…
Электродные потенциалы. ЭДС реакции
Окислительно — восстановительный потенциал является частным, узким случаем понятия электродного потенциала. Рассмотрим подробнее эти понятия.
В ОВР передача электронов восстановителями окислителям происходит при непосредственном контакте частиц, и энергия химической реакции переходит в теплоту.
Энергия любой ОВР, протекающей в растворе электролита, может быть превращена в электрическую энергию, если, например, окислительно-восстановительные процессы разделить пространственно, т.е. передача электронов восстановителем будет происходить через проводник электричества.
Это реализовано в гальванических элементах, где электрическая энергия получается из химической энергии окислительно-восстановительной реакции.
Элемент Даниэля-Якоби
Рассмотрим гальванический элемент Даниэля-Якоби, в котором левый сосуд наполнен раствором сульфата цинка ZnSO4, с опущенной в него цинковой пластинкой, а правый сосуд – раствором сульфата меди CuSO4, с опущенным в него медной пластинкой.
Взаимодействие между раствором и пластиной, которая выступает в качестве электрода, способствует тому, чтобы электрод приобрел электрический заряд.
Возникающая на границе металл-раствор электролита разность потенциалов, называется электродным потенциалом. Значение и знак (+ или -) электродного потенциала определяются природой раствора и находящегося в нем металла.
При погружении металлов в растворы их солей более активные из них (Zn, Fe и др.) заряжаются отрицательно, а менее активные (Cu, Ag, Au и др.) положительно.
Результатом соединения цинковой и медной пластинки проводником электричества, является возникновение в цепи электрического тока за счет перетекания электронов с цинковой к медной пластинке по проводнику.
При этом происходит уменьшение количества электронов в цинке, что компенсируется переходом Zn2+ в раствор т.е. происходит растворение цинкового электрода — анода (процесс окисления).
Zn — 2e— = Zn2+
В свою очередь, рост количества электронов в меди компенсируется разряжением ионов меди, содержащихся в растворе, что приводит к накоплению меди на медном электроде – катоде (процесс восстановления):
Cu2+ + 2e— = Cu
Таким образом, в элементе Даниэля-Якоби происходит такая реакция:
Zn + Cu2+ = Zn2+ + Cu
Zn + CuSO4 = ZnSO4 + Cu
Количественно охарактеризовать окислительно-восстановительные процессы позволяют электродные потенциалы, измеренные относительно нормального водородного электрода (его потенциал принят равным нулю).
Чтобы определить стандартные электродные потенциалы используют элемент, одним из электродов которого является испытуемый металл (или неметалл), а другим является водородный электрод. По найденной разности потенциалов на полюсах элемента определяют нормальный потенциал исследуемого металла.
Окислительно-восстановительный потенциал
Значениями окислительно-восстановительного потенциала пользуются в случае необходимости определения направления протекания реакции в водных или других растворах.
Проведем реакцию
2Fe3+ + 2I— = 2Fe2+ + I2
таким образом, чтобы йодид-ионы и ионы железа обменивались своими электронами через проводник.
В сосуды, содержащие растворы Fe3+ и I—, поместим инертные (платиновые или угольные) электроды и замкнем внутреннюю и внешнюю цепь. В цепи возникает электрический ток.
Йодид-ионы отдают свои электроны, которые будут перетекать по проводнику к инертному электроду, погруженному в раствор соли Fe3+:
2I— — 2e— = I2
2Fe3+ + 2e— = 2Fe2+
Процессы окисления-восстановления происходят у поверхности инертных электродов. Потенциал, который возникает на границе инертный электрод – раствор и содержит как окисленную, так восстановленную форму вещества, называется равновесным окислительно-восстановительным потенциалом.
Факторы, влияющие на значение окислительно-восстановительного потенциала
Значение окислительно-восстановительного потенциала зависит от многих факторов, в том числе и таких как:
1) Природа вещества (окислителя и восстановителя)
2) Концентрация окисленной и восстановленной форм.
При температуре 25°С и давлении 1 атм. величину окислительно-восстановительного потенциала рассчитывают с помощью уравнения Нернста:
E = E° + (RT/nF)ln(Cок/Cвос), где
E – окислительно-восстановительный потенциал данной пары;
E°- стандартный потенциал (измеренный при Cок = Cвос);
R – газовая постоянная (R = 8,314 Дж);
T – абсолютная температура, К
n – количество отдаваемых или получаемых электронов в окислительно-восстановительном процессе;
F – постоянная Фарадея (F = 96484,56 Кл/моль);
Cок – концентрация (активность) окисленной формы;
Cвос– концентрация (активность) восстановленной формы.
Подставляя в уравнение известные данные и перейдя к десятичному логарифму, получим следующий вид уравнения:
E = E° + (0,059/n)lg(Cок/Cвос)
При Cок > Cвос, E > E° и наоборот, если Cок < Cвос, то E < E°
3) Кислотность раствора
Для пар, окисленная форма которых содержит кислород (например, Cr2O72-, CrO42-, MnO4—) при уменьшении pH раствора окислительно-восстановительный потенциал возрастает, т.е. потенциал растет с ростом H+. И наоборот, окислительно-восстановительный потенциал падает с уменьшением H+.
