Как найти полуоси эллипса пример

Примеры решения задач

Задача 6.1.
Найти полуоси, координаты фокусов и
эксцентриситет эллипса

Решение.
Разделив данное уравнение эллипса на
,
приведем его к виду.
Отсюда следует, что большая полуось
эллипса,
а малая полуось.
Известно, что,
поэтому

.

Следовательно,
координаты фокусов
и,
а его эксцентриситет.

Ответ.

Задача 6.2.
Эллипс касается оси ординат в начале
координат, а центр симметрии его находится
в точке
.
Составить уравнение эллипса, если его
эксцентриситет равен.

Решение.
Выполним чертеж (рис. 2.35).

Каноническое
уравнение такого эллипса

В
нашем случае

Рис. 2.35

Известно, что
.
Следовательно, для нахождениянадо знать.
Найдемиз формулы эксцентриситета:,,
откуда.
Значит,,

Итак, уравнение
искомого эллипса

Ответ.

Задача 6.3.
Определитель траекторию точки
,
которая при своем движении остается
втрое ближе к точке,
чем к прямой

Решение.
Траекторию точки
найдем как уравнение множества точек
плоскости, обладающих свойством(рис. 2.36).

Расстояние между
любыми точками
инайдем по формуле

Следовательно,
.

Рис.
2.36

После преобразований
получаем искомое уравнение:

.

Таким образом,
точка
движется по эллипсу. При этом большая
ось эллипса и его фокусы расположены
на оси

Ответ.
.

Задача 6.4.
Действительная
полуось гиперболы
,
эксцентриситетСоставить каноническое уравнение
гиперболы и начертить ее.

Решение.
Эксцентриситет гиперболы
Следовательно,

,
,

откуда фокусы
гиперболы
,,
а мнимая полуось.
Искомым уравнением гиперболы будет

.

Рис. 2.37

Вершины гиперболы:
,,,.
Через них проводим стороны основного
прямоугольника. Его диагоналиявляются асимптотами гиперболы.
Построим их. Затем через вершиныигиперболы проводим ее ветви, приближая
их к асимптотам (рис. 2.37).

Ответ.
.

Задача 6.5. Дана
равносторонняя гипербола
.
Найти уравнение эллипса, фокусы которого
находятся в фокусах гиперболы, если
известно, что эллипс проходит через
точку.

Решение.
Для данной гиперболы
.
Следовательно, из соотношенияполучаем,
откуда.
Значит, фокусы гиперболыи.
В этих же точках находятся фокусы
эллипса.

Обозначим через
исоответственно большую и малую полуоси
эллипса. Тогда при условии, что,
будем иметьДля определенияииспользуем еще одно условие: что точкалежит на эллипсе, т.е. ее координаты
должны удовлетворять уравнению эллипса

(6.8)

Это значит, что
Таким образом, для определенияиимеем систему уравнений

решив которую,
получим
,Подставив эти значения в уравнение
(6.8), найдем

Ответ.

Задача 6.6.
Асимптоты гиперболы имеют уравнения
.
Фокусы лежат на осии расстояние между ними равно.
Написать каноническое уравнение
гиперболы и начертить ее.

Решение.
Так как фокусы гиперболы лежат на оси
,
то ее каноническое уравнение имеет вид

Разрешив уравнение
асимптот относительно
,
получим,
откуда.
Кроме того,,
т.е.Так как для гиперболы,
то для нахожденияиполучим систему уравнений

Рис.
2.38

решив
которую, будем иметь
,.
Следовательно, каноническое уравнение
гиперболы (рис. 2.38)

Ответ.

Задача 6.7.
Составить уравнение параболы и ее
директрисы, если парабола проходит
через точки пересечения прямой
и окружностии симметрична относительно оси.

Решение.
Найдем точки пересечения заданных
линий, решив совместно их уравнения:

В результате
получим два решения
и.
Точки пересеченияи.
Так как парабола проходит через точкуи симметрична относительно оси,
то в этой точке будет находиться вершина
параболы. Поэтому уравнение параболы
имеет вид.
Так как парабола проходит через точку,
то координаты этой точки удовлетворяют
уравнению параболы:,,

Итак, уравнением
параболы будет
,
уравнение директрисыили,
откуда

Ответ.
;

Задача 6.8.
Мостовая арка имеет форму параболы.
Определить параметр
этой параболы, зная, что пролет арки
равен,
а высота

Решение. выберем
прямоугольную систему координат так,
чтобы вершина параболы (мостовой арки)
находилась в начале координат, а ось
симметрии совпадала с отрицательным
направлением оси
.
В таком случае каноническое уравнение
параболы имеет вид,
а концы хорды аркии.
Подставив координаты одного из концов
хорды (например,)
в уравнение параболы и решив полученное
уравнение относительно,
получим

Ответ.

Задача 6.9.
Привести уравнение кривой
к каноническому виду и построить эту
кривую.

Решение.
В уравнении
,,,,,Вычислим дискриминант старших членов:

.

Так как
,
данная линия является кривой эллиптического
типа.

Найдем центр кривой
из системы

Решив ее, получим
,.

С помощью
параллельного переноса осей координат
в центр
уравнение кривой в новой системеприводится к виду:

,

подставив в исходное
уравнение кривой, получим

(6.9)

Для дальнейшего
упрощения уравнения (6.9) применим правило
приведения квадратичной формы к
каноническому виду. Составим
характеристическое уравнение

или
.

Отсюда
.

Повернув теперь
оси координат так, чтобы направления
осей
исовпадали с главными направлениями
квадратичной формы, уравнение (6.5)
приведем к каноническому виду

или .

Из уравнения видно,
что это эллипс с полуосями
,.
Чтобы построить этот эллипс найдем
главное направление, соответствующее
характеристическому числу(его мы приняли за осьв каноническом уравнении). Подставив
коэффициенты нашего уравнения в систему

получим

Полагая
,
находим, что.
Единичный вектор

оси
имеет в системекоординатыи.
Следовательно,,
а.

Повернув систему
на уголпо часовой стрелке, получим прямоугольную
систему координат,
в которой легко построить эллипс (рис.
3.39).

Задача
6.10.

Преобразовать к каноническому виду
уравнение

(6.10)

и
построить линию, задаваемую этим
уравнением.

Рис. 3.39

Решение.
В исходном уравнении
,,,,,Дискриминант старших членов

Следовательно,
уравнение определяет нецентральную
линию второго порядка, т.е. линию
параболического типа.

Составим
характеристическое уравнение квадратичной
формы старших членов:

или

Отсюда
,

Найдем главное
направление, соответствующее
характеристическому числу
.
Для этого подставим в систему

коэффициенты
нашего уравнения. Получим

Полагая
,
имеем.
Следовательно, главное направление,
соответствующее характеристическому
числу,
определяется вектором.
Нормируя его, находим единичный вектор:.
Это значит, что,
а,
т.е. поворачиваем системуна угол.

Используя теперь
равенства (6.10), имеем:

Следовательно,
уравнение (10.17) в системе координат
принимает вид

(6.11)

Уравнение (6.11)
определяет параболу. Для приведения
его к каноническому виду найдем координаты
нового начала. Сгруппируем члены с
одинаковыми переменными и выделим
полный квадрат:

Рис.
2.40

После параллельного
переноса осей координат в новое начало
уравнение параболы (6.11) в системе
координатпримет канонический вид.
Расположение параболы показано на
рис. 2.40.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Эллипс:

Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек Эллипс - определение и вычисление с примерами решения

Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы Эллипс - определение и вычисление с примерами решения

Рис. 29. Вывод уравнения эллипса.

Расстояние между фокусами (фокусное расстояние) равно Эллипс - определение и вычисление с примерами решения Согласно определению эллипса имеем Эллипс - определение и вычисление с примерами решения Из треугольников Эллипс - определение и вычисление с примерами решения и Эллипс - определение и вычисление с примерами решения по теореме Пифагора найдем

Эллипс - определение и вычисление с примерами решения

соответственно. Следовательно, согласно определению имеем

Эллипс - определение и вычисление с примерами решения

Возведем обе части равенства в квадрат, получим

Эллипс - определение и вычисление с примерами решения

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Эллипс - определение и вычисление с примерами решения Раскроем разность квадратов Эллипс - определение и вычисление с примерами решения Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Эллипс - определение и вычисление с примерами решения Вновь возведем обе части равенства в квадрат Эллипс - определение и вычисление с примерами решения Раскрывая все скобки в правой части уравнения, получим Эллипс - определение и вычисление с примерами решения Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получимЭллипс - определение и вычисление с примерами решения Введем обозначение для разности, стоящей в скобках Эллипс - определение и вычисление с примерами решения Уравнение принимает вид Эллипс - определение и вычисление с примерами решения Разделив все члены уравнения на Эллипс - определение и вычисление с примерами решенияполучаем каноническое уравнение эллипса: Эллипс - определение и вычисление с примерами решения Если Эллипс - определение и вычисление с примерами решения то эллипс вытянут вдоль оси Ох, для противоположного неравенствавдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки Эллипс - определение и вычисление с примерами решения следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:

Определение: Найденные точки называются вершинами эллипса.

