Как найти постоянное напряжение формула

Законы постоянного тока

Содержание

  • Постоянный электрический ток. Сила тока
  • Постоянный электрический ток. Напряжение
  • Закон Ома для участка цепи
  • Электрическое сопротивление. Удельное сопротивление вещества
  • Электродвижущая сила. Внутреннее сопротивление источника тока
  • Закон Ома для полной электрической цепи
  • Параллельное и последовательное соединение проводников
  • Смешанное соединение проводников
  • Работа электрического тока. Закон Джоуля–Ленца
  • Мощность электрического тока
  • Носители свободных электрических зарядов в металлах, жидкостях и газах
  • Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковый диод
  • Основные формулы раздела «Законы постоянного тока»

Постоянный электрический ток. Сила тока

Электрический ток – это упорядоченное движение заряженных частиц.

Условия существования электрического тока в проводнике:

  • наличие свободных заряженных частиц;
  • наличие электрического поля.

Напряженность электрического поля должна быть постоянной.

Цепь постоянного тока должна быть замкнутой.

Важно!
Тепловое движение заряженных частиц нельзя назвать электрическим током, так как оно беспорядочное.

Электрический ток можно обнаружить по его действиям:

  • тепловому – при протекании тока проводник нагревается;
  • химическому – изменяется состав вещества при прохождении электрического тока (электролиз);
  • магнитному – электрический ток создает магнитное поле.

За направление тока принимают направление движения положительно заряженной частицы.

Сила тока – это скалярная физическая величина, равная отношению заряда, прошедшего через поперечное сечение проводника, ко времени, за которое этот заряд переносится.

Обозначение – ​( I )​, единица измерения в СИ – ампер (А) (является основной).

Вычисляется по формуле:

Если за одинаковые промежутки времени через поперечное сечение проводника проходит одинаковый заряд, то ток постоянный.

Для измерения силы тока используют амперметр.

Условное обозначение на схемах:

Амперметр – измерительный прибор для определения силы тока в электрической цепи.

При измерении силы тока амперметр включают в цепь последовательно с тем прибором, силу тока в котором измеряют, и с соблюдением полярности. Клемму амперметра со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока.

Для того чтобы включение амперметра не влияло на величину измеряемого тока, его сопротивление по сравнению с сопротивлением нагрузки должно быть как можно меньшим. Каждый амперметр рассчитывается на некоторое определенное максимальное значение измеряемой величины. Но возникают ситуации, когда необходимо выполнить измерение силы тока больше предельно допустимого значения силы тока.

Для этого параллельно амперметру присоединяют проводник (шунт), по которому проходит часть измеряемого тока. Значение сопротивления этого проводника рассчитывается так, чтобы сила тока, проходящего через амперметр, не превышала его максимально допустимого значения.

Сопротивление шунта рассчитывается по формуле:

где ​( I_ц )​ – сила тока в цепи, ( I_а ) – максимально допустимая для данного амперметра сила тока, ( R_а ) – сопротивление амперметра, ​( n=frac{I_ц}{I_а} )​.

При этом цена деления прибора увеличивается в n раз, а точность измерений во столько же раз уменьшается.

Работающим с электрическими цепями надо знать, что для человеческого организма безопасной считается сила тока до 1 мА. Сила тока больше 100 мА приводит к серьезным поражениям организма.

Постоянный электрический ток. Напряжение

В проводнике, по которому протекает ток, заряды движутся под действием сил электростатического поля. Работу электростатических сил характеризуют разностью потенциалов или напряжением.

Электрическое напряжение – скалярная физическая величина, равная отношению работы по перемещению электрического заряда между двумя точками цепи к величине этого заряда.

Обозначение – ​( U )​, единица измерения в СИ – вольт (В).

Формула для вычисления:

Напряжение равно разности потенциалов только в том случае, если рассматриваемый участок цепи не содержит источник тока (ЭДС = 0).

Измеряют напряжение вольтметром.

Изображение вольтметра на схеме:

При измерении напряжения вольтметр включают в цепь параллельно с тем прибором, напряжение на котором измеряют, и с соблюдением полярности. Клемму вольтметра со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока. Для того чтобы включение вольтметра не влияло на измерение напряжения, его сопротивление должно быть большим.

Для измерения напряжения больше, чем допустимое для данного вольтметра, используют добавочное сопротивление – резистор, включаемый последовательно с вольтметром.

Величина добавочного сопротивления рассчитывается по формуле:

где ​( U )​ – напряжение, которое нужно измерить, ​( U_В )​ – напряжение, на которое рассчитан вольтметр, ​( n=frac{U}{U_В} )​, ​( R_В )​ – сопротивление вольтметра.

При этом цена деления прибора увеличивается в ​( n )​ раз, а точность измерений во столько же раз уменьшается.

Закон Ома для участка цепи

Взаимосвязь между силой тока, протекающей по проводнику, и напряжением на его концах была экспериментально установлена Г. Омом и носит название закона Ома для участка цепи.

Закон Ома для участка цепи

Сила тока прямо пропорциональна напряжению на концах участка и обратно пропорциональна его сопротивлению:

График зависимости силы тока от напряжения называется вольт-амперной характеристикой. Из закона Ома для участка цепи следует, что при постоянном сопротивлении сила тока прямо пропорциональна напряжению. Следовательно, вольт-амперная характеристика для металлического проводника представляет собой прямую линию, проходящую через начало координат.

Проводник с такими свойствами называется резистором.

Угол наклона графика к оси напряжений зависит от сопротивления проводника. Тангенс угла наклона графика равен проводимости резистора.

Электрическое сопротивление. Удельное сопротивление вещества

Электрическое сопротивление – свойство материала проводника препятствовать прохождению через него электрического тока.

Обозначение – ​( R )​, единица измерения в СИ – Ом.

Объяснить наличие сопротивления можно на основе строения металлических проводников. Свободные электроны при движении по проводнику встречают на своем пути ионы кристаллической решетки и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток.

Сопротивление различных проводников зависит от материала, из которого они изготовлены, их длины, геометрической формы и температуры. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 м2.

Обозначение – ​( rho )​, единица измерения в СИ – Ом·м.

Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 1,7·10-8 Ом·м, т. е. медный проводник длиной 1 м и сечением 1 м2 обладает сопротивлением 1,7·10-8 Ом. На практике часто используют единицу удельного сопротивления (Ом·мм2)/м.

Электрическое сопротивление проводника прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.

Формула для вычисления:

Сопротивление проводника увеличивается с ростом температуры. Удельное сопротивление зависит от температуры:

где ​( rho_0 )​ – удельное сопротивление при ​( T_0 )​ = 293 К (20°С), ​( Delta T=T-T_0 )​, ​( alpha )​ – температурный коэффициент сопротивления.

Единица измерения температурного коэффициента сопротивления – К-1.

При нагревании увеличивается интенсивность движения частиц вещества. Это создает трудности для направленного движения электронов. Увеличивается число столкновений свободных электронов с ионами кристаллической решетки.

Свойство изменения сопротивления при изменении температуры используется в термометрах сопротивления. Эти приборы могут измерять температуру, основываясь на зависимости сопротивления от температуры. У термометров сопротивления высокая точность измерений.

Электродвижущая сила. Внутреннее сопротивление источника тока

Для создания электрического поля в проводниках используют источник тока. Внутри источника тока происходит перераспределение зарядов, в результате которого на полюсах источника возникает избыток зарядов разных знаков.

Виды источников тока:

  • электрофорная машина;
  • термопара;
  • фотоэлемент;
  • аккумулятор;
  • гальванический элемент.

Сторонними называются силы неэлектрической природы, действующие внутри источника тока.

Когда проводник соединяют с полюсами источника, то на внешнем участке цепи заряженные частицы движутся под действием электростатической силы. А внутри источника на заряды действуют сторонние и электростатические силы.

Под действием этих сил внутри источника происходит перемещение положительных зарядов от отрицательного полюса источника к положительному. Это перемещение происходит до тех пор, пока сторонние силы не станут равными электростатическим. При переносе заряда эти силы совершают работу. Работа сторонних сил по перемещению заряда компенсирует потери энергии заряженными частицами при их движении по цепи.

