Как найти полуоси фокусы эксцентриситет

Примеры решения задач

Задача 6.1.
Найти полуоси, координаты фокусов и
эксцентриситет эллипса

Решение.
Разделив данное уравнение эллипса на
,
приведем его к виду.
Отсюда следует, что большая полуось
эллипса,
а малая полуось.
Известно, что,
поэтому

.

Следовательно,
координаты фокусов
и,
а его эксцентриситет.

Ответ.

Задача 6.2.
Эллипс касается оси ординат в начале
координат, а центр симметрии его находится
в точке
.
Составить уравнение эллипса, если его
эксцентриситет равен.

Решение.
Выполним чертеж (рис. 2.35).

Каноническое
уравнение такого эллипса

В
нашем случае

Рис. 2.35

Известно, что
.
Следовательно, для нахождениянадо знать.
Найдемиз формулы эксцентриситета:,,
откуда.
Значит,,

Итак, уравнение
искомого эллипса

Ответ.

Задача 6.3.
Определитель траекторию точки
,
которая при своем движении остается
втрое ближе к точке,
чем к прямой

Решение.
Траекторию точки
найдем как уравнение множества точек
плоскости, обладающих свойством(рис. 2.36).

Расстояние между
любыми точками
инайдем по формуле

Следовательно,
.

Рис.
2.36

После преобразований
получаем искомое уравнение:

.

Таким образом,
точка
движется по эллипсу. При этом большая
ось эллипса и его фокусы расположены
на оси

Ответ.
.

Задача 6.4.
Действительная
полуось гиперболы
,
эксцентриситетСоставить каноническое уравнение
гиперболы и начертить ее.

Решение.
Эксцентриситет гиперболы
Следовательно,

,
,

откуда фокусы
гиперболы
,,
а мнимая полуось.
Искомым уравнением гиперболы будет

.

Рис. 2.37

Вершины гиперболы:
,,,.
Через них проводим стороны основного
прямоугольника. Его диагоналиявляются асимптотами гиперболы.
Построим их. Затем через вершиныигиперболы проводим ее ветви, приближая
их к асимптотам (рис. 2.37).

Ответ.
.

Задача 6.5. Дана
равносторонняя гипербола
.
Найти уравнение эллипса, фокусы которого
находятся в фокусах гиперболы, если
известно, что эллипс проходит через
точку.

Решение.
Для данной гиперболы
.
Следовательно, из соотношенияполучаем,
откуда.
Значит, фокусы гиперболыи.
В этих же точках находятся фокусы
эллипса.

Обозначим через
исоответственно большую и малую полуоси
эллипса. Тогда при условии, что,
будем иметьДля определенияииспользуем еще одно условие: что точкалежит на эллипсе, т.е. ее координаты
должны удовлетворять уравнению эллипса

(6.8)

Это значит, что
Таким образом, для определенияиимеем систему уравнений

решив которую,
получим
,Подставив эти значения в уравнение
(6.8), найдем

Ответ.

Задача 6.6.
Асимптоты гиперболы имеют уравнения
.
Фокусы лежат на осии расстояние между ними равно.
Написать каноническое уравнение
гиперболы и начертить ее.

Решение.
Так как фокусы гиперболы лежат на оси
,
то ее каноническое уравнение имеет вид

Разрешив уравнение
асимптот относительно
,
получим,
откуда.
Кроме того,,
т.е.Так как для гиперболы,
то для нахожденияиполучим систему уравнений

Рис.
2.38

решив
которую, будем иметь
,.
Следовательно, каноническое уравнение
гиперболы (рис. 2.38)

Ответ.

Задача 6.7.
Составить уравнение параболы и ее
директрисы, если парабола проходит
через точки пересечения прямой
и окружностии симметрична относительно оси.

Решение.
Найдем точки пересечения заданных
линий, решив совместно их уравнения:

В результате
получим два решения
и.
Точки пересеченияи.
Так как парабола проходит через точкуи симметрична относительно оси,
то в этой точке будет находиться вершина
параболы. Поэтому уравнение параболы
имеет вид.
Так как парабола проходит через точку,
то координаты этой точки удовлетворяют
уравнению параболы:,,

Итак, уравнением
параболы будет
,
уравнение директрисыили,
откуда

Ответ.
;

Задача 6.8.
Мостовая арка имеет форму параболы.
Определить параметр
этой параболы, зная, что пролет арки
равен,
а высота

Решение. выберем
прямоугольную систему координат так,
чтобы вершина параболы (мостовой арки)
находилась в начале координат, а ось
симметрии совпадала с отрицательным
направлением оси
.
В таком случае каноническое уравнение
параболы имеет вид,
а концы хорды аркии.
Подставив координаты одного из концов
хорды (например,)
в уравнение параболы и решив полученное
уравнение относительно,
получим

Ответ.

Задача 6.9.
Привести уравнение кривой
к каноническому виду и построить эту
кривую.

Решение.
В уравнении
,,,,,Вычислим дискриминант старших членов:

.

Так как
,
данная линия является кривой эллиптического
типа.

Найдем центр кривой
из системы

Решив ее, получим
,.

С помощью
параллельного переноса осей координат
в центр
уравнение кривой в новой системеприводится к виду:

,

подставив в исходное
уравнение кривой, получим

(6.9)

Для дальнейшего
упрощения уравнения (6.9) применим правило
приведения квадратичной формы к
каноническому виду. Составим
характеристическое уравнение

или
.

Отсюда
.

Повернув теперь
оси координат так, чтобы направления
осей
исовпадали с главными направлениями
квадратичной формы, уравнение (6.5)
приведем к каноническому виду

или .

Из уравнения видно,
что это эллипс с полуосями
,.
Чтобы построить этот эллипс найдем
главное направление, соответствующее
характеристическому числу(его мы приняли за осьв каноническом уравнении). Подставив
коэффициенты нашего уравнения в систему

получим

Полагая
,
находим, что.
Единичный вектор

оси
имеет в системекоординатыи.
Следовательно,,
а.

Повернув систему
на уголпо часовой стрелке, получим прямоугольную
систему координат,
в которой легко построить эллипс (рис.
3.39).

Задача
6.10.

Преобразовать к каноническому виду
уравнение

(6.10)

и
построить линию, задаваемую этим
уравнением.

Рис. 3.39

Решение.
В исходном уравнении
,,,,,Дискриминант старших членов

Следовательно,
уравнение определяет нецентральную
линию второго порядка, т.е. линию
параболического типа.

Составим
характеристическое уравнение квадратичной
формы старших членов:

или

Отсюда
,

Найдем главное
направление, соответствующее
характеристическому числу
.
Для этого подставим в систему

коэффициенты
нашего уравнения. Получим

Полагая
,
имеем.
Следовательно, главное направление,
соответствующее характеристическому
числу,
определяется вектором.
Нормируя его, находим единичный вектор:.
Это значит, что,
а,
т.е. поворачиваем системуна угол.