Эллипс - определение и вычисление с примерами решения

Рис. 30. Вершины, фокусы и параметры эллипса

Эллипс - определение и вычисление с примерами решенияЭллипс - определение и вычисление с примерами решения

Определение: Если Эллипс - определение и вычисление с примерами решения то параметр а называется большой, а параметр b – малой полуосями эллипса.

Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса Эллипс - определение и вычисление с примерами решения

Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Эллипс - определение и вычисление с примерами решения Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси Эллипс - определение и вычисление с примерами решения

Если Эллипс - определение и вычисление с примерами решения и эллипс вырождается в окружность. Если Эллипс - определение и вычисление с примерами решения и эллипс вырождается в отрезок Эллипс - определение и вычисление с примерами решения

Пример:

Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет Эллипс - определение и вычисление с примерами решения

Решение:

Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Эллипс - определение и вычисление с примерами решения Зная параметр с, можно вычислить малую полуось эллипса Эллипс - определение и вычисление с примерами решения Следовательно, каноническое уравнение заданного эллипса имеет вид: Эллипс - определение и вычисление с примерами решения

Пример:

Найти площадь треугольника, две вершины которого находятся в фокусах эллипса Эллипс - определение и вычисление с примерами решения а третья вершина – в центре окружности

Эллипс - определение и вычисление с примерами решения

Решение:

Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс: Эллипс - определение и вычисление с примерами решения

Эллипс - определение и вычисление с примерами решения Следовательно, большая полуось эллипса Эллипс - определение и вычисление с примерами решения а малая полуось Эллипс - определение и вычисление с примерами решения Так как Эллипс - определение и вычисление с примерами решения то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипсаЭллипс - определение и вычисление с примерами решения Итак,Эллипс - определение и вычисление с примерами решения Окружность: Эллипс - определение и вычисление с примерами решения Выделим полные квадраты по переменным Эллипс - определение и вычисление с примерами решения Эллипс - определение и вычисление с примерами решения Следовательно, центр окружности находится в точке О(-5; 1).

Эллипс - определение и вычисление с примерами решения

Построим в декартовой системе координат треугольник Эллипс - определение и вычисление с примерами решения Согласно школьной формуле площадь треугольника Эллипс - определение и вычисление с примерами решения равна Эллипс - определение и вычисление с примерами решения Высота Эллипс - определение и вычисление с примерами решения а основание Эллипс - определение и вычисление с примерами решения Следовательно, площадь треугольника Эллипс - определение и вычисление с примерами решенияравна:

Эллипс - определение и вычисление с примерами решения

Эллипс в высшей математике

Рассмотрим уравнение

Эллипс - определение и вычисление с примерами решения

где Эллипс - определение и вычисление с примерами решения и Эллипс - определение и вычисление с примерами решения—заданные положительные числа. Решая его относительно Эллипс - определение и вычисление с примерами решения, получим:

Эллипс - определение и вычисление с примерами решения

Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное Эллипс - определение и вычисление с примерами решения по абсолютной величине меньше Эллипс - определение и вычисление с примерами решения, подкоренное выражение положительно, корень имеет два значения. Каждому значению Эллипс - определение и вычисление с примерами решения, удовлетворяющему неравенству Эллипс - определение и вычисление с примерами решения соответствуют два значения Эллипс - определение и вычисление с примерами решения, равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси Эллипс - определение и вычисление с примерами решения. Так же можно убедиться в том, что оно симметрично и относительно оси Эллипс - определение и вычисление с примерами решения. Поэтому ограничимся рассмотрением только первой четверти.

При Эллипс - определение и вычисление с примерами решения, при Эллипс - определение и вычисление с примерами решения. Кроме того, заметим, что если Эллипс - определение и вычисление с примерами решения увеличивается, то разностьЭллипс - определение и вычисление с примерами решения уменьшается; стало быть, точка Эллипс - определение и вычисление с примерами решения будет перемещаться от точки Эллипс - определение и вычисление с примерами решения вправо вниз и попадет в точку Эллипс - определение и вычисление с примерами решения. Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.

Эллипс - определение и вычисление с примерами решения

Полученная линия называется эллипсом. Число Эллипс - определение и вычисление с примерами решения является длиной отрезка Эллипс - определение и вычисление с примерами решения, число Эллипс - определение и вычисление с примерами решения—длиной отрезка Эллипс - определение и вычисление с примерами решения. Числа Эллипс - определение и вычисление с примерами решения и Эллипс - определение и вычисление с примерами решения называются полуосями эллипса. Число Эллипс - определение и вычисление с примерами решения эксцентриситетом.

Пример:

Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.

Решение:

Возьмем две плоскости, пересекающиеся под углом Эллипс - определение и вычисление с примерами решения (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось Эллипс - определение и вычисление с примерами решения примем прямую пересечения плоскостей, стало быть, ось Эллипс - определение и вычисление с примерами решения будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости Эллипс - определение и вычисление с примерами решения возьмем окружность радиуса Эллипс - определение и вычисление с примерами решения с центром в начале координат, ее уравнение Эллипс - определение и вычисление с примерами решения.

Пусть точка Эллипс - определение и вычисление с примерами решения лежит на этой окружности, тогда ее координаты удовлетворяют уравнению Эллипс - определение и вычисление с примерами решения.

Эллипс - определение и вычисление с примерами решения

Обозначим проекцию точки Эллипс - определение и вычисление с примерами решения на плоскость Эллипс - определение и вычисление с примерами решения буквой Эллипс - определение и вычисление с примерами решения, а координаты ее—через Эллипс - определение и вычисление с примерами решения и Эллипс - определение и вычисление с примерами решения. Опустим перпендикуляры из Эллипс - определение и вычисление с примерами решения и Эллипс - определение и вычисление с примерами решения на ось Эллипс - определение и вычисление с примерами решения, это будут отрезки Эллипс - определение и вычисление с примерами решения и Эллипс - определение и вычисление с примерами решения. Треугольник Эллипс - определение и вычисление с примерами решения прямоугольный, в нем Эллипс - определение и вычисление с примерами решения, Эллипс - определение и вычисление с примерами решения,Эллипс - определение и вычисление с примерами решения, следовательно, Эллипс - определение и вычисление с примерами решения. Абсциссы точек Эллипс - определение и вычисление с примерами решения и Эллипс - определение и вычисление с примерами решения равны, т. е. Эллипс - определение и вычисление с примерами решения. Подставим в уравнение Эллипс - определение и вычисление с примерами решения значение Эллипс - определение и вычисление с примерами решения, тогда cos

Эллипс - определение и вычисление с примерами решения

или

Эллипс - определение и вычисление с примерами решения

а это есть уравнение эллипса с полуосями Эллипс - определение и вычисление с примерами решения и Эллипс - определение и вычисление с примерами решения.

Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.

Замечание. Окружность можно рассматривать как эллипс с равными полуосями.

Уравнение эллипсоида

Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.

Рассмотрим сферу радиуса R с центром в начале координат:

Эллипс - определение и вычисление с примерами решения

где Х, У, Z — текущие координаты точки сферы.

Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей Эллипс - определение и вычисление с примерами решения с коэффициентами деформации, равными Эллипс - определение и вычисление с примерами решения

В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам Эллипс - определение и вычисление с примерами решения (х, у, z) с текущими координатами х, у, г, причем

Эллипс - определение и вычисление с примерами решения

(рис. 206). Отсюда

Эллипс - определение и вычисление с примерами решения Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в Эллипс - определение и вычисление с примерами решения раз, если Эллипс - определение и вычисление с примерами решения, и увеличиваются в Эллипс - определение и вычисление с примерами решения раз, если Эллипс - определение и вычисление с примерами решения и т. д.

