Как найти порядок спектра физика



Знаток

(252),
закрыт



12 лет назад

Artem Klementiev

Гуру

(3427)


13 лет назад

Свет при прохождении через спектральный прибор образует картину, чередования максимумов и минимумов. Свет состоит из разных цветов, максимумы разных цветов идут последовательно. После нескольких максимумов картина начинает повторять те же цвета – это второй спектр.. .
То есть порядок спектра это номер последовательности, считая от центра…

Gerdan

Искусственный Интеллект

(135908)


13 лет назад

Термин “порядок” обычно употребляется при описании дифракционного спектра. При этом имеется в виду направление, под которым распространяется дифрагировавшая волна, либо, что эквивалентно, максимум интенсивности в спектре, соответствующий этому направлению.
Дело в том, что дифракция на периодической структуре дает (в общем случае) “повторяющийся” спектр. Для простейшей дифракционной решетки с периодом d направления на максимумы этого спектра описываются формулой:
sin a = n*lambda / d,
n принимает целые значения.
При n=0 имеем недифрагированную волну – нулевой порядок, ;
при n=+_1 – плюс-минус первые порядки дифракции, и т. д.

Условие задачи:

Найти наибольший порядок спектра для света с длиной волны 700 нм, если постоянная дифракционной решетки равна 2 мкм.

Задача №10.7.17 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(lambda=700) нм, (d=2) мкм, (k_{max}-?)

Решение задачи:

Запишем формулу дифракционной решетки:

[dsin varphi = klambda;;;;(1)]

В этой формуле (d) – период решетки (также называют постоянной решетки), (varphi) – угол дифракции, (k) – порядок максимума, (lambda) – длина волны, падающей нормально на решетку.

Для нахождения максимального порядка дифракционного спектра необходимо воспользоваться следующими соображениями. Угол дифракции не может быть больше 90°, поэтому нужно определить порядок дифракционного максимума для (varphi=90^circ), то есть (sin varphi = 1). Для нахождения наибольшего порядка дифракционного спектра, нужно взять целую часть полученного числа. Ни в коем случае не округляйте в большую сторону! В таком случае при подстановке вашего наибольшего порядка в формулу дифракции Вы будете получать синус больше 1, чего быть не должно!

Итак, если (sin varphi = 1), то:

[d = klambda ]

Откуда:

[k = frac{d}{lambda }]

Подставим численные данные задачи в эту формулу:

[k = frac{{2 cdot {{10}^{ – 6}}}}{{700 cdot {{10}^{ – 9}}}} = 2,86]

Взяв целую часть числа, получим (k_{max}=2).

Ответ: 2.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

10.7.16 Вычислите максимальный порядок спектра дифракционной решетки с периодом 2 мкм
10.7.18 Дифракционная линия для волны 546,1 нм в спектре первого порядка наблюдается под углом
10.7.19 Сколько максимумов можно будет увидеть на экране, если на дифракционную решетку

Содержание:

Дифракция света:

Среда называется однородной, если ее физические свойства по всему объему одинаковы во всех точках пространства. Среда называется изотропной, если ее физические свойства одинаковы по всем направлениям в пространстве.

Закономерности распространения волн любой природы в различных средах носят универсальный характер.

Рассмотрим процесс распространения волн на поверхности воды.

Волны, возбуждаемые точечным источником S, распространяются на поверхности воды по всем направлениям с одинаковой по модулю скоростью v. Следовательно, фронт волны в этом случае будет иметь вид окружности (рис. 39). Соответственно, если волна будет распространяться в однородной изотропной среде по всем направлениям в пространстве, то ее волновой фронт будет иметь вид сферической поверхности.

Дифракция света в физике - формулы и определения с примерами

Как видим из рисунка, если в некоторый момент времени t фронт волны занимал положение I, то через промежуток времени Дифракция света в физике - формулы и определения с примерами

Общие закономерности процесса распространения волн объяснил Гюйгенс, сформулировав в «Трактате о свете» принцип, позволяющий определить положение волнового фронта с течением времени. Согласно принципу Гюйгенса:

Таким образом, согласно принципу Гюйгенса для нахождения положения волнового фронта через промежуток времени Дифракция света в физике - формулы и определения с примерами проведем окружности радиусом l = vДифракция света в физике - формулы и определения с примерами (см. рис. 39), представляющие собой фронты вторичных волн, с центрами на фронте в положении I.

Соответственно, огибающая вторичных волн (1, 2, 3 и т. д.) определяет новое положение волнового фронта в момент t + Дифракция света в физике - формулы и определения с примерами — положение II. Напомним, что огибающей называется поверхность, касательная ко всем вторичным волнам.

«Линия, перпендикулярная волновому фронту, называется лучом (волновым лучом). Волновой луч определяет направление распространения волны, а также направление переноса энергии волной.

На очень больших расстояниях от точечного источника волны, излучаемые им, можно считать плоскими. Например, световые лучи в приходящем на Землю солнечном излучении являются практически параллельными друг другу.

Принцип Гюйгенса объясняет прямолинейное распространение волн в однородной среде. Поскольку в такой среде радиусы фронтов вторичных волн (vДифракция света в физике - формулы и определения с примерами) одинаковы на всех участках (рис. 40), то волновой фронт (А’В’) плоской волны с течением времени перемещается в одном и том же направлении, оставаясь параллельным своему начальному положению АВ.

Дифракция света в физике - формулы и определения с примерами

Однако различные волны в однородной среде не всегда распространяются прямолинейно, поскольку наблюдаются отклонения от закона прямолинейного распространения. Действительно, стоя за углом дома, мы хорошо слышим, что едет автомобиль, хотя не видим его, поскольку находимся в области «тени». Таким образом, звуковые волны как бы «заворачивают за угол», в то время как световым волнам этого сделать не удается.

Явление отклонения распространения волн от прямолинейного вблизи краев препятствий и огибания волнами препятствий получило название дифракции (рис. 41).

Дифракция света в физике - формулы и определения с примерами

Явление дифракции служит одним из подтверждений волновой природы наблюдаемого процесса.

Для проявления дифракции размеры препятствий (отверстий) должны быть меньше или сравнимы с соответствующей длиной волны, вот почему в рассмотренном примере звук

Дифракция света в физике - формулы и определения с примерами)

смог «завернуть за угол», а свет, отраженный от автомобиля (Дифракция света в физике - формулы и определения с примерами= 500 нм = Дифракция света в физике - формулы и определения с примерами), — нет.

Изучая дифракцию света, французский физик Огюстен Жан Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн, которые являются когерентными. Принцип Гюйгенса — Френеля позволил охарактеризовать явление дифракции количественно:

  • все вторичные источники, расположенные на волновом фронте, когерентны между собой. Для расчета амплитуды огибающей волны в данной точке пространства следует учесть интерференцию вторичных волн от всех участков волнового фронта в начальном положении.