Используя теперь
равенства (6.10), имеем:

Следовательно,
уравнение (10.17) в системе координат
принимает вид

(6.11)

Уравнение (6.11)
определяет параболу. Для приведения
его к каноническому виду найдем координаты
нового начала. Сгруппируем члены с
одинаковыми переменными и выделим
полный квадрат:

Рис.
2.40

После параллельного
переноса осей координат в новое начало
уравнение параболы (6.11) в системе
координатпримет канонический вид.
Расположение параболы показано на
рис. 2.40.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Эллипс – это замкнутая плоская кривая, сумма расстояний от каждой точки до двух точек равняется постоянной величине.

Что такое эллипс и фокусное расстояние

Эллипс – это множество точек плоскости, сумма расстояний которых от двух заданных точек, что называются фокусами, есть постоянная величина и равна 2aquad{(a > 0)}.

Обозначим фокусы эллипса F_{1} и F_{2}. Допустим, что расстояние F_{1}{F_{2}} = 2c – фокусное расстояние.

Эллипс

Рис. 1

F_{1}, F_{2} – фокусы .

F_{1} = (c, 0); F_{2} = (- c ; 0),

c – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема:

Фокусное расстояние и полуоси связаны соотношением:

a^2 = b^2 + c^2

 Если точка M находится на пересечении эллипса с вертикальной осью, r_{1} + r_{2} = 2 * sqrt{b^2 + c^2} (теорема Пифагора). Если же точка M находится на пересечении его с горизонтальной осью, r_1} + r_{2} = a - c + a + c. Так как по определению сумма r_{1} + r_2} – постоянная величина, то приравнивая получается:

a^2 = b^2 + c^2to{r_{1} + r_{2} = 2a.

Уравнение эллипса

Уравнение элиппса бывает двух видов:

  1. Каноническое уравнение эллипса.
  2. Параметрическое уравнение эллипса.

Сначала рассмотрим каноническое уравнение эллипса:

Уравнение описывает эллипс в декартовой системе координат. Если центр эллипсa O в начале системы координат, а большая ось лежит на абсциссе, то эллипс описывается уравнением:

1 = {x^2over{a^2}} + {y^2over{b^2}}

Если центр эллипсa O смещен в точку с координатами (x_{0}, y_{0}) тогда уравнение:

1 = {(x - x_{0})^2over{a^2}} +  {(y - y_{0})^2over{b^2}}

Чтобы получить каноническое уравнение эллипса, разместим F_{1} и F_{2} на оси OX симметричной к началу координат. Тогда у фокусов будут такие координаты F_{2}(-c, 0) и F_{2}(c, 0) (см. рис. 2).

Пусть M(x, y) – произвольная точка эллипса. Обозначим через r_{2} и r_{1} – расстояние от точки M к фокусам. Согласно с определением эллипса:

r_{1} + r_{2} = 2a

(1)

Уравнение эллипса

Рис. 2

Подставим в (1) r_{1} = F_{1}M = sqrt{(x - c)^2 + (y - 0)^2}, r_{2} = sqrt{(x + c)^2 + y^2} и освободимся от иррациональности, подняв обе части к квадрату, получим:

r_{2} = 2a - r_{1}tosqrt{(x + c)^2 + y^2} = 2a - sqrt{(x - c)^2 + y^2}}to{x^2 + 2cx + c^2 + y^2} = 4a^2 - 4asqrt{(x - c)^2) + y^2} + x^2 - 2cx + c^2 + y^2to{4a}sqrt{(x - c^2 + y^2} = 4a^2 - 4cxarrowvert:4

asqrt{(x - c)^2 + y^2} =a^2 - cx

 (подносим к квадрату обе части): to{a^2x^2 - 2ca^2x + a^2c^2 + a^2y^2} = {a^4 - 2ca^2x + c^2x^2to{(a^2 - c^2)x^2 + a^2y^2 = a^2(a^2 - c^2)arrowvert:a^2(a^2 - c^2),

{x^2over{a^2}} + {y^2over{a^2 - c^2}} = 1

Обозначим: a^2 - c^2 = b^2, получаем каноническое уравнение эллипса:

{x^2over{a^2}} + {y^2over{b^2}} = {1}

(2)

Отметим, что по известному свойству треугольника (сумма двух сторон  больше третьей) из Delta{F_{1}}MF_{2} у нас получается F_{2}M + F_{1}M > F_{1}F_{2}to{r_{1} + r_{2}} > 2c. Так как r_{1} + r_{2} = 2a, тогда 2a > 2cto{a >c}, и поэтому b^2 = a^2 - c^2 >0.

Для построения эллипса обратим внимание, что если точка M_{1}(x, y) принадлежит эллипсу, то есть удовлетворяет уравнение (2), тогда точки M_{2}(-x, y), M_{3}(-x, -y), M_{4}(x, -y) тоже удовлетворяют это уравнение: из

{x^2over{a^2}} + {y^2over{b^2}} = 1to{(pm{x})^2over{a^2}} + {(pm{y})^2over{b^2}} = {1}.

Точки M_{1}, M_{2}, M_{3}, M_{4} – расположены симметрично относительно осей координат. Значит, эллипс – фигура, симметричная относительно координатных осей. Поэтому достаточно построить график в первой четверти, а тогда симметрично продолжить его.

Из уравнения (2) находим y = pm{{b}over{a}}sqrt{a^2 - x^2, для первой четверти {y} = {bover{a}}sqrt{a^2 - x^2}.

Если y = 0, тогда x = a. Если же x = 0, тогда y = b. Точки A_{1}(a, 0) и B_{1}(0, b), а также симметричные с ними A_{2}(-a, 0), B_{2}(0, -b) – вершины эллипса, точка O(0, 0) – центр эллипса, A_{1}A_{2} = 2a большая ось, B_{1}B_{2} = 2b – малая ось эллипса.

Если Min первой четверти, тогда из y = {bover{a}}sqrt{a^2 - x^2 получается, что при возрастании x от 0 к a значение y падает от b к 0. (рис. 3)

Параметрическое уравнение выглядит так:

left{ begin{aligned} x = a{cos}alpha\ y = b{sin}alpha end{aligned}quad {0leqalpha < 2pi right

Основные свойства эллипса

Рассмотрим основные свойства эллипса, которые необходимы для решения многих задач.

1. Угол между касательной к эллипсу и фокальным радиусом r_{1} равен углу между касательной и фокальным радиусом r_{2}.

2. Уравнение касательной к эллипсу в точке M с координатами (x_{M}, y_{M}):

1 = {x x_{M}over{a^{2}}} + {y y_{M}over{b^{2}}}.