Электродвижущей силой (ЭДС) называется отношение работы сторонних сил по перемещению положительного заряда к величине этого заряда.

Обозначение – ​( varepsilon )​, единица измерения в СИ – вольт (В).

Формула для вычисления:

где ​( Delta q )​ – модуль перенесенного заряда.

Если электрическая цепь содержит несколько источников тока с ЭДС ​( varepsilon_1,varepsilon_2,,…,varepsilon_T )​, то суммарная ЭДС ( varepsilon=varepsilon_1+varepsilon_2+…,varepsilon_T ).

ЭДС считается положительной, если направление обхода цепи против часовой стрелки совпадает с переходом внутри источника тока от отрицательного полюса источника к положительному полюсу.

На рисунке: ​( varepsilon_1>0,,varepsilon_2<0,,varepsilon_3>0. )

Суммарная ЭДС: ( varepsilon=varepsilon_1-varepsilon_2+varepsilon_3. )

При подключении проводника к полюсам источника тока происходит перераспределение заряда на поверхности проводника, а внутри проводника возникает постоянное электрическое поле. Заряды начинают перемещаться по замкнутой цепи, в которой устанавливается постоянная сила тока.

Сопротивление источника тока называется внутренним сопротивлением.

Обозначение внутреннего сопротивления – ​( r )​. Единица измерения в СИ – Ом.

Закон Ома для полной электрической цепи

Полная электрическая цепь состоит из источника тока и проводников, представляющих внешнее сопротивление.

Закон Ома для полной электрической цепи

Сила тока в полной цепи прямо пропорциональна ЭДС, действующей в цепи, и обратно пропорциональна полному сопротивлению цепи:

Полное сопротивление – это сумма внутреннего сопротивления источника и сопротивления внешней цепи. Во внешней цепи ток идет по направлению электрического поля, внутри источника тока – против поля.

Напряжение на внешней цепи (падение напряжения):

Если цепь разомкнута, то ток внутри источника не проходит и ​( varepsilon=U )​.

ЭДС численно равна напряжению на зажимах источника тока (разности потенциалов на полюсах источника).

Сопротивление внешней цепи больше внутреннего сопротивления источника.

Если сопротивление внешней цепи мало ​( (R=0) )​, то возможно короткое замыкание. Сила тока короткого замыкания: ​( I_{кз}=frac{varepsilon}{r} )​Возрастание силы тока приводит к резкому увеличению количества теплоты и может стать причиной пожара. Для предотвращения возгорания в электрическую цепь последовательно включают предохранители.

Соединение источников тока

Источники тока можно соединять между собой последовательно и параллельно.

При параллельном соединении положительные полюсы элементов соединяют между собой, отрицательные – между собой. Если ЭДС источников одинаковы, то общая ЭДС ​( varepsilon=varepsilon_1 )​ (​( varepsilon_1 )​ – ЭДС одного источника). Величина, обратная общему внутреннему сопротивлению, равна сумме величин, обратных внутренним сопротивлениям элементов: ​( frac{1}{r}=frac{1}{r_1}+frac{1}{r_2}+… )​ Если внутренние сопротивления источников одинаковы, то ​( r_{общ}=frac{r_1}{n} )​, ​( r_1 )​ – сопротивление одного источника, ​( n )​ – число источников. Сила тока: ​( frac{varepsilon}{R+frac{r}{n}} )​.

При последовательном соединении положительный полюс источника соединяется с отрицательным полюсом следующего. Общая ЭДС батареи ​( varepsilon=varepsilon_1+varepsilon_2+… )​, а общее внутреннее сопротивление равно сумме внутренних сопротивлений отдельных источников: ​( r=r_1+r_2+… ) Если внутренние сопротивления источников одинаковы, то ​( r_{общ}=nr_1 )​. Сила тока: ​( I=frac{nvarepsilon}{R+nr} )​.

Параллельное и последовательное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно.

Последовательное соединение проводников

При последовательном соединении начало одного проводника соединяется с концом другого.

При последовательном соединении сила тока во всех проводниках одинакова:

Общее напряжение ​( U )​ на проводниках равно сумме напряжений на отдельных проводниках:

Напряжение на проводниках прямо пропорционально их сопротивлениям:

Общее сопротивление равно сумме сопротивлений проводников, образующих цепь:

Если проводники имеют одинаковое сопротивление, то общее сопротивление находится по формуле:

где ​( n )​ – число проводников, ​( R_i )​ – сопротивление проводника.

Параллельное соединение проводников

При параллельном соединении проводники подключаются между одной и той же парой точек. Если в этой точке соединяются три и более проводников, то она называется узлом электрической цепи.

При параллельном соединении напряжение на всех проводниках одинаково:

Сумма сил токов, протекающих по проводникам, равна силе тока в неразветвленной цепи:

Это следствие того факта, что в точках разветвления цепи заряды не могут накапливаться.

Силы токов в разветвленных частях цепи обратно пропорциональны их сопротивлениям:

Величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников:

Если проводники имеют одинаковое сопротивление, то общее сопротивление находится по формуле:

где ​( n )​ – число проводников, ​( R_1 )​ – сопротивление проводника.

Если параллельно соединены два проводника, от общее сопротивление вычисляется по формуле:

Смешанное соединение проводников

Смешанное соединение проводников – соединение, при котором часть проводников соединена последовательно, а часть – параллельно.

Важно!
Чтобы рассчитать общее сопротивление такого участка или найти силу тока и напряжение при таком соединении, нужно:

  1. разбить его на простые участки с последовательно или параллельно соединенными проводниками;
  2. найти общее (эквивалентное) сопротивление каждого из этих участков;
  3. составить эквивалентную схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений;
  4. рассчитать сопротивление полученной схемы.

Если в схеме не удается выделить участки с последовательным или параллельным соединением проводников, то можно использовать такое правило: точки с одинаковыми потенциалами можно соединять и разъединять, ток между такими точками не идет.

На рисунке, если ​( R_1=R_2,R_4=R_5, )​ то потенциалы точек 1 и 2 равны. Резистор ​( R_3 )​ можно убрать на эквивалентной схеме – ток по нему не идет.

Точки с одинаковыми потенциалами есть в схемах с осью или плоскостью симметрии относительно точек подключения источника тока.

Если схема симметрична относительно оси, проходящей через точки входа и выхода тока, то точки равного потенциала находятся на концах симметричных сопротивлений (по ним идут одинаковые токи).

Если схема симметрична относительно оси, перпендикулярной линии, на которой лежат точки входа и выхода тока, то точки равного потенциала находятся на пересечении этой оси с проводниками.

Если в схеме нет участков с известным видом соединения и нет точек с равным потенциалом, то для расчета таких цепей используют правила Кирхгофа.

Правила Кирхгофа:

  • Алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

Положительными считают токи, входящие в узел, отрицательными – выходящие из узла.

  • В любом замкнутом контуре, произвольно выбранном в разветвленной цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС, имеющихся в контуре:

Порядок расчета цепи:

  • выбрать направление токов во всей цепи;
  • записать уравнения токов для узлов;
  • записать уравнения для выделенных контуров. Произвольные замкнутые контуры выделяются так, чтобы каждый новый контур содержал хотя бы один участок, не входящий в ранее рассмотренные контуры;
  • решить полученную систему уравнений.

Алгоритм решения задач на определение силы тока, напряжения или сопротивления на участке цепи:

  • начертить схему цепи и указать на ней все элементы;
  • установить, какие элементы цепи включены последовательно, какие – параллельно;
  • расставить токи и напряжения на каждом участке цепи и записать для каждой точки разветвления (если они есть) уравнения токов и уравнения, связывающие напряжения на участках цепи;
  • используя закон Ома, установить связь между токами, напряжениями и ЭДС;
  • если в схеме делают какие-либо переключения сопротивлений или источников, уравнения составить для каждого режима работы цепи;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Работа электрического тока. Закон Джоуля–Ленца

Работа тока – работа сил электрического поля, создающего электрический ток.