Таким образом, согласно Френелю дифракция света объясняется интерференцией вторичных волн от различных участков начального положения волнового фронта.

Для наблюдения дифракции света используется дифракционная решетка.

Дифракционной решеткой называют оптический прибор, предназначенный для очень точного измерения длин волн и разложения света в спектр.

Дифракционная решетка состоит из большого числа равноотстоящих параллельных штрихов (щелей), нанесенных на стеклянную или металлическую поверхность. Длина решеток составляет 10—15 см. Они содержат 10 000—20 000 штрихов на 1 см.

Рассмотрим дифракционную решетку, представляющую собой систему из N одинаковых равноотстоящих параллельных щелей (прозрачные участки) в плоском непрозрачном экране (рис. 42). Если ширина каждой щели b, ширина непрозрачной части между щелями а, то величина d = a + b называется постоянной решетки или ее периодом.

Дифракция света в физике - формулы и определения с примерами

Пусть на решетку, постоянная которой равна d, падает плоская волна, длина которой Дифракция света в физике - формулы и определения с примерами Из принципа Гюйгенса следует, что волны, дифрагировавшие на щелях, распространяются за ней по всем направлениям.    

Собирающая линза фокусирует параллельные лучи (вторичные волны) в одну точку на экране, расположенном в фокальной плоскости линзы. Далее вторичные волны, испущенные разными щелями, интерферируют на экране, усиливая или ослабляя друг друга в зависимости от разности хода между ними. Таким образом, на экране получается дифракционная картина в виде системы светлых и темных полос.

Наиболее яркие дифракционные максимумы получили название главных дифракционных максимумов.

Условие образования главных дифракционных максимумов, наблюдаемых под углами 9 с использованием дифракционной решетки, имеет вид:

Дифракция света в физике - формулы и определения с примерами

Здесь m = О, ±1, ±2, … — порядок максимума, или порядок спектра, Дифракция света в физике - формулы и определения с примерами — длина волны падающего излучения.

Полученное условие образования главных дифракционных максимумов имеет наглядный физический смысл: на отрезке, равном разности хода от соседних щелей Дифракция света в физике - формулы и определения с примерами укладывается целое число длин волн.

В этом случае вторичные волны от всех щелей решетки приходят в точку наблюдения синфазно (с фазами, отличающимися на число, кратное Дифракция света в физике - формулы и определения с примерами) и усиливают друг друга.

Таким образом, дифракционная картина на экране представляет собой чередующиеся максимумы и минимумы интенсивности излучения. Центральный максимум (m = 0) называется нулевым. Дифракционные максимумы, соответствующие m= 1, образуют спектр первого порядка, m = 2 — спектр второго порядка и т. д. (рис. 43).

Дифракция света в физике - формулы и определения с примерами

Между максимумами интенсивности расположены минимумы, так как при изменении угла Дифракция света в физике - формулы и определения с примерами на отрезке Дифракция света в физике - формулы и определения с примерами (см. рис. 42) уже не будет укладываться целое число длин воли. Следовательно, вторичные волны придут в точку наблюдения в противодействии, ослабляя результирующее действие.

По мере увеличения числа щелей (штрихов) дифракционной решетки максимумы на экране становятся более узкими, а расстояния между ними более широкими (рис. 44). При этом происходит перераспределение энергии падающего излучения, большая часть которой приходится на максимумы.

Дифракция света в физике - формулы и определения с примерами

При падении белого света на решетку спектральные максимумы любого порядка (кроме нулевого) содержат все цвета радуги (рис. 45, а).

Дифракция света в физике - формулы и определения с примерами

В дифракционном спектре больше всего отклоняются от начального направления распространения красные лучи (рис. 45, б), меньше всего — синие (рис. 45, в), что и следует из формулы для определения дифракционных максимумов решетки.

Первая дифракционная решетка, сконструированная американским ученым Дэвидом Риттенхаузом, состояла из волосков диаметром около 0,1 мм и длиной 10 мм, натянутых параллельно на расстоянии порядка 0,2 мм один от другого. Немецкий физик Йозеф Фраунгофер вместо волосков использовал штрихи, наносимые на стекло алмазным острием. Их число на 1 мм решетки достигало у него 300.

Направления, в которых наблюдаются минимумы интенсивности при дифракции света на двух щелях, остаются минимумами для дифракции на дифракционной решетке. Однако к ним добавляются минимумы, связанные с интерференцией излучения, идущего от каждой из щелей (см. рис. 44). Эти минимумы легко определить из условия, что разность хода света от соседних щелей в данном направлении должна быть кратна нечетному числу полуволн.

Пример №1

Определите угол отклонения Дифракция света в физике - формулы и определения с примерами излучения зеленого цвета (Дифракция света в физике - формулы и определения с примерами = 0,55 мкм) в спектре первого порядка, полученном с использованием дифракционной решетки, период которой d = 0,020 мм.

Дифракция света в физике - формулы и определения с примерами

Решение

Условие дифракционных максимумов определяется соотношением

Дифракция света в физике - формулы и определения с примерами

Откуда находим

Дифракция света в физике - формулы и определения с примерами

Ответ: Дифракция света в физике - формулы и определения с примерами

Пример №2

На дифракционную решетку, имеющую N=500 Дифракция света в физике - формулы и определения с примерами падает монохроматическое излучение с длиной волны Дифракция света в физике - формулы и определения с примерами = 550 нм. Определите наибольший порядок Дифракция света в физике - формулы и определения с примерами дифракционного максимума, который можно наблюдать при нормальном падении излучения на решетку.

Дифракция света в физике - формулы и определения с примерами

Решение

Условие дифракционных максимумов определяется соотношением

Дифракция света в физике - формулы и определения с примерами

Следовательно,

Дифракция света в физике - формулы и определения с примерами

Наибольшее значение Дифракция света в физике - формулы и определения с примерами дифракционного максимума наблюдается при угле Дифракция света в физике - формулы и определения с примерами, близком к 90°. Вследствие этого будем считать, что

Дифракция света в физике - формулы и определения с примерами

тогда наибольшее значение максимума находится по формуле

Дифракция света в физике - формулы и определения с примерами

Для определения Дифракция света в физике - формулы и определения с примерами необходимо взять целую часть полученного значения, т. е.

Дифракция света в физике - формулы и определения с примерами= 3.

Ответ: Дифракция света в физике - формулы и определения с примерами = 3.

Дифракция света и интерференция

Весной радуемся появлению цветных блесков в воздухе после дождя, на мыльном пузыре, на масле, разлитом на асфальте. Но мы не задумываемся над тем, как они появляются. Причиной этого является интерференция света. Явление интерференции свойственно волнам любой природы. Для осмысления этого явления начнем изучение интерференции механических волн.