3. Если эллипс пересекается двумя параллельными прямыми, то отрезок, который соединяет середины отрезков образовавшихся при пересечении прямых и эллипса, всегда проходит через середину (центр) эллипсa. (При помощи данного свойства можно построить эллипс при помощи циркуля и линейка, а также найти центр эллипса).

4. Эволюта эллипсa – это астероида, которая растянута вдоль короткой оси.

5. Если вписать эллипс с фокусами F_{1} и F_{2} у треугольника ABC, тогда выполняется соотношение:

{1} = {{overline{F_{1}A} * overline{F_{2}A}}over{overline{CA} * overline{AB}}} + {{overline{F_{1}B} * overline{F_{2}B}}over{overline{AB} * overline{BC}}} + {{overline{F_{1}C} * overline{F_{2}C}}over{overline{BC} * overline{CA}}}

Эксцентриситет эллипса

Эксентриситет эллипса – это величина отношения межфокусного расстояния к большей оси и после сокращения на 2 обозначается varepsilon = {cover{a}}

Значения эксентриситета характеризует степень “сплющенность” эллипса. Если a = b =R, тогда c = {sqrt{a^2 + b^2}} = 0to{varepsilon = 0} – получается круг. Если же b = 0, тогда varepsilon = 1 – эллипс превращается в отрезок. В некоторых случаях 0 < varepsilon < 1. Для фокальных радиусов приведём без доказательства такие формулы:

left{ begin{aligned} r_{1} = a - varepsilon{x},\ r_{2} = a + varepsilon, end{aligned} quad{xin[-a, a]. right

Эксцентриситет

 Рис. 3

Эллипс можно построить механическим способом. Из канонического уравнения нужно найти полуоси a и b, тогда вычислим c = {sqrt{a^2 + b^2}} – полуфокусное расстояние.

Строим фокусы F_{1} и F_{2} на расстоянии один от другого 2c Концы не растянутой нити длиной 2a закрепляем в точках F_{1} и F_{2}. Натягивая остриём карандаша нитку, водим остриём по плоскости таким образом, чтобы нитка скользила по острию. Карандаш при этом опишет полуось. Оттягивая нить в противоположную сторону, начертим вторую половину эллипса.

Примеры решения задач

Задача

Задан эллипс уравнением {x^2over{25}} + {y^2over{9}} = 1 и точки M_{0}(4; 1,8), M_{1}(3; 2,4).  Необходимо:

  1. убедиться, что точки M_{0} и M_{1} лежат на эллипсе;
  2. найти полуоси эллипса и координаты его фокусов;
  3. найти расстояние от точки M_{0} к фокусам;
  4. убедиться, что сумма этих расстояний равна длине большой оси;
  5. найти эксентриситет эллипса.

Решение

1. Подставим координаты x = 4 y = 1,8 точки M_{0} в левую часть уравнения эллипса:

{x^2over{25}} + {y^2over{9}} = {4^2over25}} + {1,8 * 1,8over{9}} = {16over25}} + {36over{100}} = {16over{25}} + {9over25}} = 1 – точка M_{0} лежит на эллипсе. Аналогично для M_{1}(3; 2,4):

{9over{25}} + {2*4 * 2,4over{9}} = {9over{25}} + 0,64 = {9over{25}} + {64over{100}} = {9 + 16over{25}} = 1 точка M_{1} лежит на эллипсе.

2. С канонического {x^2over{a^2}} + {y^2over{b^2}} = {1} и данного уравнения {x^2over{25}} + {y^2over{9}} = 1 эллипса выходит: a^2 = {25},quad{b^2 = 9}to{a = 5, b = 3}. Из равенства b^2 = a^2 - c^2 > 0 получается:

b^2 = a^2 - c^2to {c^2 = a^2 - b^2 = 25 - 9} = {16}to{c = 4} – полуфокусное расстояние. Координаты фокусов F_{1}(4; 0) и F_{2}(-4; 0).

3.  Найдём фокальные радиусы точки M_{0}:

r_{2} = F_{2}M_{0} = sqrt{(4 - (-4))^2 + 1,8^2} = sqrt{64 + 3,24} = sqrt{67,24} = 8,2

r_{1} = F_{1}M_{0} = sqrt{(4 - 4)^2 + 1,8^2} = 1,8.

4. Найдём сумму r_{1} + r_{2} = 1, 8 + 8.2 = 10 = 2 * 5 = 2a, что отвечает определению эллипса.

5. Эксцентриситет находится по формуле varepsilon = {cover{a}} = {4over{5}} = 0.8.

Задача

Найти оси, вершины и фокусы эллипса 169x^2 + 25y^2 - 4225 = 0

Решение

Сведём обычное уравнение к каноническому:

169x^2 + 25y^2 - 4225 = 0to{x^2over{25}} + {y^2over{169}} = 1

a^2 = 25, b^2 = 169to{a = 5, b = 13}. Вершины эллипса в точках A_{1}(5, 0), B_{1}(0, 13), A_{2}(-5, 0), B_{2}(0, -13). Строим вершины на координатных осях  и соединяем плавной линией (см. рис. 2). Так как в данном случае b = 13 больше, чем a = 5, то эллипс, который вытянут вдоль оси OY, находим полуфокусное расстояние c = sqrt{b^2 - a^2} = sqrt{169 - 25} = sqrt{144} = 12.

Фокусы в точках F_{1}(0, 12) и F_{2}(0, -12). (см. рис. 3)

Уравнение эллипса

Рис. 4

Найти оси, вершины и фокусы эллипса 25x^2 + 144y^2 = 3600quad{:}arrowvertto{25x^2over{3600}} + {144y^2over{3600}} = {1}to{x^2over{144}} + {y^2over{25}} = {1} или {X^2over{12^2}} + {y^2over{5^2}} = {1}. Построить эллипс.

Сравнивая последнее уравнение с уравнением (2), у нас получается:

a^2 = 12^2, b^2 = 5^2to{a = 12, b = 5}. Откуда находим оси эллипса: 2a = 24, 2b = 10 и координаты вершин: A_{1}(12, 0), A_{2} (-12, 0), B_{1}(0, 5), B_{2}(0, -5). Дальше из формулы:

b^2 = a^2 - c^2to{c^2 = a^2 - b^2 = 144 - 25 = 119}to{c = sqrt{119}}approx{10,91}. Значит, фокусами эллипса есть точки: F_{1}(sqrt{119}, 0) и F_{2}(-sqrt{119}, 0). Для построения эллипса отложим на осях OX и OY вершины A_{1}, B_{1}, A_{2}, B_{2} соответственно  соединим их плавной линией, (см. задачу 1).

Замечание! Если в каноническом уравнении {x^2over{a^2}} + {y^2over{b^2}} = {1} большей полуосью будет b > a, тогда фокусы эллипса будут расположены на оси OY и тогда c = sqrt{b^2 - a^2}.