Подставляя эти формулы в уравнение (1), будем иметь

Эллипс - определение и вычисление с примерами решения

где Эллипс - определение и вычисление с примерами решения Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.

Величины Эллипс - определение и вычисление с примерами решения называются полуосями эллипсоида; удвоенные величины Эллипс - определение и вычисление с примерами решения называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).

Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями

а = b = 6377 км и с = 6356 км.

Если а = b = с, то эллипсоид превращается в сферу.

  • Гипербола
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность

Эллипс – определение и вычисление с примерами решения

Эллипс:

Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек

Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы

Рис. 29. Вывод уравнения эллипса.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению эллипса имеем Из треугольников и по теореме Пифагора найдем

соответственно. Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Уравнение принимает вид Разделив все члены уравнения на получаем каноническое уравнение эллипса: Если то эллипс вытянут вдоль оси Ох, для противоположного неравенствавдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:

Определение: Найденные точки называются вершинами эллипса.

Рис. 30. Вершины, фокусы и параметры эллипса

Определение: Если то параметр а называется большой, а параметр b – малой полуосями эллипса.

Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса

Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси

Если и эллипс вырождается в окружность. Если и эллипс вырождается в отрезок

Пример:

Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет

Решение:

Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Зная параметр с, можно вычислить малую полуось эллипса Следовательно, каноническое уравнение заданного эллипса имеет вид:

Пример:

Найти площадь треугольника, две вершины которого находятся в фокусах эллипса а третья вершина – в центре окружности

Решение:

Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипса Итак, Окружность: Выделим полные квадраты по переменным Следовательно, центр окружности находится в точке О(-5; 1).

Построим в декартовой системе координат треугольник Согласно школьной формуле площадь треугольника равна Высота а основание Следовательно, площадь треугольника равна:

Эллипс в высшей математике

где и —заданные положительные числа. Решая его относительно , получим:

Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное по абсолютной величине меньше , подкоренное выражение положительно, корень имеет два значения. Каждому значению , удовлетворяющему неравенству соответствуют два значения , равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси . Так же можно убедиться в том, что оно симметрично и относительно оси . Поэтому ограничимся рассмотрением только первой четверти.

При , при . Кроме того, заметим, что если увеличивается, то разность уменьшается; стало быть, точка будет перемещаться от точки вправо вниз и попадет в точку . Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.

Полученная линия называется эллипсом. Число является длиной отрезка , число —длиной отрезка . Числа и называются полуосями эллипса. Число эксцентриситетом.

Пример:

Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.

Решение:

Возьмем две плоскости, пересекающиеся под углом (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось примем прямую пересечения плоскостей, стало быть, ось будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости возьмем окружность радиуса с центром в начале координат, ее уравнение .

Пусть точка лежит на этой окружности, тогда ее координаты удовлетворяют уравнению .

Обозначим проекцию точки на плоскость буквой , а координаты ее—через и . Опустим перпендикуляры из и на ось , это будут отрезки и . Треугольник прямоугольный, в нем , ,, следовательно, . Абсциссы точек и равны, т. е. . Подставим в уравнение значение , тогда cos

а это есть уравнение эллипса с полуосями и .

Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.

Замечание. Окружность можно рассматривать как эллипс с равными полуосями.

Уравнение эллипсоида

Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.

Рассмотрим сферу радиуса R с центром в начале координат:

где Х, У, Z — текущие координаты точки сферы.

Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей с коэффициентами деформации, равными

В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам (х, у, z) с текущими координатами х, у, г, причем

Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в раз, если , и увеличиваются в раз, если и т. д.

Подставляя эти формулы в уравнение (1), будем иметь

где Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.

Величины называются полуосями эллипсоида; удвоенные величины называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).

Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями

а = b = 6377 км и с = 6356 км.

Если а = b = с, то эллипсоид превращается в сферу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Гипербола
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home

Эллипс, гипербола, парабола. Директориальное свойство эллипса и гиперболы.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Эллипс.

Эллипс с каноническим уравнением $frac+frac=1, ageq b>0,$ и меет форму изображенную на рисунке.

Параметры $a$ и $b$ называются полуосями эллипса (большой и малой соответственно). Точки $A_1(-a, 0),$ $A_2(a, 0), $ $B_1(0, -b), $ и $B_2(0, b), $ его вершинами. Оси симметрии $Ox$ и $Oy$ – главными осями а центр симметрии $O -$ центром эллипса.

Точки $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrtgeq 0,$ называются фокусами эллипса векторы $overline$ и $overline -$ фокальными радиус-векторами, а числа $r_1=|overline|$ и $r_2=|overline| -$ фокальными радиусами точки $M,$ принадлежащей эллипсу. В частном случае $a=b$ фокусы $F_1$ и $F_2$ совпадают с центром, а каноническое уравнение имеет вид $frac+frac=1,$ или $x^2+y^2=a^2,$ т.е. описывает окружность радиуса $a$ с центром в начале координат.

Прямые $D_1: x=-a/e$ и $D_2: x=a/e,$ перпендикулярные главной оси и проходящей на расстоянии $a/e$ от центра, называются директрисами эллипса.

Теорема. ( Директориальное свойство эллипса)

Эллипс является множеством точек, отноше ние расстояний от которых до фокуса и до соответствующей директрисы постоянно и равно $e.$

Примеры.

2.246. Построить эллипс $9x^2+25y^2=225.$ Найти: а) полуоси; б) координаты фокусов; в) эксцентриситет; г) уравнения директрис.

Приведем уравнение эллипса к каноническому виду:

а) Находим полуоси $a=5,$ $b=3.$

б) Фокусы найдем по формулам $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrt:$

$c=sqrt<5^2-3^2>=sqrt<16>=4Rightarrow F_1(-4, 0),qquad F_2(4, 0).$

г) Уравнения директрис находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

Ответ: а) $a=5,$ $b=3;$ б) $ F_1(-4, 0),qquad F_2(4, 0);$ в) $e=frac<4><5>;$ г) $D_1: x=-frac<25><4>$ и $D_2: x=frac<25><4>.$

2.249 (a). Установить, что уравнение $5x^2+9y^2-30x+18y+9=0$ определяет эллипс, найти его центр $C,$ полуоси, эксцентриситет и уравнения директрис.

Приведем уравнение эллипса к каноническому виду, для этого выделим полные квадраты:

Это уравнение эллипса. Центр имеет координаты $C=(x_0, y_0)=(-3, -1);$ полуоси $a=3,$ $b=sqrt 5.$

Уравнения директрис для эллипса с центром в начале координат находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

$D_1: x=-frac<3><2/3>=-frac<9> <2>$ и $D_2: x=frac<3><2/3>=frac<9><2>.$ Поскольку у заданного эллипса центр смещен, то директриссы будут иметь уравнения $D_1: x=x_0-a/e$ и $D_2: x=x_0+a/e:$

Ответ: $C=(x_0, y_0)=(-3, -1);$ $a=3,$ $b=sqrt 5;$ $ e=frac<2><3>.$ $D_1:2x+3=0, $ $D_2: 2x-15=0.$

2.252. Эллипс, главные оси которого совпадают с координатными осми, проходят через точки $M_1(2, sqrt 3)$ и $M_2(0, 2).$ Написать его уравнение, найти фокальные радиусы точки $M_1$ и расстояния этой точки до директрис.

Решение.

Поскольку оси эллипса совпадают с координатными осями, то центр эллипса совпадает с началом координат. Следовательно, из того, что точка $(0, 2)$ принадлежит эллипсу, можно сделать вывод, что $b=2.$

Далее, чтобы найти $a,$ подставим найденное значение $b$ и координаты точки $M_1(2, sqrt 3)$ в каноническое уравнение эллипса $frac+frac=1:$

Таким образом, уравнение эллипса $frac<16>+frac<4>=1.$

Далее найдем координаты фокусов:

$c=sqrt=sqrt<16-4>=2sqrt 3Rightarrow F_1(-2sqrt 3, 0),,,, F_2(2sqrt 3, 0).$

Отсюда находим $overline =(2+2sqrt 3, sqrt 3),$ $overline=(2-2sqrt 3, sqrt 3).$

Чтобы найти расстояния от точки $M_1$ до директрис, найдем уравнения директрис по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

Расстояние от точки $P(x_0, y_0)$ до прямой $L: Ax+By+C=0$ вычисляется по формуле $$d=left|frac<sqrt>right|.$$

Таким образом, расстояние от точки $M_1(2, sqrt 3)$ до прямой $D_1: sqrt 3 x+8=0$

расстояние от точки $M_1(2, sqrt 3)$ до прямой $D_2: sqrt 3 x-8=0$

Параметры $a$ и $b$ называются полуосями гиперболы. Точки $A_1(-a, 0),$ $A_2(a, 0) – $ ее вершинами. Оси симметрии $Ox$ и $Oy$ – действительной и мнимой осями а центр симметрии $O -$ центром гиперболы.