При распространении волн в какой-либо среде они ведут себя самостоятельно, как будто нет других волн. Это называется принципом суперпозиции (независимость) распространения волн. Результирующее смещение частицы в пространстве в произвольное время равно геометрической сумме смещения волновых процессов, в которых участвовала частица. Например, если в среде распространяются две волны, то они самостоятельно друг от друга будут действовать на частицу, находящуюся в определенной точке. Если частоты этих волн равны и разница фаз не меняется, то в точке, где они встречаются, они усиливают друг друга или погашают. Это явление называется интерференцией волн. Волны, имеющие равные частоты и у которых разница фаз не меняется, называются когерентными волнами. Явление усиления или погашения друг друга при встрече когерентных волн называется интерференцией волн. В каких случаях они друг друга усиливают или погашают? Для этого рассмотрим встречу волн, выходящих из двух когерентных источников Дифракция света в физике - формулы и определения с примерами (рис. 4.13). Дифракция света в физике - формулы и определения с примерами

Путь, пройденный волной, вышедшей из источника Дифракция света в физике - формулы и определения с примерами, до точки М, равен Дифракция света в физике - формулы и определения с примерами. Путь, пройденный волной, вышедшей из источника  Дифракция света в физике - формулы и определения с примерами до точки М, равен Дифракция света в физике - формулы и определения с примерами. В таком случаеДифракция света в физике - формулы и определения с примерами – называется разностью хода волны. Если разность хода будет кратной четному числу половины длины волны:Дифракция света в физике - формулы и определения с примерами

в этой точке наблюдается усиление колебания. Выражение (4-6) называется условием максимума интерференции.

Если разность хода будет кратной нечетному числу длины волны:Дифракция света в физике - формулы и определения с примерами

В этой точке наблюдается погашение колебания. Выражение (4-7) называется условием минимума интерференции.

Интерференция света является частным случаем интерференции механических волн. Для наблюдения этого явления две световые волны, испущенные двумя когерентными источниками, должны встречаться в одной точке пространства. Однако сколько бы ни выбрали отдельных источников, световые излучения, испущенные ими, не будут когерентными. Поэтому световое излучение, испущенное одним источником, искусственно делят на два излучения и получают когерентные волны.

Метод Юнга (1801 год)

Этот метод приведен на рис. 4.14. Солнечный луч проникает в темную комнату через маленькую щель S. Этот луч, проходя между двух щелей 5, и разделяется на два луча. При пересечении их на экране, в центральной части создастся белая полоса, в крайних частях – цветные полосы. Юнг в своих экспериментах точно определил длину волны света. Для крайней фиолетовой части спектра длину волны берут 0,42 мкм, для красного света – 0,7 мкм.Дифракция света в физике - формулы и определения с примерами

Дифракция света в физике - формулы и определения с примерами

  • Заказать решение задач по физике

Цвета на тонких пленках

Вернемся к цветам на масле, разлитом на асфальте, и на мыльных пузырях. Белый свет падает на тонкую пленку (рис. 4.15). Часть падающей волны (волна 1) отражается от верхней поверхности пленки. Часть проходит внутрь пленки и отражается от нижней поверхности (волна 2).

Две отраженные волныДифракция света в физике - формулы и определения с примерами различаются пройденным путем. Когда они встречаются в восприятии глазом, наблюдается картина интерференции. Из-за того что белый цвет состоит из волн с длиной волны от 380 до 760 нм, в различных точках воспринимающего глаза они усиливают друг друга и мы видим цветное изображение.

Дифракция света в физике - формулы и определения с примерами

Кольца Ньютона

Пусть на тонкую пластину поставлена линза с выпуклой поверхностью (рис. 4.16). Здесь между плоской параллельной пластиной и поверхностью линзы, касающейся ее в точке О, имеется слой воздуха. Свет, падающий на плоскую поверхность линзы, отражается от верхнего и нижнего слоя воздуха. При встрече этих лучей наблюдается интерференция.

Если устройство будет освещено монохроматическим (только одного цвета) лучом, картина интерференции выглядят в форме светлых и темных колец. Если устройство будет освещено белым светом, то будут видны темные пятна в отраженном свете от точки касания линзы с поверхностью. Вокруг нее располагаются цветные кольца. Путем измерения радиуса кольца соответствующего

порядка можно определить длину волны света или радиус кривизны линзы:Дифракция света в физике - формулы и определения с примерами
 – радиус светлых колец; R радиус кривизны линзы Дифракция света в физике - формулы и определения с примерами

Дифракция света в физике - формулы и определения с примерами радиус темных колец.

Дифракция света

Люди давно заметили, что свет заходит за края преграды, встречающейся на своем пути. Научное объяснение этого явления первым дал Ф. Грималди. Он объясняет причину того, что тень, которая появляется за предметами, тусклая. Это явление он назвал дифракцией. Таким образом, огибание волнами, встречающими препятствия на своем пути, называется дифракцией волн. При этом не выполняется закон прямолинейного распространения света. Чтобы наблюдалась дифракция, размер преграды должен быть меньше, чем длина падающей на него волны. Дифракцию света также можно увидеть при прохождении света через узкие щели. Здесь размер щели тоже должен быть меньше, чем длина падающей на нее волны.

Для получения четкой и точной дифракционной картины пользуются дифракционной решеткой. Дифракционная решетка состоит из многочисленных преград и щелей, которые пропускают и отражают. Дифракционная решетка по расположению преград делится на два вида: упорядоченные и неупорядоченные дифракционные решетки.

В упорядоченных дифракционных решетках щели расположены в строго определенном порядке. В неупорядоченных дифракционных решетках щели располагаются беспорядочно.

Для изготовления плоской упорядоченной дифракционной решетки берется прозрачная пластина и с помощью лезвия наносятся параллельные и очень близко расположенные друг к другу линии. Нанесенные линии служат как щель, а расстояния между ними как преграда. Пусть ширина щели будет а, ширина преграды в. Тогда Дифракция света в физике - формулы и определения с примерами называется постоянной, или периодом решетки.

Рассмотрим прохождение света через дифракционную решетку (рис. 4.17).Дифракция света в физике - формулы и определения с примерами

Пусть монохроматическая волна падает перпендикулярно к поверхности решетки. Вторичные волны, прошедшие через щель, в результате явления дифракции отклоняются на угол ср. Затем собираясь, они направляются на экран. На экране появится дифракционная картина,  в виде чередующихся светлых полос, разделенных затемненными промежутками.

При этом постоянная решетки d, длина волны светаДифракция света в физике - формулы и определения с примерами, угол отклонения луча на решетке ф связаны с помощью формулы:

Дифракция света в физике - формулы и определения с примерами

здесь: Дифракция света в физике - формулы и определения с примерами-порядковый номер дифракционных максимумов. Если Дифракция света в физике - формулы и определения с примерами

Дифракция света в физике - формулы и определения с примерами при встрече волны усиливают друг друга. ЕслиДифракция света в физике - формулы и определения с примерами, тогда волны друг друга гасят.