Построить такой график можно здесь: https://www.desmos.com/
Построить такой график можно здесь: https://www.desmos.com/

Что мы знаем со школы про эллипс? К сожалению, исходя из своей практики работы с учениками, многие вплоть до 11 класса не сталкиваются с такой замечательной плоской фигурой, впрочем как и с её частным случаем – окружностью. Некоторые знают только примерный вид уравнения…

Кстати, какое оно? Каноническим уравнением эллипса считается следующее уравнение:

Каноническое уравнение эллипса
Каноническое уравнение эллипса

Почему оно именно такое? Что ж, это можно вывести из определения. Поэтому давайте его напишем.

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, большая чем расстояние между фокусами.

Давайте сделаем рисунок и попробуем вывести каноническое уравнение из определения эллипса.

Математика эллипса: всё, что нужно знать

Обозначим фокусы через F₁ и F₂, расстояние между ними через 2c, а сумму расстояний от произвольной точки эллипса M(x; y) до фокусов – через 2a. По определению 2а > 2c, т.е. а > c.

Для вывода уравнения эллипса выберем систему координат OXY так, чтобы фокусы F₁ и F₂ лежали а оси OX, а начало координат совпадало с серединой отрезка F₁F₂. Тогда фокусы будут иметь следующие координаты: F₁(-c; 0) и F₂(+c; 0).

Тогда, согласно определению эллипса, MF₁ + MF₂ = 2a, то есть:

Математика эллипса: всё, что нужно знать

Мы вывели каноническое уравнение эллипса и доказали, что оно эквивалентно начальному уравнению из определения.

Эллипс – кривая второго порядка.

Исследование формы эллипса по его уравнению

Установим форму эллипса, используя его каноническое уравнение.

1. Каноническое уравнение содержит x и y только в четных степенях, поэтому если точка (x; y) принадлежит эллипсу, то ему также принадлежат точки (x; -y), (-x; y), (-x; -y). Отсюда следует, что эллипс симметричен относительно осей координат Ox и Oy, а также точки O(0; 0), которая является центром эллипса.

Математика эллипса: всё, что нужно знать

2. Точки пересечения эллипса с осями координат. Положив y = 0, находим две точки A₁(a; 0) и A₂(-a;0), в которых ось Ox пересекает эллипс. Положив в уравнении x = 0, находим точки пересечения эллипса с осью Oy: B₁(0; b) и B₂(0; -b). Все эти 4 точки называются вершинами эллипса.

Отрезки A₁A₂ и B₁B₂, а также их длины 2a и 2b называются соответственно большой и малой осями эллипса. Числа a и b называются соответственно большой и малой полуосями эллипса.

3. Также из канонического уравнения следует, что каждое слагаемое в левой части не превосходит единицы, т.е. имеют место неравенства

Математика эллипса: всё, что нужно знать

Следовательно, все точки эллипса лежат внутри прямоугольника, образованного прямыми x = ±a и y = ±b.

4. В каноническом уравнении сумма неотрицательных слагаемых (x/a)² и (y/b)² равна единице. Следовательно, при возрастании одного слагаемого другое будет уменьшаться, т.е. если |x| возрастает, то |y| уменьшается и наоборот.

Дополнительные сведения об эллипсе

Форма эллипса зависит от отношения b/a. При a = b = R эллипс превращается в окружность, уравнение эллипса принимает вид x² + y² = R². Однако, в качестве характеристики формы эллипса чаще используется отношение c/a.

Отношение c/a половины расстояния между фокусами к большей полуоси эллипса называется эксцентриситетом эллипса и обозначается буквой «эпсилон» ε:

Математика эллипса: всё, что нужно знать

Из последней строки видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным, то есть больше походить на окружность, быть ближе к ней по форме. Если положить ε = 0, то эллипс превращается в окружность.

Пусть M(x; y) – произвольная точка эллипса с фокусами F₁ и F₂. Длины отрезков F₁M = r₁ и F₂M = r₂ называются фокальными радиусами точки M.
Очевидно, что r₁ + r₂ = 2a.

Тогда имеют место быть формулы: r₁ = a + εx и r₂ = a + εx

Выведем эти формулы

Математика эллипса: всё, что нужно знать
Математика эллипса: всё, что нужно знать

Прямые x = ±a/ε называются директрисами эллипса. Значение директрисы эллипса выявляется следующим утверждением.

Теорема

Если r – расстояние от произвольной точки эллипса до какого-нибудь фокуса, d – расстояние от этой же точки до соответствующей этому фокусу директрисы, то отношение r/d есть величина постоянная, равная эксцентриситету эллипса: r/d = ε.

Из равенства a² – c² = b² следует, что a > b. Если же a < b, то каноническое уравнение (x/a)² + (y/b)² = 1 определяет эллипс, большая ось которого 2b лежит на оси OY, а малая ось 2a – лежит на оси Ox. Фокусы такого эллипса находятся в точках F₁(0; +c) и F₂(0; -c), где c = √(b² – a²).

Площадь фигуры, ограниченной эллипсом

Допустим, что перед нами стоит следующая задача:
Вычислить площадь фигуры, ограниченной эллипсом.

Решение:

Зададим эллипс параметрическими уравнениями:
x = a
cos(t) и y = b sin(t). Кстати, выразив косинус и синус из каждого, а потом возведя в квадрат оба уравнения, сложив их, можно прийти к каноническому уравнению эллипса.

В силу симметричности эллипса относительно начала координат, нам достаточно найти площадь 1/4 части эллипса, а затем умножить результат на 4. Сделаем подходящий рисунок.

Математика эллипса: всё, что нужно знать

Здесь x изменяется от 0 до a, следовательно параметр t изменяется от π/2 до 0. Площадь четверти эллипса будем искать с помощью интегрирования функции, задающей эллипс в первой четверти координат.

Вывод формулы для площади эллипса
Вывод формулы для площади эллипса

Длина дуги эллипса (периметр эллипса)

Вывод длины дуги эллипса через эллиптический интеграл
Вывод длины дуги эллипса через эллиптический интеграл

Ознакомиться с эллиптическими интегралами

Стоит заметить, что для окружности всё получается гораздо проще, и мы легко выводим формулу, знакомую нам со школы C = 2πR.

Вывод длины дуги окружности
Вывод длины дуги окружности

Приближённые формулы для периметра

Математика эллипса: всё, что нужно знать

Точные формулы для периметра

Джеймс Айвори и Фридрих Бессель независимо друг от друга получили формулу для периметра эллипса:

Математика эллипса: всё, что нужно знать

Площадь сегмента эллипса

Площадь сегмента между дугой, выпуклой влево, и вертикальной хордой , проходящей через точки (x; y) и (x; -y) можно определить по формуле:

Математика эллипса: всё, что нужно знать

Если эллипс задан уравнением Ax² + Bxy + Cy² = 1, то площадь можно определить по формуле

Математика эллипса: всё, что нужно знать

Физический смысл фокусов

1. Свет от источника, находящегося в одном из фокусов, отражается эллипсом так, что отраженные лучи пересекутся во втором фокусе.

