взяв для n значения 1, 2, 3, … мы получим последовательность (1).

Отметим, что последовательность простых чисел невозможно задать аналитически.

Последовательность задана рекуррентно, если указан метод вычисления n – го члена, при известных предыдущих членах последовательности.

Пример задания рекуррентной последовательности:

В этой последовательности

Определение 2. Числовая последовательность, в котором все члены равны называется стационарным.

Пример стационарной последовательности:

Возрастающие и убывающие последовательности

Определение 3. Последовательность, в которой каждый последующий член (кроме первого) больше предыдующего, называется возрастающей:

Определение 4. Последовательность, в которой каждый последующий член (кроме первого) меньше предыдующего, называется убывающей:

Возрастающие и убывающие последовательности называются также монотонными последовательностями.

Пример 1. Выяснить, монотонна ли последовательность

Решение. Запишем n+1 член последовательности (подставим вместо n, n+1):

Найдем разность членов и :

или

Так как n=1,2,3,… то правая часть уравнения (3) положительна. Тогда:

или

Таким образом, каждый последующий член последовательности больше предыдующего. Следовательно последовательность является возрастающим (и монотонным).

Пример 2. Выяснить, при каких значениях a последовательность (bn) является возрастающей и при каких, убывающей:

Решение. Запишем n+1 член последовательности (вместо n подставим n+1):

Найдем разность членов и :

или

Посмотрим на правую часть выражения (4). Если a<10, то . Тогда последовательность является возрастающей. Если a>10, то . Тогда последовательность является убывающей. При a=10 . Последовательность имеет одинаковые члены:

т.е. имеем дело с последовательностью

Очевидно, что последовательность (5) не является монотонной. Она является стационарной последовательностью.

Ограниченные и неограниченные последовательности

Определение 5. Последовательность (yn) называется ограниченной сверху, если существует такое число k, что yn<k при любом n.

Определение 6. Последовательность (yn) называется ограниченной снизу, если существует такое число k, что yn>k при любом n.

Определение 7. Последовательность (yn) называется ограниченной, если она ограничена и сверху, и снизу.

Пример 3. Показать, что последовательность (an) является монотоннной и ограниченной:

Решение. Запишем n+1 член последовательности (вместо n подставим n+1):

Найдем разность членов и :

или

Правая часть равенства (6) положительна при любых натуральных чисел n. Следовательно последовательно (an) возрастающая (и монотонная).

Далее, сделаем эквивалентное преобразование для проследовательности (5):

или

Из выражения (7) видно, что при любых n an≤1. Т.е. хотя последовательность возрастает, то остается меньше числа 1 (ограничена сверху). Запишем несколько членов данной последовательности, задав n=1,2,3,…

Так как последовательность возрастающая, то все члены последовательности не меньше . Тогда последовательность ограничена также и снизу. Таким образом последовательность ограничена и всерху, и снизу, т.е. является ограниченной последовательностью.

Сходящиеся и расходящиеся последовательности

Рассмотрим две числовые последовательности:

На координатной прямой изобразим члены этих последовательностей:

Как можно заметить из рисунков Рис.1 и Рис.2, члены последовательности , при увеличении n, постепенно приближаются к некоторой точке (в данном случае к точке O), а для последовательности такое не наблюдается. Говорят, что последовательность сходится, а полседовательность расходится.

Предел числовой последовательности

Точка, к которой приближаются члены последовательности при увеличении n, называется пределом последовательности. Для последовательности (10) пределом является число 0. Более строго предел последовательности определяется так:

Определение 8. Число k называют пределом последовательности (yn), если для любой заранее выбранной окресности точки k, можно выбрать такой номер n0, чтобы все члены последовательности, начиная с номера n0 содержались в указанной окрестности.

Если k является пределом последовательности (yn), то пишут ( стремится к k или сходится к k).

Обозначают это так:

Выраженние (11) читается так: предел проследовательности , при стремлении n к бесконечности равен k.

Изложим некоторые пояснения к определению 8.

Пусть выполнено (11). Возьмем окрестность точки k, т.е. интервал , где радиус этой окрестности ( >0). По определению, существует номер n0, начиная с которого вся последовательность содержится в указанной окресности, т.е.

Если же взять другую окресность (пусть ), то найдется другой номер n1, начиная с которого, вся последовательность содержится в указанной окрестности, но этот номер будет больше n1 > n0.

Пример 4. Дана полследовательность (yn):

Доказать, что .

Решение. Найдем любую окрестность точки 0. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы .

Пусть, например, r=0.001. Вычислим n‘ из уравнения

Имеем:

В качестве n0 берем 501. Имеем:

или

Запишем члены последовательности (12) начиная с номера 501:

Далее, учитывая (13), имеем:

Следовательно, все члены последовательности (12) начиная с номера 501 попадают в окресность . А по определению 8, это означает:

Пример 5. Дана полследовательность (yn):

Доказать, что .

Решение. Найдем любую окрестность точки 2. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы

Рашим (15) относительно n0:

Получили

Неравенство в (17) всегда выполняется так как n0 натуральное число, а правая часть неравенства отрицательно (это означает, что для любого n0). Из неравенства (16) можно найти номер n0, начиная с которого члены последовательности попадают в окресность (2−r; 2+r). Например, пусть r=0.001, тогда . Тогда нужно брать n0=2000. И тогда все члены последовательности, начиная с номера 2000 попадают в окрестность (2−r; 2+r).

Запишем члены последовательности, начиная с номера 2000:

Легко проверить, что . Тогда, учитывая, что данная последовательность возрастающая (см. пример 1), получим:

Пример 6. Найти предел последовательности

Решение. Выполним некоторые преобразования выражения (18):

Тогда последовательность (18) можно переписать так:

Как видно из (19), пройдя по членам последовательности слева направо, из числа 1 вычитается все меньшее и меньшее положительное число. Т.е. последовательность приближается к числу 1. Тогда 1 является пределом последовательности (19) и (18):

На Рис. 3 представлена функция . Абсцисы нарисованных точек это номера членов последовательности, а ординаты образуют последовательность (18) (или (19)). Прямая y=1 (горизонтальная пунктирная линия) называется горизонтальной асимптотой. Как видно из Рис.3 последовательность приближается к горизонтальной асимптоте.

Свойства сходящихся последовательностей

Сходящиеся последовательности обладают рядом свойств.

Свойство 1. Если последовательность сходится, то только к одному пределу.

Свойство 2. Если последовательность сходится, то она ограничена.

Свойство 3. Если последовательность монотонна и ограничена, то она сходится (теорема Вейерштрасса).

Предел стационарной последовательности равен значению любого члена последовательности:.

Теорема. Если , то

1. Предел суммы равен сумме пределов:

2. Предел произведения равен произведению пределов:

3. Предел частного равен частному пределов:

(при c≠0).

4. Постоянный множитель можно вывести за знак предела:

Пример 7. Найти предел последовательности:

Решение. Так как , то

Пример 8. Найти предел последовательности:

Решение. Применив правило “предел суммы” теоремы, получим

Пример 9. Вычислить:

Решение. Делим числитель и знаменатель дроби на наивысшую из имеющихся степень переменного n. Далее используем правило “предел суммы” для числителя и знаменателя и правило “предел частного”:

Добавить комментарий