Точки $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrtgeq 0,$ называются фокусами гиперболы, векторы $overline$ и $overline -$ фокальными радиус-векторами, а числа $r_1=|overline|$ и $r_2=|overline| -$ фокальными радиусами точки $M,$ принадлежащей гиперболе.

Прямые $D_1: x=-a/e$ и $D_2:x=a/e,$ перпендикулярные главной оси и проходящей на расстоянии $a/e$ от центра, называются директрисами гиперболы.

Теорема. (Директориальное свойство гиперболы).

Гипербола является геометрическим местом точек, отношение расстояний от которых до фокуса и до соответствующей дирек трисы постоянно и равно $e.$

Примеры.

2.265. Построить гиперболу $16x^2-9y^2=144.$ Найти: а) полуоси; б) координаты фокусов; в) эксцентриситет; г) уравнения асимптот; д) уравнения директрис.

Приведем уравнение гиперболы к каноническому виду:

а) Находим полуоси $a=3,$ $b=4.$

б) Фокусы найдем по формулам $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrt:$

$c=sqrt<3^2+4^2>=sqrt<25>=5Rightarrow F_1(-5, 0),qquad F_2(5, 0).$

г) Асимптоты гиперболы находим по формулам $y=pmfracx:$

д) Уравнения директрис находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

Ответ: а) $a=3,$ $b=4;$ б) $ F_1(-5, 0),qquad F_2(5, 0);$ в) $e=frac<5><3>;$ г) $y=pmfrac<4><3>x;$ д ) $D_1: x=-frac<9><5>$ и $D_2: x=frac<9><5>.$

2.269 (a). Установить, что уравнение $16x^2-9y^2-64x-54y-161=0$ определяет гиперболу, найти ее центр $C,$ полуоси, эксцентриситет, уравнения асимптот и директрис.

Приведем заданное уравнение к каноническому виду, для этого выделим полные квадраты:

Это уравнение гиперболы. Центр имеет координаты $C=(x_0, y_0)=(2,-3);$ полуоси $a=3,$ $b=4.$

Асимптоты гиперболы c центром в начале координат, находим по формулам $y=pmfracx,$ а с центром в точке $C=(x_0, y_0) -$ по формуле $y-y_0=pmfrac(x-x_0),$

$$y+3=frac<4><3>(x-2)Rightarrow 3y+9=4x-8Rightarrow 4x-3y-17=0.$$

$$y+3=-frac<4><3>(x-2)Rightarrow 3y+9=-4x+8Rightarrow 4x+3y+1=0.$$

Уравнения директрис для эллипса с центром в начале координат находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

$D_1: x=-frac<3><5/3>=-frac<9> <5>$ и $D_2: x=frac<3><5/3>=frac<9><5>.$ Поскольку у заданного эллипса центр смещен, то директриссы будут иметь уравнения $D_1: x=x_0-a/e$ и $D_2: x=x_0+a/e:$

Ответ: $C=(2, -3);$ $a=3,$ $b=4;$ $ e=frac<5><3>,$ $4x-3y-17=0,$ $4x+3y+1=0,$ $D_1:5x-1=0, $ $D_2: 5x-19=0.$

2.272. Убедившись, что точка $M(-5, 9/4)$ лежит на гиперболе $frac<16>-frac<9>=1,$ найти фокальные радиусы этой точки и расстояния этой точки до директрис.

Решение.

Проверим, что заданная точка лежит на гиперболе:

Следовательно, точка $M(-5, 9/4)$ лежит на гиперболе $frac<16>-frac<9>=1.$

Для того, чтобы найти фокальные радиусы, найдем фокусы гиперболы:

$c=sqrtRightarrow c=sqrt<16+9>=sqrt <25>=5$ Следовательно, фокусы имеют координаты $F_1(-5, 0), F_2(5, 0).$

Фокальные радиусы точки, можно найти по формулам $r_1=|overline|$ и $r_2=|overline|.$

Чтобы найти расстояния от точки $M$ до директрис, найдем уравнения директрис по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

$D_1: x=-frac<4><5/4>Rightarrow x=-frac<16><5>Rightarrow 5x+16=0;$

$D_2: x=frac<4><5/4>Rightarrow x=frac<16><5>Rightarrow 5x-16=0;$

Расстояние от точки $P(x_0, y_0)$ до прямой $L: Ax+By+C=0$ вычисляется по формуле $$d=left|frac<sqrt>right|.$$

Таким образом, расстояние от точки $M(5, 9/4)$ до прямой $D_1: sqrt 5x+16=0$

расстояние от точки $M(5, 9/4)$ до прямой $D_2: sqrt 5x-16=0$

Ответ: $r_1=9/4,$ $r_2=frac<41><4>;$ $d_1=frac<41><5>;$ $d_2=frac<9><5>.$

2.273. Найти точки гиперболы $frac<9>-frac<16>=1,$ находящиеся на расстоянии $7$ от фокуса $F_1.$

Решение.

Из уравнения гиперболы находим полуоси: $a=3, , b=4.$ Следовательно, $c=sqrtRightarrow c=sqrt<9+16>=sqrt <25>=5.$

Отсюда находим $F_1=(-5, 0).$

Геометрическое место точек, расположенных на расстоянии $7$ от фокуса $F_1,$ это окружность с центром в точке $F_1=(-5, 0)$ и радиусом $r=7:$

Чтобы н айти точки гиперболы $frac<9>-frac<16>=1,$ находящиеся на расстоянии $7$ от фокуса $F_1,$ решим систему уравнений

Решим уравнение $5x^2+18x-72=0:$

Находим соответствующие координаты $y:$ $y_1=pmsqrt<24-2,4^2-10cdot 2,4>=sqrt<-5,76>$ – нет корней .

Ответ: $(-6, pm4sqrt 3).$

Парабола.

Парабола с каноническим уравнением $y^2=2px, p>0,$ и меет форму изображенную на рисунке.

Число $p$ называется параметром параболы. Точка $O -$ ее вершиной, а ось $Ox$ – осью параболы.

Точка $Fleft(frac

<2>, 0right)$ называется фокусом параболы, вектор $overline -$ фокальным радиус-векторам, а число $r=|overline| -$ фокальным радиусом точки $M,$ принадлежащей параболе.

Прямая $D: x=-p/2$ перпендикулярная оси и проходящая на расстоянии $p/2$ от вершины параболы, называется ее директрисой.

Примеры.

2.285 (а). Построить параболу $y^2=6x$ и найти ее параметры.

Решение.

Параметр $p$ параболы можно найти из канонического уравнения $y^2=2px: $

$$y^2=6xRightarrow y^2=2cdot 3xRightarrow p=2.$$

Ответ: $p=3.$

2.286 (а). Написать уравнение параболы с вершиной в начале координат, если известно, что парабола расположена в левой полуплоскости, симметрично относительно оси $Ox$ и $p=1/2.$

Решение.

Поскольку парабола расположена в левой полуплоскости, симметрично относительно оси $Ox,$ то уравнение параболы будет иметь вид $y^2=-2px.$ Подставляя заданное значение параметра, находим уравнение параболы:

Ответ: $y^2=-x.$

2.288 (а). Установить, что уравнение $y^2=4x-8$ определяет параболу, найти координаты ее вершины $A$ и величину параметра $p.$

Решение.

Уравнение параболы, центр которой сдвинут в точку $(x_0, y_0),$ имеет вид $(y-y_0)^2=2p(x-x_0)^2.$

Приведем заданное уравнние к такому виду:

Таким образом, $y^2=4(x^2-2)$ – парабола с центром в точке $(0, 2).$ Параметр $p=2.$

Ответ: $C(0, 2),$ $p=2.$

2.290. Вычислить фокальный параметр точки $M$ параболы $y^2=12x,$ если $y(M)=6.$

Решение.