2. Свет от источника, находящегося вне любого из фокусов, отражается эллипсом так, что отраженные лучи ни в каком фокусе не пересекутся.

3. Если F₁ и F₂ — фокусы эллипса, то для любой точки M, принадлежащей эллипсу, угол между касательной в этой точке и прямой F₁M равен углу между касательно и прямой F₂M.

4. Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.

5. Эволютой эллипса является астроида , вытянутая вдоль вертикальной оси. Эволюта плоской кривой — геометрическое место точек , являющихся центрами кривизны кривой. По отношению к своей эволюте любая кривая является эвольвентой .

6. Среди всех выпуклых замкнутых кривых, ограничивающих данную площадь, эллипсы и только они имеет максимальную аффинную длину .
Аффинная длина — параметр плоской кривой , который сохраняется при эквиаффинных преобразованиях (то есть аффинных преобразованиях , сохраняющих площадь ).

7. Если лестницу (бесконечно тонкий отрезок прямой) прислонить к вертикальной стенке с горизонтальным полом, и один конец лестницы будет скользить по стенке (всё время касаясь её) а второй конец лестницы будет скользить по полу (всё время касаясь его), тогда любая фиксированная точка лестницы (не на её концах), будет двигаться по дуге некоторого эллипса. Это свойство остаётся верным, если мы возьмём точку не внутри лестницы-отрезка, а на её мыслимом продолжении. Последнее свойство используется в описанном выше эллипсографе.

Построение эллипса с помощью иголок, нитки и карандаша.

Построение эллипса с помощью иголок, нитки и карандаша.
Построение эллипса с помощью иголок, нитки и карандаша.

Эллипсы в астрономии. Все планеты и другие небесные тела Солнечной системы движутся вокруг Солнца по эллиптическим орбитам, в одном из фокусов – Солнце. Этот закон был открыт ещё Кеплером. Ближайшую точку к Солнцу Земля проходит 4 января, таким образом, для северного полушария зима чуть теплее, чем для южного. К тому же, из-за такой формы орбиты, зима для северного полушария чуть короче, то есть период между осенним и весенним равноденствием не ровно 1/2 года, а меньше. Действительно, на южном полюсе температуры бывают ниже, чем на северном полюсе.

Физическое свойство фокусировки. Лучи, испущенные из одного фокуса, после отражения соберутся во втором фокусе. Название «фокус» как раз и связано со словом «фокусировка» лучей. Если на орбите Земли расположить зеркала, так чтобы они были повёрнуты ровно по касательной к орбите, то все лучи соберутся во 2 фокусе, то есть из той точки будет видно, что вся орбита светится.

Последнее свойство используется в физике для построение оптических резонаторов в лазерной технике. Лампа накачки размещается вдоль одной из фокальных осей зеркально отражающего эллиптического цилиндра, а лазерный стержень располагается вдоль другой фокальной оси. На второй фокальной оси помещают активную среду. А свойства эллиптической поверхности помогают быть уверенными в том, что вся энергия лампы накачки соберется в области активной среды.

Математика эллипса: всё, что нужно знать

Почитать подробнее здесь

Поместим в одном из фокусов зеркального эллипса лампочку
и проследим за выпущенными из неё лучами света. Отразившись от эллипса, они соберутся в другом фокусе. Причём окажутся там одновременно:

Математика эллипса: всё, что нужно знать

Зрительно напомним геометрическое определение эллипса: эллипс есть множество точек M плоскости, сумма расстояний от которых до данных точек A и B постоянна:

Математика эллипса: всё, что нужно знать

Решим вспомогательную задачу. Даны две точки по одну сторону от прямой. Мы хотим пройти из A в B, набрав по пути воды из реки l.

Математика эллипса: всё, что нужно знать

Мы хотим пройти из A в B, набрав по пути воды из реки l. В какой точке M надо набирать воду, чтобы общий путь имел минимальную длину?

Математика эллипса: всё, что нужно знать

Рассмотрим точку B’, симметричную точке B. Тогда XB = XB’. Длина AX+XB = AX+XB’ минимальна, когда ломаная AXB’ превращается в прямую.

Мы хотим пройти из A в B, набрав по пути воды из реки l. В какой точке набирать воду? Ответ: в точке пересечения l с AB’ (где B’ симметрична B относительно l). Заодно мы доказали равенство углов. Мы хотим пройти из A в B, набрав по пути воды из реки l. Где набирать воду?
Ответ 1: в точке пересечения
l с AB’.
Ответ 2: там, где «угол падения равен углу отражения».

Принцип Ферма: свет выбирает кратчайший путь между двумя точками.

Математика эллипса: всё, что нужно знать

Вернемся к доказательству оптического свойства эллипса. На эллипсе сумма AM+MB постоянна. А для точек вне эллипса эта сумма больше, AX+XB > AM+MB.

Математика эллипса: всё, что нужно знать

В частности, если провести в точке M касательную к эллипсу, то для любой другой точки X на этой касательной AX+XB > AM+MB. Значит, по предыдущей задаче «угол падения равен углу отражения».

Математика эллипса: всё, что нужно знать

…по предыдущей задаче «угол падения равен углу отражения». Оптическое свойство эллипса доказано.

Многофокусные эллипсы

N-эллипс — обобщение эллипса , имеющее более двух фокусов. N-эллипсы называют также мультифокальными эллипсами , полиэллипсами, k -эллипсами, эллипсами Чирнхауса . Впервые такие фигуры исследовал Джеймс Максвелл в 1846 году.

Пусть на плоскости задано n точек (ui , vi ) (фокусы ), тогда n -эллипс является геометрическим местом точек плоскости, для которых сумма расстояний до n фокусов является постоянной величиной d . В виде формулы данное утверждение записывается как

Математика эллипса: всё, что нужно знать

1-эллипс представляет собой окружность , 2-эллипс — обычный эллипс. Обе данные кривые являются алгебраическими кривыми степени 2.

Для любого числа n фокусов n -эллипс представляет собой замкнутую выпуклую кривую. Кривая является гладкой вне окрестностей фокуса.

Эллипс с 4-мя фокусами и фокусным расстоянием d = 7
Эллипс с 4-мя фокусами и фокусным расстоянием d = 7

Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в VK
Репетитор IT mentor в Instagram
Репетитор IT mentor в telegram

Уравнение линии второго порядка:

LaTeX formula: Ax^2+By^2+Cxy+Dx+Ey+F=0 . (4.15)

Рассмотрим некоторые виды линий второго порядка.

1. Окружность – это геометрическое место точек, равноудаленных от данной точки, называемой центром. 

В случае окружности уравнение 4.15 примет вид: 

LaTeX formula: Ax^2+By^2+Dx+Ey+F=0 .