Работа тока на участке цепи вычисляется по формуле:

Используя формулу закона Ома для участка цепи, можно работу тока вычислить так:

Работа тока в замкнутой цепи находится по формуле:

При протекании постоянного тока по металлическому проводнику электроны сталкиваются с положительными ионами, расположенными в узлах кристаллической решетки. При этом электроны передают им энергию. Это приводит к нагреванию проводника. Количество теплоты, выделяющееся в проводнике за время ​( t )​, равно:

Эта формула выражает закон Джоуля–Ленца: количество теплоты, выделяющееся при прохождении тока по проводнику, прямо пропорционально квадрату силы тока, времени его прохождения и сопротивлению проводника.

Мощность электрического тока

Мощность электрического тока равна отношению работы тока ко времени, в течение которого она совершается.

Обозначение – ​( P )​, единица измерения в СИ – ватт (Вт).

Вычисляется по формуле:

Можно записать еще несколько формул для вычисления мощности электрического тока на участке цепи:

Полная мощность источника тока:

Коэффициент полезного действия источника тока:

При решении задач на тепловое действие тока нужно учитывать следующее:

1. Если на участке есть источник тока, то необходимо использовать для решения формулу закона Джоуля–Ленца:

2. Если сила тока в цепи постоянна, то удобно использовать формулу закона Джоуля–Ленца:

3. Если постоянно напряжение, то формулу:

4. Количество теплоты можно находить, используя формулы термодинамики.

Носители свободных электрических зарядов в металлах, жидкостях и газах

Одним из условий существования электрического тока является наличие свободных заряженных частиц.

Носители электрического тока: в металлах – свободные электроны; в электролитах – положительные и отрицательные ионы; в газах – электроны и положительные ионы; в полупроводниках – электроны и дырки; в вакууме – любые заряженные частицы, но чаще всего это электроны.

Электрический ток в металлах

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. При протекании тока по металлическому проводнику не происходит переноса вещества (опыт Рикке). Это значит, что ионы металла не принимают участия в переносе электрического заряда. Носителями заряда являются частицы одинаковые для всех металлов – электроны.

Сила тока в металлическом проводнике с площадью поперечного сечения ​( S )​:

где ​( q )​ – элементарный электрический заряд (заряд электрона), ​( n )​ – концентрация электронов проводимости, ​( v )​ – средняя скорость упорядоченного движения электронов.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыты Мандельштама и Папалекси, Стюарта и Толмена). Катушка с большим числом витков проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному гальванометру. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременный ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона.

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема. Электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между положительными ионами, образующими кристаллическую решетку металла.

У некоторых металлов и сплавов обнаружено явление сверхпроводимости. Это явление открыто в 1911 г. Камерлинг-Оннесом. При температурах ниже критической сопротивление проводника становится равным нулю. Значения критической температуры для чистых металлов изменяются в диапазоне от долей кельвина до 30 К. В настоящее время получены вещества с критической температурой 125 К. Сверхпроводящие свойства наблюдаются у ртути, свинца, олова.

Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Явление сверхпроводимости используется для получения сильных магнитных полей

Электрический ток в жидкостях

Жидкости, проводящие электрический ток, называют электролитами. К электролитам относятся водные растворы неорганических кислот, солей и оснований, многие соединения металлов в расплавленном состоянии. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.

В результате электролитической диссоциации (распада нейтральных молекул на ионы) образуются положительные и отрицательные ионы. При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение. Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду).

Электролиз – явление прохождения электрического тока через электролит, сопровождающееся выделением веществ на электродах.

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году.

Масса ​( m )​ вещества, выделившегося на электроде, прямо пропорциональна заряду ​( Q )​, прошедшему через электролит:

Величину ​( k )​ называют электрохимическим эквивалентом.

Электрохимический эквивалент ​( k )​ равен отношению массы ​( m_0 )​ иона данного вещества к его заряду ​( q_0 )​:

где ​( M )​ – молярная масса вещества, ​( n )​ – валентность вещества, ​( F=eN_A )​ – постоянная Фарадея. ​( F )​ = 96,5·103 Кл/моль.

Постоянная Фарадея численно равна заряду, который нужно пропустить через раствор любого электролита для получения одного моля одновалентного вещества.

Явление электролиза широко применяется в современном промышленном производстве: получение чистых металлов (меди, алюминия), нанесение металлических покрытий (гальваностегия), изготовление копий с матриц (гальванопластика).

Электрический ток в газах

В обычных условиях газы являются диэлектриками, но при определенных условиях газ может стать проводником. Процесс протекания электрического тока через газ называется газовым разрядом. Носители заряда в газе – свободные электроны и ионы. Проводимость в газах смешанная – электронно-ионная.

Свободные носители заряда в газах появляются в процессе ионизации. Ионизация – процесс вырывания электрона из атома. Наряду с процессом ионизации в газе происходит и обратный процесс – рекомбинация заряженных частиц.

Ионизацию вызывают нагревание газа, излучение (ультрафиолетовое, рентгеновское или гамма-излучение).

Выделяют два вида разрядов в газе: несамостоятельный и самостоятельный разряды.

Несамостоятельный разряд происходит под действием внешнего ионизатора и прекращается, как только ионизатор перестает действовать. Самостоятельный разряд происходит без действия внешнего ионизатора под действием электрического поля, существующего между электродами. С ростом напряженности электрического поля скорости свободных заряженных частиц растут. Достигая катода, такие частицы выбивают из него электроны (вторичная электронная эмиссия). Эти электроны, разгоняясь полем, вызывают ионизацию других молекул (ионизация электронным ударом). Число заряженных частиц нарастает лавинообразно, и внешний ионизатор не нужен для поддержания тока.

На рисунке участок ОАВ соответствует несамостоятельному разряду, участок ВС – самостоятельному разряду.

Виды самостоятельного разряда:

  • тлеющий;
  • дуговой;
  • коронный;
  • искровой.

Тлеющий разряд происходит в разреженном газе при низком давлении. Применяется в газосветных трубках, лампах дневного света, цифровых индикаторах, ртутных лампах низкого давления.

Дуговой разряд – разряд между электродами, нагретыми до высокой температуры при атмосферном или повышенном давлении. Применяется в ртутных лампах высокого давления, при сварке металлов, в электропечах, в источниках света (прожекторах).

Коронный разряд возникает при нормальном и повышенном давлении у заостренных электродов. У острия электрода напряженность электрического поля велика, и в этой области возникает ударная ионизация при атмосферном давлении. Коронный разряд может возникнуть в тонких проводах, находящихся под высоким напряжением. Это приводит к утечке электроэнергии. Применяется в электрофильтрах, громоотводах, счетчике Гейгера–Мюллера.

Искровой разряд – это прерывистый самостоятельный разряд при нормальном или повышенном атмосферном давлении газа в электрическом поле очень большой напряженности. Применяется при обработке металлов. Пример такого разряда в природе – молния.

Плазма – частично или полностью ионизированный газ, в котором плотности отрицательных и положительных зарядов одинаковы. При сильном нагревании любое вещество испаряется, превращается в газ. Если увеличивать температуру и далее, резко усиливается процесс термической ионизации. Молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

В состоянии плазмы находится подавляющая часть вещества Вселенной: звезды, галактические туманности и межзвездная среда. Около Земли плазма существует в виде солнечного ветра и ионосферы. Плазму можно наблюдать в рекламных газовых трубках, кварцевых лампах. За последние годы применение плазмы существенно расширилось. Высокотемпературная плазма (Т ∼ 106–108 К) из смеси дейтерия с тритием используется для осуществления управляемого термоядерного синтеза; низкотемпературная плазма (Т ≤ 105 К) – в различных газоразрядных приборах: газовых лазерах, ионных приборах.

Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковый диод

В природе существует большая группа веществ, занимающих промежуточное положение между проводниками и диэлектриками по величине электропроводности.

Полупроводниками называют вещества, удельное сопротивление которых находится в интервале от 10-3 до 107 Ом·м. К типичным полупроводникам относятся германий и кремний, селен, теллур, мышьяк.