Чтобы найти фокальный параметр точки $M,$ найдем ее координаты. Для этого подставим в уравнение параболы координату $y:$ $$6^2=12xRightarrow 36=12xRightarrow x=3.$$

Таким образом, точка $M$ имеет координаты $(3, 6).$

Из уравнения параболы $y^2=12x$ находим параметр параболы: $y^2=2cdot 6xRightarrow p=6.$ Следовательно фокус параболы имеет координаты $F(3, 0).$

Далее находим фокальный параметр точки:

Ответ: $6.$

2.298. Из фокуса параболы $y^2=12x$ под острым углом $alpha$ к оси $Ox$ направлен луч света, причем $tgalpha=frac<3><4>.$ Написать уравнение прямой, на которой лежит луч, отраженный от параболы.

Решение.

Найдем координаты фокуса. Из канонического уравнения параболы $y^2=2px$ находим параметр: $y^2=12x=2cdot 6xRightarrow p=6.$

Координаты фокуса $F(p/2, 0)Rightarrow F(3,0).$

Далее находим уравнение прямой, которая проходит через точку $(3, 0)$ под углом $alpha: tgalpha=frac<3><4>$ к оси $OX.$ Уравнение ищем в виде $y=kx+b,$ где $k=tgalpha=frac<3><4>.$

Чтобы найти $b,$ в уравнение прямой подставим координаты точки $(3, 0):$

$0=frac<3><4>cdot 3+bRightarrow b=-frac<9><4>.$ Таким образом, уравнение луча, направленного из фокуса $y=frac<3><4>x-frac<9><4>.$

Далее, найдем точку пересечения найденной прямой с параболой:

Поскольку по условию луч падает под острым углом, то мы рассматриваем только положительную координату $y=18.$ Соответствующее значение $x=frac<18^2><12>=frac<324><12>=27.$

Таким образом, луч пересекает параболу в точке $(27, 18).$

Далее найдем уравнение касательной к параболе в найденной точке $(27, 18)$ по формуле $(y-y_0)=y'(x_0)(x-x_0):$

Подставляем все найденные значения в уравнение касательной:

$y-18=frac<1><3>(x-27)Rightarrow 3y-54=x-27Rightarrow x-3y+27=0.$

Далее, найдем угол $beta$ между лучем $y=frac<3><4>x-frac<9><4>$ и касательной $x-3y+27=0.$ Для этого оба уравнения запишем в виде $y=k_1x+b_1$ и $y=k_2+b_2$ угол вычислим по формуле $tg(L_1, L_2)=frac<1+k_1cdot k_2>$

$$L_2: x-3y+27=0Rightarrow y=frac<1><3>x+9Rightarrow k_2=frac<1><3>.$$

Легко увидеть, что угол между лучем $L_1,$ направленным из фокуса и его отражением равен $pi-2beta,$ а угол между отраженным лучем и осью $Ox$ $pi-(pi-2beta)-alpha=2beta-alpha.$

Зная $tgbeta=frac<1><3>$ и $tgalpha=k_1=frac<3><4>$ и вспоминая формулы для двойного угла тангенса и тангенс разности, находим $tg(2beta-alpha):$

$$tg(2beta-alpha)=frac<1+tg2beta tgalpha>=frac<frac<3><4>-frac<3><4>><1+frac<3><4>frac<3><4>>=0.$$ Следовательно, прямая, содержащая отраженный луч параллельна оси $Ox.$ Так как она проходит через точку $(27, 18),$ то можно записать ее уравнение $y=18.$

Кривые второго порядка. Эллипс: формулы и задачи

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F – числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) – длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат – в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат – малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность – частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия – эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось – это a = 5 , меньшая полуось – это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует “сплюснутость” эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

– если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

– если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат – каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если – произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами эллипса (на чертеже – красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и – расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

.

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e – эксцентриситет и числа “эр” с подстрочными индексами 1 и 2 – искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

,

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

[spoiler title=”источники:”]

http://mathportal.net/index.php/component/content/article/87-visshaya-matematika/analiticheskaya-geometriya/154-ellips-giperbola-parabola-direktorialnoe-svojstvo-ellipsa-i-giperboly-polyarnyj-parametr

http://function-x.ru/curves_ellipse.html

[/spoiler]

Эллипс – это замкнутая плоская кривая, сумма расстояний от каждой точки до двух точек равняется постоянной величине.

Что такое эллипс и фокусное расстояние

Эллипс – это множество точек плоскости, сумма расстояний которых от двух заданных точек, что называются фокусами, есть постоянная величина и равна 2aquad{(a > 0)}.

Обозначим фокусы эллипса F_{1} и F_{2}. Допустим, что расстояние F_{1}{F_{2}} = 2c – фокусное расстояние.

Эллипс

Рис. 1

F_{1}, F_{2} – фокусы .

F_{1} = (c, 0); F_{2} = (- c ; 0),

c – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема:

Фокусное расстояние и полуоси связаны соотношением:

a^2 = b^2 + c^2

 Если точка M находится на пересечении эллипса с вертикальной осью, r_{1} + r_{2} = 2 * sqrt{b^2 + c^2} (теорема Пифагора). Если же точка M находится на пересечении его с горизонтальной осью, r_1} + r_{2} = a - c + a + c. Так как по определению сумма r_{1} + r_2} – постоянная величина, то приравнивая получается:

a^2 = b^2 + c^2to{r_{1} + r_{2} = 2a.

Уравнение эллипса

Уравнение элиппса бывает двух видов:

  1. Каноническое уравнение эллипса.
  2. Параметрическое уравнение эллипса.

Сначала рассмотрим каноническое уравнение эллипса:

Уравнение описывает эллипс в декартовой системе координат. Если центр эллипсa O в начале системы координат, а большая ось лежит на абсциссе, то эллипс описывается уравнением:

1 = {x^2over{a^2}} + {y^2over{b^2}}

Если центр эллипсa O смещен в точку с координатами (x_{0}, y_{0}) тогда уравнение:

1 = {(x - x_{0})^2over{a^2}} +  {(y - y_{0})^2over{b^2}}

Чтобы получить каноническое уравнение эллипса, разместим F_{1} и F_{2} на оси OX симметричной к началу координат. Тогда у фокусов будут такие координаты F_{2}(-c, 0) и F_{2}(c, 0) (см. рис. 2).

Пусть M(x, y) – произвольная точка эллипса. Обозначим через r_{2} и r_{1} – расстояние от точки M к фокусам. Согласно с определением эллипса:

r_{1} + r_{2} = 2a

(1)

Уравнение эллипса

Рис. 2

Подставим в (1) r_{1} = F_{1}M = sqrt{(x - c)^2 + (y - 0)^2}, r_{2} = sqrt{(x + c)^2 + y^2} и освободимся от иррациональности, подняв обе части к квадрату, получим:

r_{2} = 2a - r_{1}tosqrt{(x + c)^2 + y^2} = 2a - sqrt{(x - c)^2 + y^2}}to{x^2 + 2cx + c^2 + y^2} = 4a^2 - 4asqrt{(x - c)^2) + y^2} + x^2 - 2cx + c^2 + y^2to{4a}sqrt{(x - c^2 + y^2} = 4a^2 - 4cxarrowvert:4

asqrt{(x - c)^2 + y^2} =a^2 - cx

 (подносим к квадрату обе части): to{a^2x^2 - 2ca^2x + a^2c^2 + a^2y^2} = {a^4 - 2ca^2x + c^2x^2to{(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2)arrowvert:a^2(a^2 - c^2),

{x^2over{a^2}} + {y^2over{a^2 - c^2}} = 1

Обозначим: a^2 - c^2 = b^2, получаем каноническое уравнение эллипса:

{x^2over{a^2}} + {y^2over{b^2}} = {1}

(2)

Отметим, что по известному свойству треугольника (сумма двух сторон  больше третьей) из Delta{F_{1}}MF_{2} у нас получается F_{2}M + F_{1}M > F_{1}F_{2}to{r_{1} + r_{2}} > 2c. Так как r_{1} + r_{2} = 2a, тогда 2a > 2cto{a >c}, и поэтому b^2 = a^2 - c^2 >0.