Если центр окружности находится в точке LaTeX formula: O(0;0) , а ее радиус равен LaTeX formula: R (рис. 4.1), то уравнение окружности имеет вид:

LaTeX formula: x^2+y^2=R^2 . (4.16)

Если центр окружности находится в точке LaTeX formula: O'(a;b) , а ее радиус равен LaTeX formula: R (рис. 4.2), то уравнение окружности имеет вид:

LaTeX formula: (x-a)^2+(y-b)^2=R^2 . (4.17)

Например, запишем уравнение окружности с центром в точке LaTeX formula: O'(-1;6) и радиусом LaTeX formula: R=3 . Согласно формуле 4.17 получим: LaTeX formula: (x+1)^2+(y-6)^2=9 . 

2. Эллипс – это геометрическое место точек, для каждой из которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная. Расстояние от точки эллипса до фокуса называют фокальным радиусом.

На рисунке 4.3 изображен эллипс: точка LaTeX formula: O – центр эллипса; точки LaTeX formula: F_1 и LaTeX formula: F_2 – его фокусы; LaTeX formula: MF_1 и LaTeX formula: MF_2 – фокальные радиусы; LaTeX formula: A_1A_2=2a – большая ось эллипса; LaTeX formula: B_1B_2=2b – малая ось эллипса; LaTeX formula: F_1F_2=2c – расстояние между фокусами. 

Каноническое уравнение эллипса: 

LaTeX formula: frac{x^2}{a^2}+frac{y^2}{b^2}=1 , (4.18)

где LaTeX formula: a – большая полуось; LaTeX formula: b – меньшая полуось. 

Фокусы имеют координаты

LaTeX formula: F_1(-c;0) и LaTeX formula: F_2(c;0) , (4.19)

где 

LaTeX formula: c=sqrt{a^2-b^2} . (4.19.1) 

Эксцентриситет эллипса находят по формуле:

LaTeX formula: varepsilon =frac{c}{a}<1 . (4.20)

3. Гипербола – это геометрическое место точек, для каждой из которых модуль разностей расстояний до двух данных точек, называемых фокусами, есть величина постоянная.

На рисунке 4.4 изображена гипербола: точки LaTeX formula: A_1 и LaTeX formula: A_2 – ее вершины; точки LaTeX formula: F_1 и LaTeX formula: F_2 – ее фокусы; LaTeX formula: A_1A_2=2a – действительная ось гиперболы; LaTeX formula: B_1B_2=2b – мнимая ось; LaTeX formula: F_1F_2=2c – расстояние между фокусами; прямые (1) и (2) – асимптоты.

Каноническое уравнение гиперболы:

LaTeX formula: frac{x^2}{a^2}-frac{y^2}{b^2}=1 , (4.21)

где LaTeX formula: a – действительная полуось; LaTeX formula: b – мнимая полуось.

Фокусы имеют координаты LaTeX formula: F_1(-c;0) и LaTeX formula: F_2(c;0) , где 

LaTeX formula: c=sqrt{a^2+b^2} . (4.22)

Эксцентриситет гиперболы находят по формуле:

LaTeX formula: varepsilon =frac{c}{a}>1 . (4.23)

Уравнения асимптот гиперболы:

LaTeX formula: y=pm frac{bx}{a} . (4.24)

4. Парабола – это геометрическое место точек, равноудаленных от фокуса и прямой, называемой директрисой.

Каноническое уравнение параболы: 

LaTeX formula: y^2=2px . (4.25)

где ось LaTeX formula: OX – ось симметрии параболы; LaTeX formula: p – расстояние от фокуса до директрисы LaTeX formula: d (рис. 4.5). 

Фокус имеет координаты:

LaTeX formula: Fleft ( frac{p}{2};0 right ). (4.25.1)

Уравнение директрисы параболы имеет вид:

LaTeX formula: x=-frac{p}{2} . (4.25.2)

Если осью симметрии параболы является ось LaTeX formula: OY (рис.4.6), то каноническое уравнение параболы имеет вид: 

LaTeX formula: x^2=2py . (4.26)

В этом случае фокус имеет координаты:

LaTeX formula: Fleft ( 0;frac{p}{2} right ) . (4.26.1) 

Уравнение директрисы LaTeX formula: d параболы имеет вид:

 LaTeX formula: y=-frac{p}{2} . (4.26.2) 

Пример 1. Найдите большую и меньшую полуоси, фокусы и эксцентриситет эллипса LaTeX formula: frac{x^2}{16}+frac{y^2}{9}=1 .

Решение. 1. С учетом 4.18, зная, что LaTeX formula: a^2=16 , а LaTeX formula: b^2=9 , найдем большую и меньшую полуоси: LaTeX formula: a=4 , LaTeX formula: b=3 . 

2. По формуле 4.19.1 получим: LaTeX formula: c=sqrt{16-9}=sqrt{7} . По формулам 4.19 запишем фокусы: LaTeX formula: F_1(sqrt{-7};0) и LaTeX formula: F_2(sqrt{7};0) .

3. По формуле 4.20 найдем эксцентриситет: LaTeX formula: varepsilon =frac{sqrt{7}}{4} .

Пример 2. Найдите действительную и мнимую полуоси, фокусы, эксцентриситет и асимптоты гиперболы LaTeX formula: frac{x^2}{16}-frac{y^2}{9}=1 . 

Решение. 1. С учетом 4.21, зная, что LaTeX formula: a^2=16 , а LaTeX formula: b^2=9 , найдем действительную и мнимую полуоси: LaTeX formula: a=4 , LaTeX formula: b=3 . 

2. По формуле 4.22 получим: LaTeX formula: c=sqrt{16+9}=5 . По формулам 4.19 запишем фокусы: LaTeX formula: F_1(-5;0) и LaTeX formula: F_2(5;0) .

3. По формуле 4.23 найдем эксцентриситет: LaTeX formula: varepsilon =frac{5}{4} .

4. По формуле 4.24 запишем уравнения асимптот: LaTeX formula: y=pm frac{3}{4}x . 

Пример 3. Найдите фокус и директрису параболы LaTeX formula: y^2=x .

Решение. С учетом 4.25, так как LaTeX formula: 2p=1 , то LaTeX formula: p=0,5 .По формуле 4.25.1 запишем фокус: LaTeX formula: F(0,25;0) . По формуле 4.25.2 запишем уравнение директрисы: LaTeX formula: x=-0,25 .

Пример 4. Найдите фокус и директрису параболы LaTeX formula: x^2=8y . 

Решение. С учетом 4.26, так как LaTeX formula: 2p=8 , то LaTeX formula: p=4 . По формуле 4.26.1 запишем фокус: LaTeX formula: F(0;2) . По формуле 4.26.1 запишем уравнение директрисы: LaTeX formula: y=-2 . 