Наблюдаемые явления интерференции и дифракции доказывают, что свет имеет волновые свойства. Эти явления используют в технике. Например, прибор, называемый интерферометром, является очень чувствительным. С его помощью можно точно измерить маленькие углы, определить длину волны света, длину маленьких отрезков, показатели преломления света различных веществ, проверить шероховатость поверхности, а также определить степень блеска.

Пример №3

На дифракционную решетку падает монохроматический свет с длиной волны 500 нм. Если спектр второго порядка наблюдается под углом 30°, чему равна постоянная решетки?
Дано:Дифракция света в физике - формулы и определения с примерами  Найти:Дифракция света в физике - формулы и определения с примерами

Формула:Дифракция света в физике - формулы и определения с примерами

Решение:Дифракция света в физике - формулы и определения с примерами

Дисперсия света и спектральный анализ

Вопрос о цвете разных тел и веществ интересовал людей с давних времен. Почему Солнце, заходя за горизонт, краснеет? Почему появляется радуга? Почему при прохождении света через некоторые минералы, они блестят? Ответы на подобные вопросы нашлись только во времена Ньютона. В 1666 году И. Ньютон написал о своем эксперименте следующее: «Я при обработке различных оптических стекол для проверки известных явлений по цвету изготовил треугольную стеклянную призму. В этих целях я затемнил комнату и для поступления солнечного луча на окне сделал маленькую дырку. Я расположил призму так, чтобы луч попадал на призму и, отражаясь от нее, собирался на стене. Таким образом, наблюдение полученных разнообразных и усиленных цветов оставили у меня большое удовольствие».

Полученный набор разных цветов, которые появлялись при прохождении света через призму, Ньютон назвал спектром (от лат. spectrum – увидеть) (рис. 4. 20).

Дифракция света в физике - формулы и определения с примерами

При закрывании щели стеклом красного цвета Ньютон наблюдал на стене только красное пятно, при закрывании щели стеклом зеленого цвета он наблюдал на стене только зеленое пятно. При изучении спектра он установил, что лучи разного цвета преломляются по-разному.

Например, красный цвет преломляется меньше, чем другие, а фиолетовый цвет – больше всех остальных.

Ньютон не знал причину этого. Но этот эксперимент доказал, что белый цвет является сложным цветом. Он состоит из семи цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Имеются и другие эксперименты Ньютона, доказывающие, что белый цвет является сложным цветом. Ньютон взял окружность и, разделив ее на секторы, раскрасил их в семь разных цветов. Эту окружность он закрепил на ось вращения двигателя. При определенной скорости вращения разноцветная окружность выглядит как белая.

Если на пути света, разделенного на разные цвета, после прохождение через первую призму поставить призму под углом 180°, она выполняет функцию собирающей линзы. В точке сбора лучей, выходящих из призмы, получается белый цвет (рис. 4.21).

Дифракция света в физике - формулы и определения с примерами

Открытое Ньютоном явление получило название дисперсия света (от лат. dispеrge – рассеять). Таким образом Ньютон доказал, что белый луч Солнца состоит из суммы лучей разных цветов. То, что разные предметы и вещи имеют разные цвета, объясняется тем, что некоторые цвета поглощаются, а некоторые отражаются. Абсолютно черные тела поглощают все лучи, а белые – отражают.

Согласно волновой теории света, свет – это волны, распространяющиеся в пространстве с большой скоростью. Цвет световой волны зависит от частоты.

Длина волны световых волн очень короткая. Например, красный луч имеет самую большую длину волны, его значение Дифракция света в физике - формулы и определения с примерами Самая маленькая длина волны принадлежит фиолетовому лучу, его значение Дифракция света в физике - формулы и определения с примерамиДлина волны других лучей лежит между ними.

В 1873 году английский ученый Дж. Максвелл теоретически доказал, что свет состоит из электромагнитных волн, распространяющихся со скоростью Дифракция света в физике - формулы и определения с примерами Эту теорию экспериментально доказал Г. Герц.

Отсюда можно сделать вывод: лучи, имеющие разные цвета, в среде распространяются с различной скоростью. При переходе света из одной среды в другую меняется его длина волны, но частота не меняется. Нам известно, что скорость волны Дифракция света в физике - формулы и определения с примерами длина волны Дифракция света в физике - формулы и определения с примерами и частота v связаны следующим образом:Дифракция света в физике - формулы и определения с примерами

Если учесть связи показателя преломления света Дифракция света в физике - формулы и определения с примерами скорость распространения света в вакууме Дифракция света в физике - формулы и определения с примерами и скорость распространения света в среде Дифракция света в физике - формулы и определения с примерами (вспомните из 9-го класса): Дифракция света в физике - формулы и определения с примерами

Получается, что показатель преломления луча в среде для разных лучей будет разным.

Зависимость показателя преломления света от длины волны называется дисперсией.

Это объясняет, почему лучи, прошедшие через призму, отклоняются на разные углы. Таким образом, скорость красного луча в любой среде будет больше, чем фиолетового. Например, в водеДифракция света в физике - формулы и определения с примерами Дифракция света в физике - формулы и определения с примерами в сульфиде углерода Дифракция света в физике - формулы и определения с примерами В вакууме не наблюдается дисперсии света, так как в вакууме все световые волны распространяются с одинаковой скоростью.

В 1807 году английский физик Томас Юнг, комбинируя красный, зеленый и голубой цвета, доказал, что возможно получить белый цвет. Также, комбинируя красный, зеленый и голубой цвета, можно получить другие цвета (рис. 4.22).Дифракция света в физике - формулы и определения с примерами

Красный, зеленый и голубой цвета Юнг назвал первичными лучами. Никакой из этих первичных цветов невозможно получить из комбинации других цветов. Это можно легко проверить, освещая экран лучом красного, зеленого и голубого цветов. В том месте, где накладываются эти три цвета, образуется белый цвет.

При смешивании красного и голубого цветов появится темный цвет, при смешивании красного и зеленого цветов появится желтый цвет. В современных телевизорах и на экране компьютера цветное изображение создается благодаря соединению этих трех цветов.

Если через призму пропустить свет из разных источников, никакой из них (кроме лазера) не является монохроматическим, т.е. не излучает волны с одинаковой частотой. Нагретые тела тоже излучают волны разного спектра. Их спектр можно разделить на три вида.

Солнечный спектр или спектр лампы накаливания является непрерывным. Свет, испущенный нагретым веществом в твердом или жидком состоянии и сильно сжатыми газами, имеет непрерывный спектр.

Линейчатый спектр

В таком спектре имеется одна линия. Такой спектр испускает атомы, не связанные друг с другом. Отдельные атомы испускают электромагнитные волны с одной длиной волны.