Для построения эллипса обратим внимание, что если точка M_{1}(x, y) принадлежит эллипсу, то есть удовлетворяет уравнение (2), тогда точки M_{2}(-x, y), M_{3}(-x, -y), M_{4}(x, -y) тоже удовлетворяют это уравнение: из

{x^2over{a^2}} + {y^2over{b^2}} = 1to{(pm{x})^2over{a^2}} + {(pm{y})^2over{b^2}} = {1}.

Точки M_{1}, M_{2}, M_{3}, M_{4} – расположены симметрично относительно осей координат. Значит, эллипс – фигура, симметричная относительно координатных осей. Поэтому достаточно построить график в первой четверти, а тогда симметрично продолжить его.

Из уравнения (2) находим y = pm{{b}over{a}}sqrt{a^2 - x^2, для первой четверти {y} = {bover{a}}sqrt{a^2 - x^2}.

Если y = 0, тогда x = a. Если же x = 0, тогда y = b. Точки A_{1}(a, 0) и B_{1}(0, b), а также симметричные с ними A_{2}(-a, 0), B_{2}(0, -b) – вершины эллипса, точка O(0, 0) – центр эллипса, A_{1}A_{2} = 2a большая ось, B_{1}B_{2} = 2b – малая ось эллипса.

Если Min первой четверти, тогда из y = {bover{a}}sqrt{a^2 - x^2 получается, что при возрастании x от 0 к a значение y падает от b к 0. (рис. 3)

Параметрическое уравнение выглядит так:

left{ begin{aligned} x = a{cos}alpha\ y = b{sin}alpha end{aligned}quad {0leqalpha < 2pi right

Основные свойства эллипса

Рассмотрим основные свойства эллипса, которые необходимы для решения многих задач.

1. Угол между касательной к эллипсу и фокальным радиусом r_{1} равен углу между касательной и фокальным радиусом r_{2}.

2. Уравнение касательной к эллипсу в точке M с координатами (x_{M}, y_{M}):

1 = {x x_{M}over{a^{2}}} + {y y_{M}over{b^{2}}}.

3. Если эллипс пересекается двумя параллельными прямыми, то отрезок, который соединяет середины отрезков образовавшихся при пересечении прямых и эллипса, всегда проходит через середину (центр) эллипсa. (При помощи данного свойства можно построить эллипс при помощи циркуля и линейка, а также найти центр эллипса).

4. Эволюта эллипсa – это астероида, которая растянута вдоль короткой оси.

5. Если вписать эллипс с фокусами F_{1} и F_{2} у треугольника ABC, тогда выполняется соотношение:

{1} = {{overline{F_{1}A} * overline{F_{2}A}}over{overline{CA} * overline{AB}}} + {{overline{F_{1}B} * overline{F_{2}B}}over{overline{AB} * overline{BC}}} + {{overline{F_{1}C} * overline{F_{2}C}}over{overline{BC} * overline{CA}}}

Эксцентриситет эллипса

Эксентриситет эллипса – это величина отношения межфокусного расстояния к большей оси и после сокращения на 2 обозначается varepsilon = {cover{a}}

Значения эксентриситета характеризует степень “сплющенность” эллипса. Если a = b =R, тогда c = {sqrt{a^2 + b^2}} = 0to{varepsilon = 0} – получается круг. Если же b = 0, тогда varepsilon = 1 – эллипс превращается в отрезок. В некоторых случаях 0 < varepsilon < 1. Для фокальных радиусов приведём без доказательства такие формулы:

left{ begin{aligned} r_{1} = a - varepsilon{x},\ r_{2} = a + varepsilon, end{aligned} quad{xin[-a, a]. right

Эксцентриситет

 Рис. 3

Эллипс можно построить механическим способом. Из канонического уравнения нужно найти полуоси a и b, тогда вычислим c = {sqrt{a^2 + b^2}} – полуфокусное расстояние.

Строим фокусы F_{1} и F_{2} на расстоянии один от другого 2c Концы не растянутой нити длиной 2a закрепляем в точках F_{1} и F_{2}. Натягивая остриём карандаша нитку, водим остриём по плоскости таким образом, чтобы нитка скользила по острию. Карандаш при этом опишет полуось. Оттягивая нить в противоположную сторону, начертим вторую половину эллипса.

Примеры решения задач

Задача

Задан эллипс уравнением {x^2over{25}} + {y^2over{9}} = 1 и точки M_{0}(4; 1,8), M_{1}(3; 2,4).  Необходимо:

  1. убедиться, что точки M_{0} и M_{1} лежат на эллипсе;
  2. найти полуоси эллипса и координаты его фокусов;
  3. найти расстояние от точки M_{0} к фокусам;
  4. убедиться, что сумма этих расстояний равна длине большой оси;
  5. найти эксентриситет эллипса.

Решение

1. Подставим координаты x = 4 y = 1,8 точки M_{0} в левую часть уравнения эллипса:

{x^2over{25}} + {y^2over{9}} = {4^2over25}} + {1,8 * 1,8over{9}} = {16over25}} + {36over{100}} = {16over{25}} + {9over25}} = 1 – точка M_{0} лежит на эллипсе. Аналогично для M_{1}(3; 2,4):

{9over{25}} + {2*4 * 2,4over{9}} = {9over{25}} + 0,64 = {9over{25}} + {64over{100}} = {9 + 16over{25}} = 1 точка M_{1} лежит на эллипсе.

2. С канонического {x^2over{a^2}} + {y^2over{b^2}} = {1} и данного уравнения {x^2over{25}} + {y^2over{9}} = 1 эллипса выходит: a^2 = {25},quad{b^2 = 9}to{a = 5, b = 3}. Из равенства b^2 = a^2 - c^2 > 0 получается:

b^2 = a^2 - c^2to {c^2 = a^2 - b^2 = 25 - 9} = {16}to{c = 4} – полуфокусное расстояние. Координаты фокусов F_{1}(4; 0) и F_{2}(-4; 0).

3.  Найдём фокальные радиусы точки M_{0}:

r_{2} = F_{2}M_{0} = sqrt{(4 - (-4))^2 + 1,8^2} = sqrt{64 + 3,24} = sqrt{67,24} = 8,2

r_{1} = F_{1}M_{0} = sqrt{(4 - 4)^2 + 1,8^2} = 1,8.

4. Найдём сумму r_{1} + r_{2} = 1, 8 + 8.2 = 10 = 2 * 5 = 2a, что отвечает определению эллипса.

5. Эксцентриситет находится по формуле varepsilon = {cover{a}} = {4over{5}} = 0.8.

Задача

Найти оси, вершины и фокусы эллипса 169x^2 + 25y^2 - 4225 = 0

Решение

Сведём обычное уравнение к каноническому:

169x^2 + 25y^2 - 4225 = 0to{x^2over{25}} + {y^2over{169}} = 1

a^2 = 25, b^2 = 169to{a = 5, b = 13}. Вершины эллипса в точках A_{1}(5, 0), B_{1}(0, 13), A_{2}(-5, 0), B_{2}(0, -13). Строим вершины на координатных осях  и соединяем плавной линией (см. рис. 2). Так как в данном случае b = 13 больше, чем a = 5, то эллипс, который вытянут вдоль оси OY, находим полуфокусное расстояние c = sqrt{b^2 - a^2} = sqrt{169 - 25} = sqrt{144} = 12.

Фокусы в точках F_{1}(0, 12) и F_{2}(0, -12). (см. рис. 3)

Уравнение эллипса

Рис. 4

Найти оси, вершины и фокусы эллипса 25x^2 + 144y^2 = 3600quad{:}arrowvertto{25x^2over{3600}} + {144y^2over{3600}} = {1}to{x^2over{144}} + {y^2over{25}} = {1} или {X^2over{12^2}} + {y^2over{5^2}} = {1}. Построить эллипс.

Сравнивая последнее уравнение с уравнением (2), у нас получается:

a^2 = 12^2, b^2 = 5^2to{a = 12, b = 5}. Откуда находим оси эллипса: 2a = 24, 2b = 10 и координаты вершин: A_{1}(12, 0), A_{2} (-12, 0), B_{1}(0, 5), B_{2}(0, -5). Дальше из формулы:

b^2 = a^2 - c^2to{c^2 = a^2 - b^2 = 144 - 25 = 119}to{c = sqrt{119}}approx{10,91}. Значит, фокусами эллипса есть точки: F_{1}(sqrt{119}, 0) и F_{2}(-sqrt{119}, 0). Для построения эллипса отложим на осях OX и OY вершины A_{1}, B_{1}, A_{2}, B_{2} соответственно  соединим их плавной линией, (см. задачу 1).