Удельное сопротивление полупроводника зависит от внешних факторов: температуры, освещенности, электрического поля. С ростом температуры удельное сопротивление полупроводника уменьшается. С ростом освещенности также происходит уменьшение сопротивления полупроводника.

Такой ход зависимости удельного сопротивления от температуры ​( rho(T) )​ показывает, что у полупроводников концентрация свободных носителей заряда не остается постоянной, а увеличивается с ростом температуры. Объясним такую зависимость на примере германия.

Атомы германия на внешней оболочке имеют четыре валентных электрона. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум разным атомам. Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах, поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках значительно меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут появляться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

Если полупроводник поместить в электрическое поле, то в упорядоченном движении участвуют свободные электроны и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток ​( I )​ в полупроводнике складывается из электронного ​( I_Э )​ и дырочного ( I_Д ) токов:

Концентрация электронов проводимости в полупроводнике равна концентрации дырок.

Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Собственный полупроводник — полупроводник, не содержащий примесей, влияющих на его электропроводность.

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков.

Важно!
Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Примесной проводимостью называют проводимость полупроводников при наличии примесей.

Различают два типа примесной проводимости – электронную и дырочную.

Электронная проводимость

Электронная проводимость возникает при введении в кристалл германия с четырехвалентными атомами пятивалентных атомов (например атомов мышьяка, ​( As )​).

Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказывается лишним, он легко отрывается от атома мышьяка и становится свободным.

Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника.

Основными носителями заряда являются электроны. Концентрация свободных электронов намного больше концентрации дырок. Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником ​( n )​-типа.

Дырочная проводимость

Дырочная проводимость возникает при введении в кристалл германия трехвалентных атомов (например атомов индия, ​( In )​). Атом индия с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия.

Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места – дырки. На эти места могут переходить электроны из соседних ковалентных связей, что приводит к движению дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов.

Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями заряда в полупроводниках p-типа являются дырки.

p-n переход (электронно-дырочный переход) – это область контакта двух полупроводников с разными типами проводимости.

При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, поле которого препятствует процессу диффузии электронов и дырок. Пограничная область раздела полупроводников с разными типами проводимости называется запирающим слоем. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение ​( U_З )​, приблизительно равное 0,35 В для германиевых n-p-переходов и 0,6 В для кремниевых.

p-n-переход обладает свойством односторонней проводимости. Если полупроводник с p-n-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от p-n-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через p-n-переход практически не идет. Напряжение, поданное на p-n-переход, в этом случае называют обратным. Незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов.

Если p-n-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать p-n-переход, создавая ток в прямом направлении. Сила тока через p-n-переход в этом случае будет возрастать при увеличении напряжения источника.

Способность p-n-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами.

Обозначение на схемах полупроводникового диода:

Полупроводниковые диоды изготавливают из кристаллов кремния или германия. Они используются в выпрямителях для преобразования переменного тока в постоянный. Вольт-амперная характеристика полупроводникового диода приведена на рисунке.

Полупроводниковые диоды имеют малые размеры, длительный срок службы, механическую прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры.

Основные формулы раздела «Законы постоянного тока»

Законы постоянного тока

3.3 (65%) 64 votes

Формула напряжения в физике — это представление электрической потенциальной энергии на единицу заряда. Если ток был размещен в определенном месте, напряжение указывает на ее потенциальную энергию в этой точке. Другими словами, это измерение силы, содержащейся в электрическом поле или цепи в данной точке. Он равен работе, которую нужно было бы выполнить за единицу заряда против электрического поля, чтобы переместить его из одной точки в другую.

Напряжение является скалярной величиной, у него нет направления. Закон Ома гласит, что интенсивность равна текущему временному сопротивлению.

Сопротивление

Формула механической мощности — средняя и мгновенная мощность

Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.


Резисторы различных типов

Для переменного тока

Нужно понимать, что закон не применим напрямую к переменным цепям, например, с катушками индуктивности, конденсаторами или линиям передач. Закон может использоваться только для чисто резистивных цепей переменного тока без каких-либо изменений. В цепи RLC противодействие току является импедансом Z, который образует комбинацию двух ортогональных частей сопротивления.

Переменный ток

Im=Vm/Z

В этом случае Vm связано с Im с помощью константы пропорциональности Z (импеданса) и константы пропорциональности R. Для чисто резистивных линий, где (Z = R).

Vm = ImZ и Vm = ImR

Z — это общее сопротивление участка к переменному току, состоящее из реальной части — сопротивления и мнимой — реактивности.

Формула ее определяется теоремой Пифагора, поскольку угол Ф зависит от реактивной составляющей.

Интегральная форма

Взаимосвязь параметров электрической цепи

Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.

К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.

Формула напряжения тока закона Ома выглядит следующим образом:

I=U/R.

Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.

Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:

  • I – сила тока;
  • U – напряжение;
  • R – сопротивление.

Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.

Кроме закона Ома, используется формула расчета мощности:

P=U∙I.

Символом P здесь обозначена мощность тока.

Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.

Закон Ома для неоднородного участка цепи

Физическая величина, равная отношению работы сторонних сил Aст при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой (ЭДС) источника Eэдс:

$ E_{эдс} = {A_{cт}over q} $ (1).

Таким образом, ЭДС равна работе, совершаемой сторонними силами при перемещении единичного положительного заряда. При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа электростатического поля равна нулю, а работа сторонних сил равна сумме всех ЭДС, действующих в этой цепи.

Работа электростатических сил по перемещению единичного заряда равна разности потенциалов $ Δφ = φ_1 – φ_2 $ между начальной и конечной точками 1 и 2 неоднородного участка. Работа сторонних сил равна, по определению, электродвижущей силе Eэдс, действующей на данном участке. Поэтому полная работа равна:

$ U_п = φ_1 – φ_2 + E_{эдc} $ (2).

Величина Uп называется напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

$ U_п = φ_1 – φ_2 $ (3).

Немецкий исследователь Георг Симон Ом в начале XIX века установил, что сила тока I, текущего по однородному проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

$ I = {U over R} $ (4).

Рис. 2. Портрет Георга Ома.

Величина R — это электрическое сопротивление. Уравнение (4) выражает закон Ома для однородного участка цепи. Для участка цепи, содержащего ЭДС, закон Ома записывается в следующем виде:

$ U_п = I * R = φ_1 – φ_2 + E_{эдс} = Δ φ_{12} + E_{эдс}$ (5).

Данное уравнение называется обобщенным законом Ома для неоднородного участка цепи.

Как работает закон в реальной жизни

Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.

Сила тока формула через мощность:

I=P/U;

Сопротивление:

R=U/I.

Такой же результат можно найти из мощности, не прибегая к промежуточным расчетам:

R=U2/P.

Аналогично можно вычислить любую величину, зная только две из них. Для упрощения преобразований имеется мнемоническое отображение формул, позволяющее находить любые величины.

Внимательно посмотрев на формулы, можно заметить, что, если уменьшить напряжение на лампе в два раза, ожидаемая мощность не снизится аналогично в два раза, а в четыре, согласно формуле:

P=U2/R.

Это довольно распространенная ошибка среди далеких от электротехники людей, которые неправильно соотносят мощность и напряжение, а также их действие на остальные параметры.

Кстати. Сила тока, найденная через сопротивление и напряжение, справедлива как для постоянного, так и для переменного тока, если в ней не используются такие элементы, как конденсатор или индуктивность.

Облегчить расчеты можно, используя онлайн калькулятор.

Определение через разложение электрического поля

Используя приведенное выше понятие, потенциал не находится на одном месте, когда магнитные поля меняются со временем. В физике иногда полезно обобщать электрическое значение, рассматривая только консервативную часть поля. Это делается с помощью следующего разложения, используемого в электродинамике.

формула для вычисления напряжения

В показанной выше формуле Е — индуцированный — вращательное электрическое поле, обусловленное изменяющимися во времени магнитными фонами. В этом случае сила между точками всегда определяется однозначно.

Пример с обычной водой

Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.

Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей. Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.

Различные используемые величины

Кроме основных величин: вольт, ампер, ом, ватт, используют кратные, большие или меньшие. Для обозначений применяют соответствующие приставки:

  • Кило – 1000;
  • Мега – 1000000;
  • Гига – 1000000000;
  • Милли – 0.001.