444 Составить уравнение эллипса,
фокусы которого лежат на оси абсцисс симметрично
относительно начала координат, зная, кроме того,
что:
444.1 его полуоси ранвы 5
и 2;
444.2 его большая ось
равна 10, а расстояние между фокусами 2c=8;
444.3 его малая ось равна
24, а расстояние между фокусами 2c=10;
444.4 расстояние между
его фокусами 2c=6 и эксцентриситет e=3/5.
444.5 его большая ось
равна 20, а эксцентриситет e=3/5.
444.6 его малая ось равна
10, а эксцентриситет e=12/13;
444.7 расстояние между
его директрисами равно 5 и расстояние между
фокусами 2c=4;
444.8 его большая ось
равна 8, а расстояние между директрисами равно 16;
444.9 его малая ось равна
6, а расстояние между директрисами равно 13;
444.10 расстояние между
его директрисами равно 32 и e=1/2.
445 Составить
уравнение эллипса, фокусы которого лежат на оси
ординат симметрично начала координат, зная,
кроме того, что:
445.1 его полуоси равны
соответственно 7 и 2;
445.2 его большая ось
равна 10, а расстояние между фокусами 2c=8;
445.3 расстояние между
его фокусами 2c=24 и эксцентриситет e=12/13.
445.4 его малая ось равна
16, а эксцентриситет e=3/5.
445.5 расстояние между
его фокусами 2c=6 и расстояние между директрисами
равно 50/3;
445.6 расстояние между
его директрисами равно 32/3 и эксцентриситет e=3/4.
446 Определить полуоси
каждого из следующих эллипсов:
446.1  ; 446.2 ; 446.3 ; 446.4 ; 446.5  ; 446.6 ; 446.7 ; 446.8 ; 446.9 ; 446.10 . 447 Дан эллипс . Найти его полуоси, фокусы,
эксцентриситет, уравнения директрис.
448 Вычислить площадь
четырехугольника, две вершины которого лежат в
фокусах эллипса
, а две другие
совпадают с концами его малой оси.
449 Дан эллипс . Найти его полуоси, фокусы,
эксцентриситет, уравнения директрис.
450 Вычислить площадь
четырехугольника, две вершины которого лежат в
фокусах эллипса
, две другие лежат с
концами его малой оси.
451 Вычислить
расстояние от фокуса F(c; 0) эллипса
до
односторонней с этим фокусом директрисы.
452 Пользуясь одним
циркулем, построить фокусы эллипса
(считая,
что изображены оси координат и задана масштабная
единица).
453 На эллипсе найти точку, абсцисса которых равна
–3.
454 Определить, какие
из точек A
1(-2; 3), A2(2; -2), A3(2;
-4), A4(-1; 3), A5(-4; -3), A6(3; -1), A7(3;
-2), A8(2; 1), A9(0; 15), A10(0; -16) лежат на эллипсе , какие
внутри и какие вне его.
455 Установить, какие
линии опеределяются следующими уравнениями.
Изобразить эти линии на чертеже.
455.1 ; 455.2 ; 455.3 ; 455.4 . 456 Эксцентриситет
эллипса e=2/3, фокальный радиус точки М эллипса
равен 10. Вычислить расстояние от точки М до
односторонней с этим фокусом директрисы.
457 Эксцентриситет
эллипса e=2/5, расстояние от точки эллипса до
директрисы равно 20. Вычислить расстояние от
точки М до фокуса, односторонней с этой
директрисой.
458 Дана точка М1(2; -5/3) на эллипсе ; составить
уравнения прямых, на которых лежат фокальные
радиусы точки М
1.

459
Убедившись, что
точка M
1(-4; 2,4) лежит
на эллипсе
, определить фокальные радиусы точки
М
1.
460 Эксцентриситет
эллипса e=1/3, центр его совпадает с началом
координат, один из фокусов (-2; 0). Вычислить
расстояние от точки М
1 эллипса с абсциссой, равной 2, до
директрисы, односторонней с данным фокусом.
461 Эксцентриситет
эллипса e=1/2, центр его совпадает с началом
координат, одна из директрис дана уравнением x=16.
Вычислить расстояние от точки M
1
эллипса с абсциссой, равной –4, до
фокуса, одностороннего с данной директрисой.
462 Определить точки
эллипса
, расстояние которых до
правого фокуса равно 14.
463 Определить точки
эллипса
, расстояние которых до
левого фокуса равно 2,5.
464 Через фокус эллипса
проведен перпендикуляр к его
большой оси. Определить расстояния от точек
пересечения этого перпендикуляра с эллипсом до
фокусов.
465 Составить
уравнения эллипса, фокусы которого расположены
на оси абсцисс симметрично относительно начала
координат, если даны:
465.1 точка М1(; 2) эллипса
и его малая полуось b=3;
465.2 точка М1(2;
-2) эллипса и его большая полуось
a=4;
465.3 точки М1(4;
) и
М
2(; 3) эллипса;
465.4 точка М1(; -1) эллипса
и его эксцентриситет e=2/3;
465.5 точка М1(2;
-5/3) эллипса и его эксцентриситет
e=2/3;
465.6 точка М1(8;
12) эллипса и расстояние r1=20
от нее до левого фокуса.
465.7 точка М1(; 2) эллипса
и расстояние между его директрисами, равное 10.
466 Определить
эксцентриситет e эллипса, если:
466.1 его малая ось видна
из фокусов под углом 60
0; 466.2 отрезок между
фокусами виден и вершин малой оси под прямым
углом;
466.3 расстояние между
директрисами в три раза больше расстояния между
фокусами;
466.4 отрезок
перпендикуляра, опущенного из центра эллипса на
его директрису, делится вершиной эллипса
пополам.
467 Через фокус F
эллипса проведен перпендикуляр к его большой оси
(см. рис.). Определить, при каком значении
эксцентриситета эллипса отрезки
и будут
параллельны.

468 Составить
уравнение эллипса с полуосями a, b и центром C(x
0, y0), если
известно, что оси симметрии эллипса параллельны
осям координат.
469 Эллипс касается оси
абсцисс в точке А(3; 0) и оси ординат в точке В(0; -4).
Составить уравнение этого эллипса, зная, что его
оси симметрии параллельны координатным осям.
470 Точка С(-3; 2)
является центром эллипса, касающегося обеих
координатных осей. Составить уравнение этого
эллипса, зная, что его оси симметрии параллельны
координатным осям.
471 Установить, что
каждое из следующих уравнений определяет эллипс,
и найти координаты его центра С, полуоси,
эксцентриситет и уравнения директрис:
471.1 ; 471.2 ; 471.3 . 472 Установить, какие
линии определяются следующими уравнениями.
Изобразить эти линии на чертеже.
472.1  ; 472.2 ; 472.3 ; 472.4 . 473 Составить
уравнение эллипса, зная, что:
473.1 его большая ось
равна 26 и фокусы суть F
1(-10; 0), F2(14;0);
473.2
его малая ось равна
2 и фокусы суть F
1(-1; -1), F2(1;
1);

473.3
его фокусы суть F1(-2; 3/3), F2(2; -3/2) и
эксцентриситет e=
.