Замечание! Если в каноническом уравнении {x^2over{a^2}} + {y^2over{b^2}} = {1} большей полуосью будет b > a, тогда фокусы эллипса будут расположены на оси OY и тогда c = sqrt{b^2 - a^2}.

Эллипс — определение и вычисление с примерами решения

Эллипс:

Определение: Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух выделенных точек

Получим каноническое уравнение эллипса. Выберем декартову систему координат так, чтобы фокусы

Рис. 29. Вывод уравнения эллипса.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению эллипса имеем Из треугольников и по теореме Пифагора найдем

соответственно. Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем не- известные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Уравнение принимает вид Разделив все члены уравнения на получаем каноническое уравнение эллипса: Если то эллипс вытянут вдоль оси Ох, для противоположного неравенствавдоль оси Оу (при этом фокусы тоже расположены на этой оси). Проанализируем полученное уравнение. Если точка М(х; у) принадлежит эллипсу, то ему принадлежат и точки следовательно, эллипс симметричен относительно координатных осей, которые в данном случае будут называться осями симметрии эллипса. Найдем координаты точек пересечения эллипса с декартовыми осями:

Определение: Найденные точки называются вершинами эллипса.

Рис. 30. Вершины, фокусы и параметры эллипса

Определение: Если то параметр а называется большой, а параметр b — малой полуосями эллипса.

Определение: Эксцентриситетом эллипса называется отношение фокусного рас- стояния к большой полуоси эллипса

Из определения эксцентриситета эллипса следует, что он удовлетворяет двойному неравенству Кроме того, эта характеристика описывает форму эллипса. Для демонстрации этого факта рассмотрим квадрат отношения малой полуоси эллипса к большой полуоси

Если и эллипс вырождается в окружность. Если и эллипс вырождается в отрезок

Пример:

Составить уравнение эллипса, если его большая полуось а = 5, а его эксцентриситет

Решение:

Исходя из понятия эксцентриситета, найдем абсциссу фокуса, т.е. параметр Зная параметр с, можно вычислить малую полуось эллипса Следовательно, каноническое уравнение заданного эллипса имеет вид:

Пример:

Найти площадь треугольника, две вершины которого находятся в фокусах эллипса а третья вершина — в центре окружности

Решение:

Для определения координат фокусов эллипса и центра окружности преобразуем их уравнения к каноническому виду. Эллипс:

Следовательно, большая полуось эллипса а малая полуось Так как то эллипс вытянут вдоль оси ординат Оу. Определим расположение фокусов данного эллипса Итак, Окружность: Выделим полные квадраты по переменным Следовательно, центр окружности находится в точке О(-5; 1).

Построим в декартовой системе координат треугольник Согласно школьной формуле площадь треугольника равна Высота а основание Следовательно, площадь треугольника равна:

Эллипс в высшей математике

где и —заданные положительные числа. Решая его относительно , получим:

Отсюда видно, что уравнение (2) определяет две функции. Пока независимое переменное по абсолютной величине меньше , подкоренное выражение положительно, корень имеет два значения. Каждому значению , удовлетворяющему неравенству соответствуют два значения , равных по абсолютной величине. Значит, геометрическое место точек, определяемое уравнением (2), симметрично относительно оси . Так же можно убедиться в том, что оно симметрично и относительно оси . Поэтому ограничимся рассмотрением только первой четверти.

При , при . Кроме того, заметим, что если увеличивается, то разность уменьшается; стало быть, точка будет перемещаться от точки вправо вниз и попадет в точку . Из соображений симметрии изучаемое геометрическое место точек будет иметь вид, изображенный на рис. 34.

Полученная линия называется эллипсом. Число является длиной отрезка , число —длиной отрезка . Числа и называются полуосями эллипса. Число эксцентриситетом.

Пример:

Найти проекцию окружности на плоскость, не совпадающую с плоскостью окружности.

Решение:

Возьмем две плоскости, пересекающиеся под углом (рис. 35). В каждой из этих плоскостей возьмем систему координат, причем за ось примем прямую пересечения плоскостей, стало быть, ось будет общей для обеих систем. Оси ординат различны, начало координат общее для обеих систем. В плоскости возьмем окружность радиуса с центром в начале координат, ее уравнение .

Пусть точка лежит на этой окружности, тогда ее координаты удовлетворяют уравнению .

Обозначим проекцию точки на плоскость буквой , а координаты ее—через и . Опустим перпендикуляры из и на ось , это будут отрезки и . Треугольник прямоугольный, в нем , ,, следовательно, . Абсциссы точек и равны, т. е. . Подставим в уравнение значение , тогда cos

а это есть уравнение эллипса с полуосями и .

Таким образом, эллипс является проекцией окружности на плоскость, расположенную под углом к плоскости окружности.

Замечание. Окружность можно рассматривать как эллипс с равными полуосями.

Уравнение эллипсоида

Определение: Трехосным эллипсоидом называется поверхность, полученная в результате равномерной деформации (растяжения или сжатия) сферы по трем взаимно перпендикулярным направлениям.

Рассмотрим сферу радиуса R с центром в начале координат:

где Х, У, Z — текущие координаты точки сферы.

Пусть данная сфера подвергнута равномерной деформации в направлении координатных осей с коэффициентами деформации, равными

В результате сфера превратится в эллипсоид, а точка сферы М (X, У, Z) с текущими координатами Х, У, Z перейдет в точку эллипсоидам (х, у, z) с текущими координатами х, у, г, причем

Иными словами, линейные размеры сферы в направлении оси Ох уменьшаются в раз, если , и увеличиваются в раз, если и т. д.

Подставляя эти формулы в уравнение (1), будем иметь

где Уравнение (2) связывает текущие координаты точки М’ эллипсоида и, следовательно, является уравнением трехосного эллипсоида.

Величины называются полуосями эллипсоида; удвоенные величины называются осями эллипсоида и, очевидно, представляют линейные размеры его в направлениях деформации (в данном случае в направлениях осей координат).

Если две полуоси эллипсоида равны между собой, то эллипсоид называется эллипсоидом вращения, так как может быть получен в результате вращения эллипса вокруг одной из его осей. Например, в геодезии считают поверхность земного шара эллипсоидом вращения с полуосями

а = b = 6377 км и с = 6356 км.

Если а = b = с, то эллипсоид превращается в сферу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Гипербола
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Кривые второго порядка. Эллипс: формулы и задачи

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат — каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами эллипса (на чертеже — красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и — расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

.

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

,

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

Понятие эллипса в математике и его свойства

Эллипс — что это такое, понятие в математике и геометрии

Эллипс — фигура, представляющая собой по форме замкнутую кривую линию на плоскости. Она получается путем пересечения плоскости с круговым цилиндром, или же как ортогональное отображение окружности на плоскость в пространстве.

В эллипсе суммарная величина расстояния от любой точки до двух точек F2 и F1 будет равна одному постоянному значению. Эти точки — F1 и F2 — носят названия фокусов эллипса.

F 1 M 1 + F 2 M 1 = F 1 M 2 + F 2 M 2 = A 1 A 2 = c o n s t

∣ F 1 M ∣ + ∣ F 2 M ∣ = 2 × a , причем ∣ F 1 F 2 ∣ 2 × a

Окружность можно называть партикулярным (особым) вариантом эллипса. Эллипс, как и параболу, и гиперболу, можно назвать квадрикой или же коническим сечением.