Таким образом, получается:

  • Киловольт (кВ) – тысяча вольт;
  • Мегаватт (Мвт) – миллион ватт;
  • Миллиом (мОм) – одна тысячная Ом;
  • Гигаватт (ГВт) – тысяча мегаватт или миллиард ватт.

Как найти напряжение

Формула нахождения напряжения как разности потенциалов в электрическом поле:

U=ϕA-ϕB, где ϕAи ϕB – потенциалы в точках А и В, соответственно.

Также можно записать напряжение как работу по переносу единицы заряда из точки А в точку В в электрическом поле:

U=A/q, где q – величина заряда.

Работа тем больше, чем выше напряженность электрического поля Е, то есть сила, действующая на неподвижный заряд.

Потенциальную энергию заряда в электростатическом поле называют электростатический потенциал.

Единицы измерения в формуле

Вам будет интересно:Антиклиналь + синклиналь – это складчатые горы

формула напряжения физика

В формуле, определяющей напряжение, значением СИ является вольт. Таким образом, что 1В = 1 джоуль/кулон. Вольт назван в честь итальянского физика Алессандро Вольта, который изобрел химическую батарею.

Это означает, что в формуле напряжения в физике один кулон заряда получит один джоуль потенциальной энергии, когда он будет перемещен между двумя точками, где разность электрических потенциалов составляет один вольт. При напряжении 12, один кулон заряда получит 12 джоулей потенциальной энергии.

Батарея на шесть вольт имеет потенциал для одного кулона заряда, чтобы получить шесть джоулей потенциальной энергии между двумя местоположениями. Батарея на девять вольт имеет потенциал для одного кулона заряда, чтобы получить девять джоулей потенциальной энергии.

Гидравлическая аналогия

Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:

  • Источник питания – насос;
  • Проводники – трубы;
  • Электроток – движение воды.

Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.

Измерительные приборы

Для измерения параметров электрических цепей служат измерительные приборы:

  • Вольтметр;
  • Амперметр;
  • Омметр.

Наиболее часто используется класс комбинированных устройств, в которых переключателем выбирается измеряемая величина – ампервольтомметры или авометры.

На этой странице вы узнаете

  • Что общего у электрического тока с водой?
  • В чем отличие сопротивления от удельного сопротивления?
  • Почему нежелательно использовать телефон, подключенный к зарядке?
  • Фамилия какого ученого стоит миллион?

«Все, кина не будет. Электричество кончилось». Наверное, никого не оставит равнодушным популярная фраза из широко известного фильма «Джентльмены удачи». Ведь действительно: бесит, когда сидишь за просмотром любимого сериальчика, вдруг — бамс! Вырубили свет, и зарядки ноута, как назло, не хватило. И не выработаешь электричество в домашних условиях, а жаль… Но вот понять, как оно работает — это мы сможем сделать в статье.

Электрический ток

В наше время трудно себе представить жизнь без электричества. Телевизор не посмотреть, телефон не зарядить, чай не попить… Ни один электроприбор в доме не будет работать без электричества. А объявление об отключении электроэнергии, вызывает тихий ужас.

Электричество — это форма энергии, которая существует в виде статических или подвижных электрических зарядов.

Что общего у электрического тока с водой?

Поток. И то и другое представляет собой направленное движение частиц. Из чего состоит вода? Из молекул. Когда эти молекулы движутся в одном направлении, то они образуют поток воды, который течет, например, по трубам.

Так же и электрический ток. Он образуется потоком заряженных частиц, которые движутся по проводам. 

Сформулируем определение:

Электрический ток — это упорядоченное движение заряженных частиц.

Чтобы электрический ток существовал, необходимо выполнение следующих условий:

  • наличие свободных заряженных частиц;
  • наличие электрического поля;
  • наличие замкнутой электрической цепи.

Основными количественными характеристиками электрического тока являются сила тока и напряжение.

Напряжение

Чтобы внутри цепи существовал электрический ток, цепь должна быть замкнута и между концами участка цепи должно существовать напряжение.

Напряжение  — скалярная (не имеющая направления) физическая величина, значение которой равно работе тока на участке цепи, совершаемой при переносе единичного электрического заряда из одной точки в другую.

(U = frac{A}{q}), где 

U — напряжение (В),
A — работа тока на участке цепи (Дж), 
q — электрический заряд (Кл).

Единица измерения UВ (Вольт) = (frac{Дж}{Кл})

Электрический ток – результат “труда” множества частиц. Они любят работать – не ленятся перемещаться из одного конца цепи в другой. И чем больше они будут работать, тем большее напряжение получится. Так запоминаем связь напряжения (U) с работой (A).

Услышав слова из известной песни Димы Билана «Это ты, это я, между нами молния, С электрическим разрядом 220 Вольт…» любой физик (и электрик) приобретает новую пару седых волосинок. Такое напряжение очень опасно для человека. Однако, 220 Вольт — это то самое напряжение в наших розетках!

Прибор для измерения напряжения — вольтметр. Он включается в цепь параллельно. Пример подключения представлен на рисунке:

Сила тока

Это еще одна немаловажная характеристика электрического тока.

Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени . 

(I = frac{q}{t}), где

I — сила тока (А),
q — электрический заряд (Кл), 
t — время (с).

Единица измерения IА (ампер) = (frac{Кл}{с}).

Представим, что внутри проводника «бежит» в одном направлении огромное количество заряженных частиц. Так вот, чем больше общий заряд частиц, пробегающих через поперечное сечение проводника за единицу времени, тем больше будет значение силы тока. Это поможет вам запомнить зависимость силы тока (I) от электрического заряда (q).

Прибор для измерения силы тока — амперметр. Он включается в цепь последовательно. Пример подключения представлен на рисунке:

Направление тока совпадает с направлением движения положительно заряженных частиц.

Давайте разберемся, как можно определить направление тока в цепи на примере.

Задача. На рисунке изображена электрическая цепь с источником тока и сопротивлением R. Определите направление тока в данной цепи (по часовой стрелке/против часовой стрелки).

Решение:

Обратите внимание, «большая» пластина реостата расположена справа (именно она и направляет ток), а «маленькая» слева. Положительно заряженные частицы двигаются от катода к аноду (от положительно заряженной пластинки к отрицательно заряженной), а направление тока всегда совпадает с направлением положительно заряженных частиц. Значит, ток в цепи направлен по часовой стрелке.

Ответ: по часовой стрелке

Электрическое сопротивление

Оно является электрической характеристикой проводника.

Сопротивление — физическая величина, характеризующая электрические свойства участка цепи.

(R = frac{pl}{S}), где 

R — сопротивление (Ом),
p — удельное сопротивление проводника, 
l — длина проводника (м),
S — площадь поперечного сечения проводника (мм²).

Единица измерения RОм.

Удельное сопротивление проводника (p) можно посмотреть в специальной таблице в справочнике или в интернете. Для каждого материала будет свое значение. Мы приведем для примера лишь фрагмент такой таблицы.

Таблица удельных сопротивлений проводников

Металл Удельное сопротивление, 
Ом * (мм^2)/ м
Серебро 0,0015
Медь 0,018
Золото 0,023
Алюминий 0,029
Вольфрам 0,055
Железо 0,098
В чем отличие сопротивления от удельного сопротивления?

Сопротивление — это внешнее свойство, зависящее от количества присутствующего материала, от геометрических характеристик проводника и от самого материала, из которого сделан проводник. 

Удельное сопротивление — это внутреннее свойство проводника, которое не зависит от его размера, а зависит от химического состава вещества и температуры.

Условно можно сказать, что сопротивление — это свойство проводника, а удельное сопротивление — свойство материала.

Получается, что прежде всего на то, каким будет сопротивление, влияют размеры проводника, его форма, материал, из которого он сделан. 

Удельное сопротивление проводника зависит также от температуры. Когда температура твердых тел увеличивается, то удельное сопротивление возрастает. А в растворах и расплавах — наоборот, уменьшается. В экзаменационных задачах случаи с изменением удельного сопротивления не рассматриваются, а вот в олимпиадных задачах такое встретить можно.