Полосатый спектр

Отдельные слабо связанные или не связанные молекулы излучают спектр в виде отдельных полос, разделенных темными промежутками. Если поставить красное стекло на пути света, излучаемого лампой, через него проходит только красный свет, а остальные лучи поглощаются. Если белый луч пропустить через неизлучающий газ, то на фоне непрерывного спектра источника появятся черные линии. Причиной этого является поглощение газом лучей некоторых частот. Исследования показали, что нагретое тело испускает свет тех длин волн, которые оно поглащает.

Каждый химический элемент имеет свойственный только ему спектр. Подобно неповторяемости отпечатков пальцев, спектр каждого элемента также не похож на другие.

Определение состава химического вещества по его спектру называется спектральным анализом. Этот метод является очень чувствительным. С его помощью можно обнаружить элемент в составе сложного вещества, если даже его масса не превышает Дифракция света в физике - формулы и определения с примерами

Такой анализ в основном имеет качественный характер, т.е. можно определить, какие элементы имеются в веществе. Однако определить количественное значение этих элементов сложно. Так как при низких температурах вещества большинство спектральных линий не проявляют себя.

В настоящее время определены спектры всех атомов, составлены их таблицы (рис. 4.23). С помощью спектрального анализа были открыты такие химические элементы, как рубидий, цезий и другие. Слово «цезий» означает «небесно-голубой».

Дифракция света в физике - формулы и определения с примерамиДифракция света в физике - формулы и определения с примерами

Спектр элемента цинкаДифракция света в физике - формулы и определения с примерами

Именно благодаря спектральному анализу стало возможным определить химический состав Солнца и звезд. Другими методами его определить невозможно. Следует сказать, что элемент гелий сначала открыли на Солнце, а затем нашли в атмосфере Земли. «Гелий» означает «солнечный». Спектральный анализ проводится не только с помощью спектра испускания, но и спектра поглощения.

Пример №4

Показатель преломления линзы для красного света равен 1,5, для фиолетового – 1,52. Две поверхности линзы имеют одинаковый радиус кривизны, равный 1 м. Определите разницу между фокусными расстояниями линзы для красного и фиолетового лучей.

Дано:Дифракция света в физике - формулы и определения с примерами  Найти:Дифракция света в физике - формулы и определения с примерами

Формула:Дифракция света в физике - формулы и определения с примерами

Решение:Дифракция света в физике - формулы и определения с примерами

Дифракция волн и дифракция света

Световой луч – линия, вдоль которой распространяется световая энергия.

Световые лучи бывают параллельные, дивергентные (расходящиеся) и конвергентные (сходящиеся). Лучи, падающие на земную поверхность из источников, находящихся на очень больших расстояниях, например, от Солнца, звезд. Луны, принято считать параллельными.

Свет в вакууме и однородной среде распространяется прямолинейно.

Однородной называется среда, в которой её свойства по всему объёму одинаковы.

Образование тени является результатом прямолинейного распространения света.

 Прогуливаясь на природе, вы возможно обращали внимание на паутину, искусно сплетенную пауками. Иногда она привлекает внимание, поблескивая всеми цветами радуги.

Дифракция света в физике - формулы и определения с примерами

Волновая поверхность и фронт волны

Закономерности распространения любых волн в разных средах носят универсальный характер. Например, колебания, созданные в точке падения капли на неподвижной водной поверхности, распространяются с течением времени с одинаковой скоростью, охватывая определенную часть среды (b). С течением времени волна, продолжая распространяться, возмущает еще большую часть водной поверхности. Значит, в процессе распространения волны поверхность воды (среда) состоит из части, в которой волна распространилась, и части, в которой еще не распространилась. Линия, отделяющая эти части волны, называется волновой поверхностью.

Дифракция света в физике - формулы и определения с примерами

Волновая поверхность — геометрическое место точек, до которых в данный момент времени дошла волна.

Определенный набор частиц среды, в которой распространяется волна, колеблется в одинаковой фазе. Поверхность, во всех точках которой колебания происходят в одинаковой фазе, называют поверхностью одинаковой фазы, или фронтом волны.

Фронт волны – геометрическое место точек, колеблющихся в одинаковых фазах.

Фронт волны, являясь геометрической концепцией, создает представление о поверхности, проходящей через точки, колеблющиеся в одинаковых фазах (с). Значение фазы колебаний различных последовательных точек среды при распространении волны в ней может иметь различное значение, поэтому в этой среде может одновременно существовать бесконечное количество фронтов волны.

Дифракция света в физике - формулы и определения с примерами

Волна, фронт которой представляет собой плоскость, называется плоской волной, а волну с фронтом сферической или цилиндрической формы называют соответственно сферической или цилиндрической волной.

Плоская волна распространяется в направлении, перпендикулярном плоскому фронту волны.

Дифракция волн и принцип Гюйгенса

Одним из общих свойств, присущих всем видам волн, является их дифракция.

Дифракция волн – явление отклонения волны от геометрического направления распространения при встрече с препятствием (огибание препятствий, проникая за их края).

Огибание волной препятствий связано с соотношением размера препятствия с длиной волны. Явление дифракции наблюдается при соблюдении соотношения:

Дифракция света в физике - формулы и определения с примерами

Здесь Дифракция света в физике - формулы и определения с примерами – длина волны, D – размер препятствия (или щели) на пути волны, Дифракция света в физике - формулы и определения с примерами – расстояние от препятствия до точки, в которой наблюдается дифракция.

Дифракцию можно объяснить на основе принципа, сформированного Гюйгенсом в 1690 году. Согласно принципу Гюйгенса, каждая точка среды, до которой доходит фронт волны, превращается в источник полусферических волн с частотой колебаний, равной частоте колебаний исходной волны. Касательная к этим сферическим волнам (их называют вторичными волнами) представляет собой новый фронт волны в следующий момент времени (см. с).

Так как направление распространения волны перпендикулярно фронту волны, можно определить луч – это направление распространения волны в любой последующий момент времени.

•    Луч – это нормаль, проведенная к фронту волны в данной точке.

Таким образом, дифракция объясняется с позиций принципа Гюйгенса следующим образом: представим, что на пути волны есть препятствие с щелью, перпендикулярное фронту волны. Вторичные полусферические волны, образованные в точках щели, когда волна доходит до препятствия, проникают за края препятствия – происходит явление дифракции. Но принцип Гюйгенса дал возможность решить проблемы, только связанные с направлением распространения фронта волны, он не смог объяснить изменение амплитуды, а значит, интенсивности распространяющейся по всем направлениям волны. Эта проблема была решена французским физиком Опостеном Френелем (1788-1827) в 1819 году, определившим и объяснившим дифракцию света.