473.4
его фокусы суть F1(1; 3), F2(3; 1) и
расстояние между директрисами равно
.

474
  Составить уравнение эллипса, если известны его
эксцентриситет
,
фокус F (-4; 1) и уравнение соответствующей
директрисы
475 Составить
уравнение эллипса, если известны его
эксцентриситет e=1/2, фокус F(-4; 1) и уравнение
соответствующей директрисы
. 476 Точка А(-3; -5) лежит
на эллипсе, фокус которого F(-1; -4), а
соответствующая директриса дана уравнением
. Составить уравнение этого эллипса. 477 Составить
уравнение эллипса, если известны его
эксцентриситет e=1/2, фокус F(3; 0) и уравнение
соответствующей директрисы
. 478 Точка M1(2;
-1) лежит на эллипсе, фокус
которого F(1; 0), а соответствующая директриса дана
уравнением
. Составить уравнение этого эллипса.
479 Точка M1(3;
-1) является концом малой оси
эллипса, фокусы которого лежат на прямой
. Составить
уравнение этого эллипса, зная его эксцентриситет
e=
.
480 Найти точки
пересечения прямой
и эллипса . 481 Найти точки
пересечения прямой
и эллипса . 482 Найти точки
пересечения прямой
и эллипса . 483 Определить, как
расположена прямая относительно эллипса:
пересекает ли, касается или проходит вне его,
если прямая и эллипс заданы следующими
уравнениями:
483.1 , ; 483.2 , ; 483.3 , . 484 Определить, при
каких начениях m прямая
: 484.1 пересекает эллипс ; 484.2 касается его; 484.3 проходит вне этого
эллипса.
485 Вывести условие,
при котором прямая
касается эллипса . 486 Составить
уравнение касательной к эллипсу
в его
точке M
1(x1; y1).
487 Доказать, что
касательные к эллипсу
, проведенные
в концах одного и того же диаметра, параллельны.
(Диаметром эллипса называется его хорда,
проходящая через его центр).
488 Составить
уравнения касательных к эллипсу
, параллельных
прямой
.
489 Составить
уравнения касательных к эллипсу
, перпендикулярных
к прямой
.
490 Провести касательные к эллипсу параллельно
прямой
и вычислить расстояние d между ними.
491 На эллипсе найти точку М1,
ближайшую к прямой , и вычислить расстояние d от точки М1 до
этой прямой.
492 Из точки А(10/3; 5/3)
проведены касательные к эллипсу
. Составить
их уравнения.
493 Из точки С(10; -8)
проведены касательные к эллипсу
. Составить
уравнение хорды, соединяющей точки касания.
494 Из точки Р(-16; 9)
проведены касательные к эллипсу
. Вычислить
расстояние d от точки Р до хорды эллипса,
соединяющей точки касания.
495 Эллипс проходит
через точку А(4; -1) и касается прямой
. Составить
уравнение этого эллипса при условии, что его оси
совпадают с осями координат.
496 Составить
уравнение эллипса, касающегося двух прямых
, , при
условии, что его ося совпадают с осями координат.
497 Доказать, чо
произведение расстояний от центра эллипса до
точки пересечения любой его касательной с
фокальной осью и до основания перпендикуляра,
опущенного из точки касания на фокульную ось,
если величина постоянная, равная квадрату
большой полуоси эллипса.
498 Доказать, что
произвдение расстояний от фокусов до любой
касательной к эллипсу равно квадрату малой
полуоси.
499 Прямая касается
эллипса, фокусы которого находятся в точках F
1(-3;
0), F2(3; 0). Составить
уравнение этого эллипса.
500 Составить
уравнение эллипса, фокусы которого расположены
на оси абсцисс симметрично относительно начала
координат, если известны уравнение касательной к
эллипсу
и его малая полуось b=2. 501 Доказать, что
прямая, касающаяся эллипса в некоторой точке М,
составляет равные углы с фокальными радиусами F
1M, F2M и проходит
вне угла F
1MF2.
502 Из левого фокуса
эллипса
под тупым углом к оси
Ox направлен луч света. Известно, что
. Дойдя
до эллипса, луч на него отразился. Составить
уравнение прямой, на которой лежит отраженный
луч.
503 Определить точки
пересечения эллипсов
, . 504 Убедившись, что
эллипсы
, () пересекаются
в четырех точках, лежающих на окружности с
центром в начале координат, определить радиус R
этой окружности.
505 Плоскости и образуют угол =300. Опредлить
полуоси эллипса, полученного проектированием на
плоскость
окружности радиуса R=10,лежащей на
плоскости
.
506 Эллипс, малая
полуось которого равна 6, является проекцией
окружности радиуса R=12. Опредилть угол
между плоскостями, в которых лежат
эллипс и окружность.
507 Направляющей
круглого цилиндра является окружность радиуса
R=8. Определить полуоси эллипса, полученного в
сечении этого цилиндра плоскостью, наклоненной к
его оси под уголом
=300. 508 Направляющей
круглого цилиндра является окружность радиуса R=
. Определить, под каким углом к оси
цилиндра нужно его пересечь плоскостью, чтобы в
сечении получить эллипс с большой полуосью a=2.
509 Равномерным
сжатием (или равномерным растяжением) плоскости
к оси абсцисс называется такое преобразование
точек плоскости, при котором произвольная точка
M(x; y) перемещается в точку M’(x’; y’) (рис.1 ) так, что
x’=x, y’=qy, где q>0 – постоянная, называемая
коэффициентом равномерного сжатия. Аналогично
рпи помощи уравнения x’=qx, y’=y определяется
равномерное сжатия плоскости к оси Oy (рис. 2).
Определить, в какую линию преобразуется
окружность
, если коэффициент
равномерного сжатия плоскости к оси абсцисс q=4/5.

510 Коэффициент
равномерного сжатия плоскости к оси Oy равен 3/4.
Определить уравнение линии, в которую при таком
сжатии преобразуется эллипс
. 511 Найти уравнение
линии, в которую преобразуется эллипс
при двух последовательных
равномерных сжатиях плоскости к координатным
осям, если коэффициенты равномерного сжатия
плоскости к осям Ox и Oy равны соответственно 4/3 и
6/7.
512 Определить
коэффициент q равномерного сжатия плоскости к
оси Ox, при котором эллипс
преобразуется
в эллипс
.
513 Определить
коэффициент q равномерного сжатия плоскости к
оси Oy, при котором эллипс
преобразуется
в эллипс
.
514 Определить
коэффициенты q
1, q2 двух последовательных равномерных
сжатий плоскости к осям Ox и Oy, при которых
эллипс
преобразуется в окружность .

Добавить комментарий