Давайте поразмышляем: что чему сопротивляется? 

Причина электрического сопротивления кроется во взаимодействии зарядов разного знака при протекании тока по проводнику. Это взаимодействие можно сравнить с силой трения, стремящейся остановить движение заряженных частиц.

Чем сильнее взаимодействие свободных электронов с положительными ионами в узлах кристаллической решетки проводника, тем больше сопротивление проводника.

Проводник с определенным постоянным сопротивлением называется резистор.

Вернемся к сравнению электрического тока с водой: как молекулы воды из крана движутся сверху вниз, так и электрический ток имеет определенное направление — от катода к аноду. Электрический заряд условно в нашем примере аналогичен массе воды, а напряжение — напору воды из крана.

Закон Ома

Сила тока, напряжение и сопротивление связаны между собой соотношением, которое называется закон Ома:

(I = frac{U}{R}) , где 

I — сила тока (А),
U — напряжение (В), 
R — сопротивление (Ом).

Для упрощенного понимания закона Ома можно использовать данный треугольник. Чтобы вспомнить формулу для нахождения той или иной величины, нужно ее закрыть рукой. Если оставшиеся открытыми величины стоят бок о бок, то они перемножаются друг с другом (U=IR). А если одна величина стоит выше другой, то в таком случае мы делим их друг на друга (I=U/R или R=U/I)

Данный закон справедлив для участка цепи, на который не действуют сторонние силы.

Разберем задачу из контрольно-измерительных материалов ЕГЭ (номер 12).

Ниже на рисунке приведена схема электрической цепи, в которой провода можно считать идеальными. Определите сопротивление резистора, если показания амперметра 0,2 А, а вольтметра — 8 В.

Решение:
Вольтметр подключен параллельно резистору. Следовательно, он показывает напряжение на резисторе U

Амперметр подключен последовательно. Следовательно, он показывает силу тока I на всей цепи. 

Чтобы найти сопротивление на резисторе, воспользуемся законом Ома: 
I=(frac{U}{R}), где R — сопротивление резистора.

Выразим R и подставим значения:
R=(frac{U}{I})
R=(frac{8}{0,2})=40 (Ом)

Ответ: 40

Работа и мощность электрического тока

Вернемся к понятию работы. Мы говорили, при перемещении заряда по проводнику электрическое поле совершает работу (А):

A = qU

Если мы выразим заряд из формулы силы тока q=It, то получим, формулу для расчета работы электрического поля (А) при протекании постоянного тока (или просто работа тока):

А = UIt , где

A — работа электрического тока (Дж),
U — напряжение (В),
I — сила тока (А),
t — время прохождения тока (с).

Единица измерения АДж (Джоуль).

В быту ток совершает работу длительное время, поэтому при определении затраченной электрической энергии используют единицу измерения кВт * ч. Киловатт в час — это энергия, которая потребляется устройством мощностью 1 кВт в течении 1 часа. Учитывая, что 1 ч=3600 с, получим:

1 кВт*ч = 1000 Вт * 3600 с = 3600000 Дж = 3600 кДж

Если же работу тока рассчитать за единицу времени, то мы получим мощность постоянного электрического тока.

Мощность — величина, обозначающая интенсивность передачи электрической энергии.

(P = frac{A}{t}) , где 

P — мощность (Вт),
A — работа электрического тока (Дж), 
t — время прохождения тока (с).

Единица измерения PВт (Ватт).

Средняя мощность тока равна:

(P = frac{A}{t} = frac{qU}{t} = IU = frac{U^2}{R} = I^2R)

Теперь мы знаем все про мощность и работу тока, а значит, нужно отработать это на практике. Тем более что такие задачи встречаются в ЕГЭ (номер 12).

Задача.
Какую работу совершит электрический ток в электродвигателе вентилятора за 20 мин., если сила тока в цепи 0,2 А, а напряжение 12 В?

Решение.
Вспомним формулу для работы тока  A=U*I*t , где U=12 В — напряжение в электродвигателе, I=0,2 A — сила тока, t=20 мин=1200 с — время.

Все данные нам уже известны, поэтому можем подставить их в формулу для работы тока и получить ответ.

A=12*0,2*1200=2880 Дж

Ответ: 2880 Дж

Мощность электроприбора всегда указывается в документации, прилагающейся к нему. Кроме того, нередко ее пишут на самом приборе. Давайте посмотрим на утюг, или стиральную машину дома. Мы увидим, что утюг имеет мощность 1000 Вт, а обычная энергосберегающая лампочка, всего 40 Вт (на то она и сберегающая). Чем больше мощность прибора, тем больше энергии он будет потреблять. Примеры мощностей различных приборов представлены на рисунке.

Закон Джоуля — Ленца

Теперь же свяжем работу тока и теплоту, которая выделяется на проводнике за некоторое время t.

Почему нежелательно использовать телефон, подключенный к зарядке?

Когда приборы подключены в сеть, мы можем заметить, что они нагреваются. Очень часто это наблюдается, когда телефон подключен на зарядку, а мы продолжаем по нему звонить, использовать интернет и прочее. Это плохо влияет на телефон: перегрев батареи и корпуса могут быстрее привести девайс в негодность. 

Почему так происходит?

Электрический ток оказывает тепловое действие на проводник. Количество теплоты, которое при этом выделяется, будет рассчитываться по закону Джоуля — Ленца:

Количество теплоты, выделяемое за время в проводнике с током, пропорционально произведению квадрата силы тока на этом участке и сопротивления проводника:

Q = I2Rt , где 

Q — количество теплоты (Дж),
I — работа электрического тока (Дж), 
R — сопротивление (Ом),
t — время прохождения тока (с).

Единица измерения QДж (Джоуль).

В электронагревательных приборах используются проводники с высоким сопротивлением, что обеспечивает выделение тепла на определенном участке. 

Так, проволоку из нихрома (сплав никеля с хромом) применяют в электронагревательных элементах, работающих при температуре до 1000 ℃ (резисторах, например). Нихром относится к классу сплавов с высоким электрическим сопротивлением, что определяет его применение в качестве электрических нагревателей. Этот сплав используется также в печах обжига и сушки и различных аппаратах теплового воздействия, например, в фенах, паяльниках или обогревателях.

Фамилия какого ученого стоит миллион?

Кто первый ввел понятие «электрический ток» в науку? Ответ: Андре-Мари Ампер. 

Такой был финальный вопрос (ценой в 1 000 000) в игре «Кто хочет стать миллионером?» от 20 января 2018 г. Но участники не смогли ответить на него, и мечту получить свой миллион не исполнили.

Еще немного про электричество…

  • Постоянный электрический ток используется в работе двигателей электротранспорта, схемах автомобилей, электронике и др.
  • Электричество есть и в нашем организме. Мышечные клетки сердца при сокращении производят электроэнергию, эти импульсы можно измерить с помощью электрокардиограммы (ЭКГ).
  • Бенджамин Франклин (да-да, президент Америки) провел множество опытов в 18 веке и создал громоотвод. Также он является человеком, который вывел закон сохранения электрического заряда.
  • В древности люди считали, что, если молния ударила в курган, значит, там зарыто сокровище.

Термины

Источник тока — устройство, разделяющее положительные и отрицательные заряды.

Сторонние силы — силы неэлектрического происхождения, вызывающие разделение зарядов в источнике тока.

Фактчек

  • Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени: (I = frac{q}{t})
  • Напряжение — скалярная физическая величина, равная отношению полной работы кулоновских и сторонних сил А при перемещении положительного заряда на участке цепи к значению этого заряда: (U = frac{A}{q})
  • Сопротивление — физическая величина, характеризующая электрические свойства участка цепи: (R = frac{pl}{S})
  • Мощность  — величина, обозначающая интенсивность передачи электрической энергии: (P = frac{A}{t})
  • Закон Ома: сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении и обратно пропорциональна сопротивлению участка при постоянном напряжении: (I = frac{U}{R}).
  • Закон Джоуля— Ленца: количество теплоты Q, выделяемое за время t  в проводнике с током, пропорционально произведению квадрата силы тока I на этом участке и сопротивления R проводника: Q = I2Rt.
  • Работа электрического поля при протекании постоянного тока (или просто работа тока): А = UIt.