Принцип Гюйгенса-Френеля

Согласно Френелю, развившему принцип Гюйгенса, все точки фронта волны являются источниками когерентных вторичных волн (Дифракция света в физике - формулы и определения с примерамии т.д.). Поэтому дифракция света является результатом интерференции – сложения в произвольной точке М когерентных волн, идущих из этих когерентных источников (d).

Дифракция света в физике - формулы и определения с примерами

• Дифракция света — явление отклонения от закона прямолинейного распространения света при прохождении вблизи препятствий и попадания в зону геометрической тени. Принцип Гюйгенса, дополненный Френелем принципом интерференции, называется принципом Гюйгенса-Френеля.

Этот (обобщенный) принцип позволил объяснить дифракцию количественно. Длина световой волны очень мала, поэтому дифракция света наблюдается при прохождении света сквозь щели очень малого размера или у края предметов. Поэтому для наблюдения и количественного исследования дифракции света используют специальное устройство, называемое дифракционной решеткой (е).

Дифракционная решетка — оптический прибор, разлагающий свет на спектр и позволяющий измерять длину световой волны.

Дифракционная решетка представляет собой совокупность большого числа непрозрачных штрихов, разделенных очень узкими прозрачными полосками (обычно на 1 мм прибора приходится от 500 до 1200 таких штрихов). Лучи света, падающие на дифракционную решетку перпендикулярно её поверхности, проходя сквозь прозрачные полоски, выходят отклоняющимися на некоторый угол (Дифракция света в физике - формулы и определения с примерами). Эти полоски, являясь источниками когерентных волн, распространяют световые волны по всем направлениям. В результате интерференции этих волн на экране образуются дифракционные максимумы и минимумы (см. е).

Дифракция света в физике - формулы и определения с примерами

Условие максимума для дифракционной решетки будет иметь вид:

Дифракция света в физике - формулы и определения с примерами

Здесь Дифракция света в физике - формулы и определения с примерами – период дифракционной решетки (или постоянная решетки), равная Дифракция света в физике - формулы и определения с примерами – ширина соответственно щели и непрозрачных штрихов, Дифракция света в физике - формулы и определения с примерами – угол отклонения лучей, дающий максимум k-го порядка (k – порядок максимума – порядковый номер максимума от центра картинки). Максимальное значение k соответствует углу отклонения Дифракция света в физике - формулы и определения с примерами получаем:

Дифракция света в физике - формулы и определения с примерами

Все максимумы прошедшего через дифракционную решетку белого света (за исключением центрального, нулевого) получаются цветными. Начиная с центра, каждый максимум отражает 7 видимых цветов от фиолетового до красного. Это называют дифракционным спектром. В отличие от дисперсионного спектра полученные в дифракционном спектре более всего отклоняются красные лучи, менее всего отклоняются лучи фиолетового цвета.

  • Принцип Гюйгенса — Френеля
  • Прохождение света через плоскопараллельные пластинки и призмы
  • Поляризация света
  • Линзы в физике
  • Полное отражение
  • Дисперсия света
  • Электромагнитная природа света
  • Интерференция света

Как определить наибольший порядок спектра дифракционной решетки

Проходя через дифракционную решетку луч света отклоняется от своего направления под несколькими разными углами. В результате по другую сторону решетки получается картина распределения яркости, в которой яркие участки чередуются с темными. Вся эта картина называется дифракционным спектром, а число ярких участков в ней определяет порядок спектра.

Как определить наибольший порядок спектра дифракционной решетки

Инструкция

В расчетах исходите из формулы, которая связывает между собой угол падения света (α) на дифракционную решетку, длину его волны (λ), период решетки (d), угол дифракции (φ) и порядок спектра (k). В этой формуле произведение периода решетки на разницу между синусами углов дифракции и падения приравнивается к произведению порядка спектра на длину волны монохроматического света: d*(sin(φ)-sin(α)) = k*λ.

Выразите из приведенной в первом шаге формулы порядок спектра. В результате у вас должно получиться равенство, в левой части которого останется искомая величина, а в правой будет отношение произведения периода решетки на разность синусов двух известных углов к длине волны света: k = d*(sin(φ)-sin(α))/λ.

Так как период решетки, длина волны и угол падения в полученной формуле являются величинами постоянными, порядок спектра зависит только от угла дифракции. В формуле он выражен через синус и стоит в числителе формулы. Из этого вытекает, что чем больше синус этого угла, тем выше порядок спектра. Максимальное значение, которое может принимать синус, равно единице, поэтому просто замените в формуле sin(φ) на единичку: k = d*(1-sin(α))/λ. Это и есть окончательная формула вычисления максимального значения порядка дифракционного спектра.

Подставьте численные величины из условий задачи и рассчитайте конкретное значение искомой характеристики дифракционного спектра. В исходных условиях может быть сказано, что падающий на дифракционную решетку свет составлен из нескольких оттенков с разными длинами волн. В этом случае используйте в расчетах ту из них, которая имеет меньшее значение. Эта величина стоит в числителе формулы, поэтому наибольшее значение периода спектра будет получено при наименьшем значении длины волны.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Дифракция — явление, присущее всем волновым процессам подобно интерференции. Чтобы лучше понять, в чем заключается явление дифракции света, сначала рассмотрим дифракцию механических волн.

Дифракция механических волн

Иногда на пути волны встречаются препятствия разных размеров. Если препятствия небольшие, волны легко их огибают и смыкаются за ними. Поэтому морские волны свободно огибают выглядывающие из воды камни и распространяются за ними так, как если бы их не было совсем. Если размер препятствия больше длины волны, за ним образуется «тень» — область, в которую волны проникнуть не могут.

На рисунке ниже видно, что за мелкими камнями волны распространяются так же, как если бы их не было. Но за большой глыбой поверхность воды спокойная — волны в эту область не проникают.

Внимание! Малыми препятствиями будем считать те, размеры которых намного меньше длины распространяющейся волны или сравнимы с ней.

Способность волн огибать препятствия является следствием отклонения распространения волн от их прямолинейного распространения. Такой способностью обладают не только волны на поверхности воды, но и звуковые волны. Вы услышите, как сигналит автомобиль за домом, который стоит между ним и вами препятствием именно благодаря дифракции. Звуковая волна обогнет дом и продолжит распространяться за ним. По этой же причине в лесу так далеко распространяется клик «Ау!» — деревья для звуковой волны не являются серьезным препятствием, и она их легко огибает.

Дифракция — явление отклонения от прямолинейного распространения волн.

Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней. Это явление встречается в природе, но его также можно вызвать искусственно. К примеру, дифракцию волн на поверхности воды можно наблюдать, налив воду в ванночку и поставив на пути возбуждаемых волн искусственное препятствие.

Если на пути распространения волн поставить экран с узкой щелью, размеры которой меньше длины волны, то увидим, что за ней начинает распространяться круговая волна. Такая же волна получилась, если бы в щели экрана находилось колеблющееся тело — источник волн.