Рассмотрим связанные с эллипсом понятия:

  1. Отрезок AB, проходящий через фокусы эллипса (его концы должны лежать на эллипсе), носит название большой оси эллипса. Длина этого элемента — большой оси — равняется 2a в уравнении, приведенном выше.
  2. Малая ось эллипса — отрезок CD, который перпендикулярен большой оси, он проходит через центральную точку большой оси. Концы отрезка должны лежать на эллипсе.
  3. Центр эллипса — точка пересечения малой и большой оси данной замкнутой кривой.
  4. Большая полуось — отрезок, проведенный из центра эллипса к вершине большой оси. Обозначается буквой «a».
  5. Малая полуось — отрезок, проведенный из центра эллипса к вершине малой оси. Обозначается буквой «b».
  6. Фокальные радиусы в точке — расстояния r 1 и r 2 до определенной точки от каждого фокуса эллипса.
  7. Фокальное расстояние — расстояние, равное: c = ∣ F 1 F 2 ∣ 2 .
  8. Эксцентриситет — величина, равная: e = c a = 1 — b 2 a 2 .
  9. Диаметр эллипса — свободно проведенная хорда, проходящая через центр построения. Диаметры (обычно пара), обладающие свойством середины хорд, параллельные первому диаметру, и находящиеся на втором диаметре, называются сопряженными диаметрами. Середины хорд, параллельных второму диаметру, находятся на первом диаметре.
  10. Радиусом называют отрезок, соединяющий в данной точке центр эллипса и точку. Длина радиуса вычисляется по формуле: r = a b b 2 cos 2 γ + a 2 sin 2 γ = b 1 — e 2 cos 2 γ . В данной формуле γ — величина угла между большой полуосью и радиусом.
  11. Фокальный параметр ( p = b 2 a ) — половина длины хорды, проходящей через фокус эллипса, является перпендикулярной большой оси.
  12. Коэффициент сжатия, или же эллиптичность — отношение длины большой полуоси к длине малой полуоси. Вычисляется по формуле: k = b a . Величина, равная ( 1 — k ) = a — b a , будет носить название «сжатие эллипса». Следует помнить, что для окружности коэффициент сжатия равен единице, а сжатие равно нулю. Эксцентриситет и коэффициент сжатия связаны отношениями равными: k 2 = 1 — e 2 .
  13. Директриса — прямая, которая существует для каждого фокуса эллипса. При этом соотношение расстояния от свободно расположенной точки эллипса до фокуса этой замкнутой кривой к расстоянию от данной точки до определенной прямой будет равно эксцентриситету эллипса. Полный эллипс находится на той же стороне от такой же прямой, что и его фокус. Уравнения для директрис эллипса в классическом виде пишутся как x = ± p e ( 1 — e 2 ) для каждого фокуса ( ± p e 1 — e 2 , 0 ) . Расстояние от фокуса до директрисы будет вычисляться по соотношению p e

Теорема директрисы: Для того, чтобы определенная точка находилась на границе линии замкнутой кривой, необходимо, чтобы соотношение расстояния до фокуса к расстоянию до соответствующей директрисы было равно e.

Эллиптическая функция — функция в двух направлениях, которая в рамках метода комплексного анализа, задана на комплексной плоскости.

Основные элементы и свойства фигуры

Рассмотрим элементы эллипса. Взгляните на чертеж:

F1 и F2 выступают в роли фокусов эллипса. Осями данной замкнутой кривой будут A1A2 =2a (как большая ось, проходящая сквозь фокусы замкнутой кривой), а B1B2=2b (как малая ось, перпендикулярная второй, большой оси фигуры, проходит через ее центр). Здесь «a» является большой полуосью, «b» является малой полуосью, «O» является центром (то есть точкой пересечения малой оси и большой оси).

Вершинами эллипса будут точки A1, и A2, и B1, и B2. Это точки пересечения большой осью и малой осью эллипса. Диаметр замкнутой кривой — отрезок, соединяющий две точки эллипса, а также проходящий через центр фигуры.

Фокальное расстояние, которое обозначается буквой «c», является половиной длины отрезка, соединяющего фокусы эллипса.

Эксцентриситет замкнутой кривой, который обозначается буквой «e», показывает степень «сплющенности» (то есть отклонения от окружности). Он определяется соотношением фокального расстояние (буква «c») к большой полуоси «a». В случае эллипса эксцентриситет будет таким: 0 1.

Фокальные радиусы в точке — расстояния r 1 и r 2 до определенной точки от каждого фокуса эллипса.

Радиус эллипса — отрезок, соединяющий центр, который обозначается буквой «O» с точкой на самом эллипсе.

r = a b b 2 cos 2 γ + a 2 sin 2 γ = b 1 — e 2 cos 2 γ .

В данной формуле γ — величина угла между большой полуосью и радиусом (A1A2), e — эксцентриситет.

Фокальный параметр — отрезок, перпендикулярный большой полуоси, а также выходящий за фокус эллипса. Вычисляется по формуле: p = b 2 a

Коэффициент сжатия или же эллиптичность, обозначаемая буквой «k», является отношением длины малой полуоси к большой полуоси.

Малая полуось всегда будет меньше, чем большая полуось замкнутой кривой. Получается, что k k = b a

В данном уравнении величина «e» — эксцентриситет.

Сжатие эллипса (то есть 1 — k ) — показатель, который равен разности между эллиптичностью и единицей.

Директриса эллипса — пара прямых, которые перпендикулярны фокальной оси замкнутой прямой, пересекающей расстояние a*e от центра замкнутой прямой. Расстояние до директрисы от фокуса будет равно p*e.

Рассмотрим также основные свойства эллипса:

  1. Угол к эллипсу между касательной и фокальным радиусом r 1 будет равен величине угла между фокальным радиусом r 2 и касательной.
  2. Равенство касательной к замкнутой кривой в точке M : 1 = x x M a 2 + y y M b 2
  3. В случае, если замкнутая прямая пересекается парой параллельных прямых, то отрезок, соединяющий середины отрезков, образованных при пересечении эллипса и прямых, всегда будет пересекать центр замкнутой кривой.

Примечание 2

Данное свойство позволяет построить центр эллипса при помощи циркуля и линейки.

  1. Эволюта замкнутой кривой — астероида, которая растянута по короткой оси.
  2. В случае, если можно вписать эллипс с фокусами F1 и F2 в треугольник ABC, то возможно выполнить данное соотношение:

1 = F 1 A × F 2 C A × A B + F 1 B × F 2 B A B × B C + F 1 C × F 1 C B C × C A

Составление уравнения эллипса

Базовое уравнение замкнутой кривой.

Это уравнение, описывающее эллипс в декартовой системе координат. В случае, если центр замкнутой кривой (обозначается буквой «O») — в начале системы координат, а на абсциссе находится большая ось, то замкнутая кривая будет описываться следующим уравнением:

1 = x 2 a 2 + x 2 b 2

В случае, если центр эллипса смещается в точку с координатами x 0 и y 0 , то уравнение примет следующий вид:

1 = ( x — x 0 ) 2 a 2 + ( y — y 0 ) 2 b 2

Параметрическое уравнение будет выглядеть следующим образом:

Как посчитать площадь всего эллипса и сегмента

Рассмотрим формулу для вычисления площади всего эллипса:

Рассмотрим формулу для вычисления площади сегмента эллипса. Это формула площади сегмента, который лежит на левой стороны от хорды с координатами (x, y), а также (x, -y).

S = π a b 2 — b a ( x a 2 — x 2 + a 2 × arcsin x a )

Формула для вычисления периметра и длины дуги

Рассмотрим формулу для вычисления периметра замкнутой кривой.

Важно запомнить, что точную формулу для периметра L найти крайне тяжело. Ниже приведена формула, с помощью которой можно приблизительно рассчитать длину периметра. Максимальной погрешностью данной формулы можно считать примерно 0,63 %.

L ≈ 4 π a b + ( a — b ) 2 a + b

Рассмотрим формулу для вычисления длины дуги замкнутой кривой:

  • Параметрическое уравнение для вычисления длины дуги замкнутой кривой через большую полуось a, а также малую полуось b:

Формула 8

ℓ = ∫ t 1 t 2 a 2 sin 2 t + b 2 cos 2 t d t .

  • Параметрическое уравнение для вычисления длины дуги замкнутой кривой с помощью большой полуоси a, а также эксцентриситета, который обозначается буквой e:

Формула 9

ℓ = ∫ t 1 t 2 1 — e 2 cos 2 t d t , e 1 .

Как построить эллипс по уравнению, примеры

Попробуем построить эллипс по уравнению x 2 16 + y 2 7 = 1

Сначала мы должны привести данное уравнение к привычному виду: x 2 4 2 + y 2 ( 7 ) 2 = 1

Определяем вершины эллипса. Они находятся в точках A1(a; 0), A2 (-a; 0), B1 (0; b), B2 (0; -b). Получаем, что A 1 ( 4 ; 0 ) , A 2 ( — 4 ; 0 ) , B 1 ( 0 ; 7 ) , B 2 ( 0 ; — 7 )

источники:

http://function-x.ru/curves_ellipse.html

http://wika.tutoronline.ru/geometriya/class/11/ponyatie-ellipsa-v-matematike-i-ego-svojstva

Добавить комментарий