Проверь себя

Задание 1.
Упорядоченное движение заряженных частиц — это:

  1. электрическое поле
  2. электрический ток
  3. электрическая мощность
  4. работа тока

Задание 2.
Удельное сопротивление проводника:

  1. зависит от температуры
  2. не зависит от температуры 
  3. зависит от силы протекающего через проводник тока
  4. не зависит от напряжения

Задание 3.
Формула для расчета силы тока:

  1. I = Ut
  2. I = UIt
  3. I = I2Rt
  4. (I = frac{q}{t})

Задание 4. 
Что такое мощность электрического тока:

  1. работа за единицу времени
  2. отношение заряда к единице времени
  3. произведение силы тока на сопротивление
  4. тепло, выделяемое на резисторе

Задание 5. 
Причина электрического сопротивления:

  1. во взаимодействии зарядов одинакового знака
  2. в отсутствии взаимодействия между зарядами
  3. во взаимодействии зарядов разного знака
  4. в передаче тепла

Ответы: 1.— 2; 2. — 1; 3.— 4; 4.— 1; 5. — 3.

Одним из самых фундаментальных терминов в электротехнике является термин «электрическое напряжение». В этой статье мы объясним, что это такое и как его рассчитать.

Объяснение простыми словами

Электрическое напряжение U является той самой причиной, которая «заставляет» протекать электрический ток I. Электрическое напряжение всегда возникает, когда заряды разделены друг от друга, то есть все отрицательные заряды на одной стороне, а все положительные — на другой. Если соединить эти две стороны электропроводящим материалом, потечет электрический ток.

Общепринятое определение термина «электрическое напряжение».

Электрическое напряжение (или просто напряжение) — это разность потенциалов между двумя точками в электрическом поле. Это движущая сила для электрического заряда.

Потенциал в электрическом поле — это энергия заряженного тела, не зависящая от его электрического заряда. Для пояснения вы можете посмотреть на сравнение с водяным контуром чуть ниже в статье.

Есть другое определение (из учебника по физике 8 класса):

Напряжение — это физическая велuчuна, характеризующая электрическое поле. Электрическое напряжение между двумя точками электрического поля численно равно работе, совершенной при переносе между ними заряда 1 Кл силами электрического поля.

Сравнение с использованием модели протекания воды.

Хорошей аналогией, которая поможет вам представить себе электрическое напряжение и потенциал, является водяной контур. В этой схеме у вас есть два бассейна на разной высоте, которые соединены трубой. В этой трубе вода может перетекать из верхнего бассейна в нижний. Затем вода перекачивается обратно в верхний бассейн с помощью насоса, как показано на рисунке ниже.

Электрическое напряжение - сравнение с использованием модели протекания воды

Электрическое напряжение — сравнение с использованием модели протекания воды

В своих размышлениях вы теперь легко можете сравнить насос с источником электрического напряжения. Кроме того, поток воды можно сравнить с электрическим током. Насос транспортирует воду из нижнего бассейна в верхний. Оттуда она самостоятельно течет обратно в нижний бассейн. В данном примере насос является приводом для потока. Чем больше разница в высоте, тем сильнее поток. Решающим фактором является потенциальная энергия верхнего бассейна. Вы можете сравнить разность энергий двух бассейнов с разностью электрических потенциалов. Проще говоря, большая разница в высоте соответствует большему электрическому напряжению.

Формула

Формула для электрического напряжения U, согласно закона Ома для участка цепи, имеет вид

U = R * I .

Как видно из этой формулы, если электрическое напряжение остается неизменным, то чем больше электрическое сопротивление (R), тем меньше сила тока (I).

Другая формула для расчета электрического напряжения такова:

U = P / I .

То есть электрическое напряжение U равно мощности деленной на силу тока I.

Единица измерения электрического напряжения

Единицей измерения электрического напряжения в СИ является Вольт, сокращенно В (в честь итальянского учёного А. Вольта).

1 вольт (1 В) — это напряжение между двумя точками электрического поля, при переносе между которыми заряда 1 Кл совершается работа 1 Дж.

[U] = 1 В

Теперь вы можете объяснить смысл надписи 4,5 В или 9 В на круглой или плоской батарейке. Смысл в том, что при переносе с одного полюса источника на другой (через спираль лампочки или другой проводник) заряда 1 Кл силами электрического поля может быть совершена работа соответственно 4,5 Дж или 9 Дж.

В электротехнике напряжение может варьироваться от микровольт (1 мкВ = 1 * 10-6 В) и миливольт (1 мВ = 10-3 В), до киловольт (1 кВ = 1 * 103 В) и мегавольт (1 МВ = 106 В)

Вы можете преобразовать отдельные единицы измерения следующим образом:

1 В = 1000 мВ, 1 мВ = 1000 мкВ, 1 МВ = 1000 кВ, 1 кВ = 1000 В.

Электрическое напряжение в цепи

Для источников напряжения в схемах обычно используется один из следующих символов.

Электрическое напряжение источник напряжения

Источники напряжения и электрическая цепь

Источник напряжения всегда имеет два соединения/полюса. Полюс «плюс» и полюс «минус». Само напряжение обозначено стрелкой напряжения (UQ). Для источников оно всегда отображается от плюса к минусу. 

Электрическое напряжение, падающее на резисторе, также можно обозначить стрелкой напряжения (на схеме обозначена как красная стрелка UR ). Это указывает на техническое направление электрического тока.

Также часто можно услышать термин «напряжение холостого хода» или «напряжение источника». Это выходное напряжение ненагруженного источника, т.е. источника, к которому ничего не подключено. Если цепь замкнута с нагрузкой, то можно измерить только напряжение на полюсах источника.

Электрические напряжения при последовательном и параллельном соединении

У нас уже есть статья о последовательном и параллельном соединении проводников, в котором мы обсуждаем эту тему более подробно. Поэтому здесь мы рассмотрим лишь некоторые основы.

При последовательном соединении компоненты подключаются в ряд.

Электрическое напряжение в цепях с последовательным соединением

Электрическое напряжение при последовательном соединении

Здесь электрическое напряжение источника делится на резисторы. Этот момент также описывается вторым правилом Кирхгофа. Здесь применимо следующее:

UQ = U1 + U2 + U3

то есть напряжение источника равно сумме электрических напряжений на отдельных резисторах. Напряжение источника по-разному распределяется по разным резисторам.

В электрической цепи с параллельным соединением компоненты расположены, соответственно, параллельно друг относительно друга. Это можно увидеть на следующей схеме.

Электрическое напряжение параллельное подключение

Электрическое напряжение в параллельной цепи

Здесь гораздо проще определить электрические напряжения на резисторах, так как при параллельном соединении:

UQ = U1 = U2 = U3

Поэтому электрическое напряжение на резисторах такое же высокое, как и электрическое напряжение источника.

Измерение электрического напряжения

Приборы для измерения напряжения, также называемые вольтметрами, всегда подключаются параллельно потребителю, на котором необходимо измерить электрическое напряжение.

Одним из наиболее часто используемых вольтметров является цифровой мультиметр (DMM), поэтому мы покажем вам процедуру измерения напряжения с помощью DMM. Сначала необходимо установить тип электрического напряжения (DC — постоянный ток или AC — переменный ток).

Для постоянного тока необходимо обратить внимание на правильную полярность, т.е. подключить плюс к положительному полюсу. На следующем этапе необходимо выбрать правильный диапазон измерения. Если вы не можете оценить, насколько велика измеряемая величина, установите наибольший возможный диапазон и двигайтесь от него вниз, пока не найдете нужный. Наконец, вам нужно только «считать» электрическое напряжение прибором.

Примеры типовых значений электрического напряжения

Для некоторых применений соответствующее электрическое напряжение можно найти в таблице ниже.