Если же на пути распространения волны поставить экран с широкой щелью, за ним будет распространяться волна почти такой же формы. Волновая поверхность в этом случае искривляется только по краям щели.

Понять, почему появляется явление дифракции волн, помогает принцип Гюйгенса. Согласно ему, каждая точка волновой поверхности является источником вторичных волн. Вторичные волны, испускаемые участками среды, проникают за края препятствия, расположенного на пути распространения волны.

Дифракция световых волн

Если свет — это волна, то ему тоже должно быть присуще явление дифракции. Однако наблюдать дифракцию света сложно. Ведь дифракцию можно наблюдать тогда, когда препятствие сравнимо с длиной волны или меньше ее. А длина световой волны очень мала. Поэтому чтобы наблюдать дифракцию света, нужны очень малые препятствия.

Дифракция света на узкой щели

Наблюдать отклонение от прямолинейного распространения света можно, если пропустить пучок световых волн через узкую щель. При этом светлое пятно на экране будет больше, чем сама щель. Это возможно только в случае, если свет отклоняется от своего прямолинейного распространения.

Опыт Юнга

В 1802 г. Т. Юнг, который открыл интерференцию света, поставил классический опыт по наблюдению дифракции. В непрозрачной ширме он проколол булавкой два небольших отверстия В и С на малом расстоянии друг от друга. Эти отверстия он осветил узким световым пучком, прошедшим через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, определила успех эксперимента. Интерферируют ведь только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А вызвала в отверстиях В и С образование когерентных источников световых волн. Вследствие дифракции от отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции этих двух световых волн на экране появлялись картина, состоящая из чередующихся светлых и темных полос.

Закрыв одно из отверстий, Юнг обнаружил, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые ученый измерил длины волн, соответствующие световым лучам разного цвета. И ему удалось сделать это с высокой точностью.

Принцип Гюйгенса — Френеля

Исследование дифракции завершил французский ученый О. Френель. Он занимался детальным исследованием различных случаев дифракции, что позволило ему разработать количественную теорию дифракции. Она помогла физику получить точные расчеты дифракционной картины, которая возникала при огибании светом различных препятствий. Френелю также удалось впервые объяснить, почему в однородной среде свет распространяется прямолинейно.

Успех Френеля объясняется тем, что он стал первым, кто решил объединить принцип Гюйгенса с идеей интерференции вторичных волн. В результате зародилась теория, которая получила название принципа Гюйгенса — Френеля:

Волновая поверхность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат их интерференции.

Чтобы вычислить амплитуду световой волны в любой точке пространства, необходимо мысленно окружить источник света замкнутой поверхностью. Интерференция волн от вторичных источников, расположенных на этой поверхности, определяет амплитуду колебаний в рассматриваемой точке пространства. Такие расчеты дали объяснение тому, как свет от точечного источника S, являющегося источником сферических волн, достигает любой точки В пространства.

Если рассмотреть вторичные источники на сферической волновой поверхности радиусом R, то результат сложения вторичных волн от этих источников в точке В оказывается таким, как если бы только вторичные источники на малом сферическом сегменте ab посылали свет в точку В. Вторичные волны, распространяющие от источников, расположенных на остальной части поверхности, гасят друг друга в результате сложения. Поэтому все происходит так, как если бы свет распространялся вдоль прямой SB, т. е. прямолинейно. Эта теория Френеля доказала закон прямолинейного распространения света в однородной среде и позволила рассмотреть дифракцию с количественной точки зрения.

Внимание! Закон прямолинейного распространения света и другие законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны.

Дифракционные картины от различных препятствий

Расчеты Френеля получили экспериментальное подтверждение. Из-за малой длины световой волны угол ее отклонения от прямолинейного направления распространения небольшой. Поэтому наблюдать дифракцию можно только при использовании очень маленьких препятствий. Другой вариант наблюдения этого явления — расположение экрана вдали от препятствия.

Так, чтобы наблюдать дифракцию при расстоянии между экраном и препятствием в 1 м, размеры этого препятствия должны составлять сотые доли миллиметра. Если расстояние от препятствия до экрана увеличить до нескольких сотен метров, то размеры препятствия могут быть несколько сантиметров. Если расстояние между экраном и препятствием будет составлять несколько километров, дифракцию можно будет наблюдать при размерах препятствия в несколько метров.

Дифракционная картина — картина на экране, полученная в результате интерференции вторичных световых волн.

Подобную картину вы уже видели на картинке, иллюстрирующей опыт Юнга. Так, дифракционная картина от двух малых щелей — это чередующиеся темные и светлые полосы. Если использовать другие препятствия, картина будет меняться. На рисунке ниже схематично показаны дифракционные картины от различных препятствий: а — от тонкой проволочки; б — от круглого отверстия; в — от круглого экрана.

Вместо тени проволочка оставляет на экране светлые и темные полосы. В центре дифракционной картины, полученного от отверстия, появляется темное пятно, окруженное светлыми и темными кольцами. В центре тени, образованной круглым экраном, видно светлое пятнышко, а сама тень окружена темными кольцами. Если изменять диаметр отверстия, в центре дифракционной картины можно получить как светлое, так и темное пятно, окруженное либо темными, либо светлыми кольцами соответственно.

Дифракционная решетка

Дифракционная решетка — оптический прибор, принцип действия которого основан на явлении дифракции.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Ее изготавливают путем нанесения на стекло штрихов. Их число может доходить до нескольких тысяч на 1 мм. Общее их число часто превышает 100 тысяч. Решетку также можно получить из металла, на котором чередуются участки, отражающие и рассеивающие свет.

Условные обозначения:

  • a — ширина прозрачных щелей (отражающих полос);
  • b — ширина непрозрачных промежутков (рассеивающих полос);
  • d — период дифракционной решетки.

Период дифракционной решетки равен сумме ширины прозрачных щелей и ширины непрозрачных промежутков:

d=a+b

Внимание! Обычно изготавливают дифракционные решетки с периодом в 10 мкм.

Пусть на дифракционную решетку с периодом d падает плоская монохроматическая волна, длина волны которой составляет λ.

При этом вторичные источники, расположенные в щелях решетки, создают световые волны, распространяющиеся по всем направлениям. Найдем условие, при котором идущие от щелей волны усиливают друг друга (складываются). Для этого рассмотрим волны, распространяющиеся в направлении под углом φ к дифракционной решетке.

Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке вмещается целое число длин волн, то волны от всех щелей при сложении будут усиливать друг друга. Из треугольника АВС найдем длину катета АС:

AC=ABsinφdsinφ

При этом максимумы будут наблюдаться под углом φ в соответствии с условием:

dsinφ=±kλ

где величина k = 0, 1, 2, … определяет порядок спектра.