Светодиод 1,2 — 1,5 В
Зарядное устройство USB 5 В
Напряжение автомобильного аккумулятора 12, 4 — 12,8 В
Напряжение в розетке (среднеквадратичное или действующее значение) 230 В
Высоковольтные линии электропередач (ЛЭП) 60 кВ — 1 МВ

Вы можете видеть, что на высоковольтных линиях присутствует напряжение до мегавольт. Такие большие электрические напряжения используются для того, чтобы уменьшить потери в длинных линиях.

Решающим фактором для потребителя является мощность P, которую можно рассчитать для постоянного напряжения с помощью формулы:

P = U * I

Это означает, что электрический ток I так же важен для потребителя, как и электрическое напряжение. Согласно закону Ома, зависимость между током и напряжением имеет вид:

U = R * I .

Если напряжение остается неизменным, сопротивление определяет величину тока. Чтобы проиллюстрировать это, представьте следующее. У вас есть три разных бассейна, которые заполнены одинаковым количеством воды. Каждый бассейн имеет слив, который различается по сечению, т.е. в одном бассейне сливная труба очень маленькая, а в другом — очень большая.

Постоянное электрическое напряжение можно определить по тому, что все емкости заполнены на одинаковую высоту. Если слив узкий в нижней части, он представляет собой большое сопротивление. Ток здесь может течь только медленно. Если сечение сливной трубы больше, то сопротивление меньше и, соответственно, может протекать больший ток.

Закон Ома

Закон Ома — главный закон электротехники, который открыл в 1826 году выдающийся немецкий ученый Георг Симон Ом. Вместе с экспертом разберем формулировку, формулу и задачи на закон Ома с решением

Закон Ома. Фото: pixabay.com

Физика — наука эмпирическая. Ее основные законы вытекают из практического опыта и частенько много лет не имеют теоретических обоснований. Именно так обстоит дело с главным законом электротехники, который открыл в 1826 году выдающийся немецкий ученый Георг Симон Ом.

Электрические явления люди наблюдали сотни лет. Но никак не связывали между собой заряженность потертого янтаря и молнию. Только на исходе XVIII столетия электричество стали внимательно исследовать. В 1795 году Алессандро Вольта изобрел «вольтов столб», химическую батарею, и обнаружил появление тока в проводнике, соединяющем ее полюса. Сферы применения электричества стремительно множились, и появилась острая необходимость в расчетных формулах для инженеров. Эту задачу решали многие ученые, но первым сформулировал главную формулу электротехники именно Георг Ом. Он ввел в обиход понятие сопротивления и опытным путем установил зависимость между основными характеристиками электрической цепи.

Определение закона Ома простыми словами

Электрическая цепь состоит из двухполюсного источника напряжения, то есть батареи, аккумулятора или генератора. Если полюса источника соединить проводами, то по ним потечет электрический ток. Его величина определяется сопротивлением проводников. Наглядное представление этой зависимости — обыкновенный водопровод. Аналогом источника напряжения является насос или водонапорная башня, создающая давление в магистрали, количество воды, прошедшее по трубе, — подобие силы тока, а кран соответствует сопротивлению. Полностью открытый, он не ограничивает поток, по мере закручивания отверстие для воды уменьшается, пока не закроется совсем.

Закон Ома для участка цепи

Опытным путем исследователь установил взаимосвязь характеристик электрической цепи. Классическая формулировка закона Ома звучит так:

«Сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению».

Формула закона Ома для участка цепи

Где I – сила тока, измеряемая в Амперах (А), U – напряжение, измеренное в Вольтах (В), R – сопротивление, измеряемое в Омах (Ом).

В таком виде закон Ома приведен в школьных учебниках физики. Согласно этой простой формуле, для определения уровня тока в проводнике достаточно величину напряжения на его сторонах разделить на некий условно постоянный коэффициент, то есть на сопротивление. Почему «условно»? Потому что величина сопротивления может меняться в зависимости от температуры. Поэтому, кстати, лампы накаливания чаще всего перегорают при включении. Сопротивление холодной спирали ниже, чем нагретой, скачок тока при подаче напряжения вызывает ее резкое расширение и разрыв. Но если этот момент преодолен и нить накала уцелела, то ее сопротивление растет, и ток ограничивается. А при температуре жидкого гелия, например, сопротивление падает до нуля, наступает сверхпроводимость.

Закон Ома для замкнутой полной цепи

Предыдущая формулировка годится только для участка цепи, где отсутствует сам источник электродвижущей силы. В реальности ток течет по замкнутому контуру, где обязательно есть батарея или генератор, имеющий собственное внутреннее сопротивление. Поэтому формула закона Ома для полной цепи выглядит несколько сложнее

Формула закона Ома для замкнутой полной цепи

Где I – сила тока, измеряемая в Амперах (А), Е – электродвижущая сила, измеренная в Вольтах (В), R – сопротивление, измеряемое в Омах (Ом), r — внутреннее сопротивление источника ЭДС.

Применение закона Ома

Георг Ом дал в руки инженеров средство для решения задач, связанных с электрическими цепями. Тепловые и световые приборы, электродвигатели, генераторы, линии электропередач, кабели связи рассчитываются на основе этой простой формулы. Нет такой области электротехники, где она не находит применения. Даже в радиотехнике используется закон Ома, но в дифференциальной форме. «Все гениальное — просто», как считали Еврипид, Леонардо да Винчи, Наполеон Бонапарт и Альберт Эйнштейн, несомненные гении. Закон Ома целиком и полностью подтверждает эту истину.

Сила трения

Единицы измерения силы трения, от чего она зависит и какие виды существуют

подробнее

Задача на закон Ома с решением

Задача для участка электрической цепи

Электрочайник, включенный в сеть с напряжением 220 В, потребляет ток 1,1 А. Каково сопротивление электрочайника.

Дано:
U = 220 В
I = 1,1 А

Решение:
Согласно закону Ома для участка цепи:
R=U/I=220/1,1=200 Ом

Ответ: R = 200 Ом.

Задача для полной замкнутой цепи

Источник постоянного тока с ЭДС E = 24 В и внутренним сопротивлением r = 1,5 Ом замкнут на внешнее сопротивление R = 11 Ом. Определить силу тока в цепи.

Дано:
Е=24 В, r=1,5 Ом, R = 11 Ом

Решение:
По закону Ома для замкнутой цепи: I = E/(R + r) = 24/(11+1,5) = 1,92 А.

Ответ: I=1, 92 А.

Популярные вопросы и ответы

Отвечает Николай Герасимов, старший преподаватель физики в Домашней школе «ИнтернетУрок».

Сколько всего законов Ома в физике?

Существует два закона Ома: закон Ома для участка цепи и закон Ома для полной (замкнутой) цепи. Первый связывает сопротивление участка, силу тока в нём и разность потенциалов (напряжение) на его концах. Кроме того, в нем отражено наличие в цепи источника тока.

Второй учитывает и потребителей электрического тока (электрические лампы, обогреватели, телевизоры и так далее), и его источники (генераторы, батарейки, аккумуляторы). Дело в том, что любой источник тока обладает внутренним сопротивление, которое влияет на силу тока. Именно это и учитывается в законе Ома для полной (замкнутой) цепи.

При каких условиях выполняется закон Ома?

Согласно закону Ома, существует линейная зависимость между силой тока в участке цепи и напряжением на его концах. Он отлично выполняется для металлических проводников при любых напряжениях, а вот для тока в вакууме, газе, растворах или расплавах электролитов, полупроводниках линейная зависимость нарушается, и применять закон Ома в том виде, в котором его изучают в школьном курсе, уже нельзя.

Для чего нужен закон Ома?

Трудно переоценить значимость этого закона. Он позволил производить расчет электрических цепей, без которых практически невозможно представить жизнь современного человека, так как они лежат в основе любого электроприбора, начиная от обычной лампы накаливания и заканчивая самыми современными компьютерами.

В каком классе проходят закон Ома?

В школьном курсе ученики впервые знакомятся с электрическими явлениями и законом Ома для участка цепи в 8 классе. Более подробно о причинах возникновения электрического тока и его источниках ученики знакомятся в курсе старшей школы (10 или 11 класс, в зависимости от программы). Здесь же ученики впервые встречаются и с законом Ома для полной (замкнутой) цепи.

Добавить комментарий