Нужно учитывать, что при выполнении условия друг друга усиливают как волны, распространяющиеся от нижних краев щелей, так и волны, распространяющиеся от всех других точек щелей. Каждой точке в первой щели соответствует точка во второй щели, находящаяся на расстоянии d от первой точки. Поэтому разность хода испущенных этими точками вторичных волн равна , и эти волны взаимно усиливаются.

Рассмотрим следующий случай. За решеткой поместим собирающую линзу, а за ней — экран на фокусном расстоянии от линзы. Линза фокусирует лучи, идущие параллельно, в одной точке (в фокусе). В этой точке волны складываются и взаимно усиливаются. Углы φ, удовлетворяющие условию, определяют положение так главных максимумов на экране (соответствующих 1, 2 и т.д. порядку).

Наряду с картиной, получаемой в результате дифракции света, в случае дифракционной решетки наблюдается дифракционная картина и от отдельных щелей. Интенсивности максимумов в ней меньше интенсивности главных максимумов. Так как положение максимумов (кроме центрального, соответствующего k = 0) зависит от длины волны, то решетка разлагает белый свет в спектр. Чем больше λ, тем дальше от центрального максимума располагается тот или иной максимум, соответствующий данной длине волны.

Каждому значению k соответствует свой порядок спектра. Между максимумами расположены минимумы освещенности. Чем больше число щелей, тем более резко очерчены максимумы и тем более широкими минимумами они разделены.

Пример №1. В опыте Юнга по дифракции расстояние между щелями равно d = 7∙10–4 м. Расстояние от двойной щели до экрана равно D = 2 м. При освещении прибора зеленым светом расстояние между соседними светлыми дифракционными полосами оказалось равным ∆h = 16∙10–2 м. Вычислите длину волны.

В некоторой точке С экрана будет наблюдаться максимум освещенности при выполнении условия:

d2d1=kλ

где величина k = 0, 1, 2, … — целые числа.

Примеры решения задач. Световые волны - Класс!ная физика

Применим теорему Пифагора к треугольникам S1CE и SsCB:

d22=D2+(hk+d2)2

d21=D2+(hkd2)2

Вычитая из первого равенства второе, получаем:

d22d21=2hkd

Отсюда:

(d2+d1)(d2d1)=2hkd

Так как расстояние между щелями много меньше расстояния между ними и экраном, то можем считать, что:

d2+d12D

Тогда:

d2d1hkdD

Учитывая, что d2d1=kλ, можем считать, что:

kλhkdD

Отсюда можем найти расстояние k-той светлой полосы от центра экрана:

hkkλDd

Расстояние между соседними полосами равно:

Δh=hk+1hkλDd

Следовательно:

λdΔhD7·104·16·1022=56·106(м)=56 (мкм)

Задание EF17638

На плоскую непрозрачную пластину с узкими параллельными щелями падает по нормали плоская монохроматическая волна из красной части видимого спектра. За пластиной на параллельном ей экране наблюдается интерференционная картина, содержащая большое число полос. При переходе на монохроматический свет из синей части видимого спектра

Ответ:

а) расстояние между интерференционными полосами увеличится

б) расстояние между интерференционными полосами уменьшится

в) расстояние между интерференционными полосами не изменится

г) интерференционная картина станет невидимой для глаза


Алгоритм решения

  1. Записать, как зависит расстояние между интерференционными полосами от частоты световых лучей.
  2. Выбрать ответ, удовлетворяющий установленной зависимости.

Решение

Зависимость расстояния между интерференционными полосами от частоты световых лучей удалось установить экспериментально. Было выяснено, что чем выше частота, тем меньше расстояние между ними. Частота света из синего части спектра больше частоты из красной части спектра. Поэтому при переходе из красной части спектра в синюю часть расстояние между полосами интерференционной картины уменьшится.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18119

В прозрачном сосуде, заполненном водой, находится дифракционная решётка. Решётка освещается лучом света лазерной указки, падающим перпендикулярно её поверхности через боковую стенку сосуда. Как изменятся частота световой волны, длина волны, падающей на решётку, и угол между падающим лучом и первым дифракционным максимумом при удалении воды из сосуда?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится
  2. Уменьшится
  3. Не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.


Алгоритм решения

1.Объяснить, что изменится, когда вода будет извлечена из сосуда.

2.Установить, как при этом изменится частота светового луча, достигающей решетки.

3.Установить, как при этом изменится длина световой волны, достигающей решетки.

4.Установить, как при этом изменится угол между нормалью к решётке и первым дифракционным максимумом.

Решение

Когда воды в сосуде не станет, изменится оптическая плотность среды — ею будет воздух, имеющий абсолютный показатель преломления 1 (у воды он равен 1,33).

Частота световой волны — величина постоянная. Она не меняется при изменении любых величин.

Длина световой волны меняется с учетом оптической плотности среды. Она определяется формулой:

λ=vν

В оптически более плотной среде скорость распространения волны уменьшается. Но когда их сосуда была удалена вода, оптическая плотность уменьшилась, значит, скорость волны увеличилась. Так как частота волны — постоянная, а длина волны прямо пропорциональна ее скорости, то при увеличении скорости длина волны тоже увеличится.

В оптически более плотной среде волны отклоняются от прямолинейного распространения сильнее в сторону нормали. Поэтому при удалении воды, когда оптическая среда станет менее плотной, лучи отклонятся от нормали. В этом случае угол между нормалью к решётке и первым дифракционным максимумом увеличится.

Ответ: 311

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18230

Дифракционная решётка с периодом 10–5 м расположена параллельно экрану на расстоянии 0,75 м от него. На решётку по нормали к ней падает пучок света с длиной волны 0,4 мкм. Какого порядка максимум в спектре будет наблюдаться на экране на расстоянии 3 см от центра дифракционной картины? Считать sina ≈ tga.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Выполнить пояснительный рисунок.

3.Записать условие интерференционных максимумов дифракционной решётки.

4.Выполнить решение в общем виде.

5.Подставить неизвестные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Длина волны пучка света: λ = 0,4 мкм.

 Период дифракционной решетки: d = 10–5 м.

 Расстояние между дифракционной решеткой и экраном: L = 0,75 м.

 Расстояние от k-того максимума до центра дифракционной картины: a = 3 см.

0,4 мкм = 0,4∙10–6 м.

3 см = 3∙10–2 м

Сделаем пояснительный чертеж:

Запишем условие интерференционных максимумов дифракционной решётки:

dsinα=kλ

Из курса геометрии известно, что тангенс угла равен отношению прилежащего катета к противолежащему. Следовательно:

tanα=aL

Из условия задачи синус и тангенс этого угла равны. Следовательно:

sinα=tanα=aL

Найдём номер дифракционного максимума, который будет наблюдаться на экране на расстоянии 3 см от центра дифракционной картины:

daL=kλ

Ответ: 1

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 5.6k

Добавить комментарий