4) Температура
При увеличении температуры окислительно-восстановительный потенциал данной пары также растет.
Стандартные окислительно-восстановительные потенциалы представлены в таблицах специальных справочников. Следует иметь ввиду, что рассматриваются только реакции в водных растворах при температуре ≈ 25°С.
Такие таблицы дают возможность сделать некоторые выводы:
Что можно определить по значению окислительно-восстановительного потенциала
- Величина и знак стандартных окислительно-восстановительных потенциалов, позволяют предсказать какие свойства (окислительные или восстановительные) будут проявлять атомы, ионы или молекулы в химических реакциях, например
E°(F2/2F—) = +2,87 В – сильнейший окислитель
E°(K+/K) = — 2,924 В – сильнейший восстановитель
Окислительно-восстановительная пара будет обладать тем большей восстановительной способностью, чем больше числовое значение ее отрицательного потенциала, а окислительная способность тем выше, чем больше положительный потенциал.
- Возможно определить какое из соединений одного элемента будет обладать наиболее сильным окислительными или восстановительными свойствами.
- Возможно предсказать направление ОВР. Известно, что работа гальванического элемента имеет место при условии, что разность потенциалов имеет положительное значение. Протекание ОВР в выбранном направлении также возможно, если разность потенциалов имеет положительное значение. ОВР протекает в сторону более слабых окислителей и восстановителей из более сильных, например, реакция
Sn2+ + 2Fe3+ = Sn4+ + 2Fe2+
практически протекает в прямом направлении, т.к.
E° (Sn4+/Sn2+) = +0,15 В,
E° (Fe3+/Fe2+) = +0,77 В,
т.е. E° (Sn4+/Sn2+) < E° (Fe3+/Fe2+).
Реакция
Cu + Fe2+ = Cu2+ + Fe
невозможна в прямом направлении и протекает только справа налево, т.к.
E° (Сu2+/Cu) = +0,34 В,
E° (Fe2+/Fe) = — 0,44 В,
E° (Fe2+/Fe) < E° (Сu2+/Cu).
В процессе ОВР количество начальных веществ уменьшается, вследствие чего Е окислителя падает, а E восстановителя возрастает. При окончании реакции, т.е. при наступлении химического равновесия потенциалы обоих процессов выравниваются.
- Если при данных условиях возможно протекание нескольких ОВР, то в первую очередь будет протекать та реакция, у которой разность окислительно-восстановительных потенциалов наибольшая.
- Пользуясь справочными данными, можно определить ЭДС реакции.
Как определить электродвижущую силу (ЭДС) реакции?
Рассмотрим несколько примеров реакций и определим их ЭДС:
- Mg + Fe2+ = Mg2+ + Fe
- Mg + 2H+ = Mg2+ + H2
- Mg + Cu2+ = Mg2+ + Cu
E° (Mg2+/Mg) = — 2,36 В
E° (2H+/H2) = 0,00 В
E° (Cu2+/Cu) = +0,34 В
E° (Fe2+/Fe) = — 0,44 В
Чтобы определить ЭДС реакции, нужно найти разность потенциала окислителя и потенциала восстановителя
ЭДС = Е0ок — Е0восст
- ЭДС = — 0,44 — (- 2,36) = 1,92 В
- ЭДС = 0,00 — (- 2,36) = 2,36 В
- ЭДС = + 0,34 — (- 2,36) = 2,70 В
Все вышеуказанные реакции могут протекать в прямом направлении, т.к. их ЭДС > 0.
Связь константы равновесия и окислительно — восстановительного потенциала
Если возникает необходимость определения степени протекания реакции, то можно воспользоваться константой равновесия.
Например, для реакции
Zn + Cu2+ = Zn2+ + Cu
Применяя закон действующих масс, можно записать
K = CZn2+/CCu2+
Здесь константа равновесия К показывает равновесное соотношение концентраций ионов цинка и меди.
Значение константы равновесия можно вычислить, применив уравнение Нернста
E = E° + (0,059/n)lg(Cок/Cвос)
Подставим в уравнение значения стандартных потенциалов пар Zn/Zn2+ и Cu/Cu2+, находим
E0Zn/Zn2+ = -0,76 + (0,59/2)lgCZn/Zn2+
E0Cu/Cu2+ = +0,34 + (0,59/2)lgCCu/Cu2+
В состоянии равновесия E0Zn/Zn2+ = E0Cu/Cu2+, т.е.
-0,76 + (0,59/2)lgCZn2+ = +0,34 + (0,59/2)lgCCu2+, откуда получаем
(0,59/2)( lgCZn2 — lgCCu2+) = 0,34 – (-0,76)
lgK = lg (CZn2+/CCu2+) = 2(0,34 – (-0,76))/0,059 = 37,7
K = 1037,7
Значение константы равновесия показывает, что реакция идет практически до конца, т.е. до того момента, пока концентрация ионов меди не станет в 1037,7 раз меньше, чем концентрация ионов цинка.
Константа равновесия и окислительно-восстановительный потенциал связаны общей формулой:
lgK = (E10 -E20 )n/0,059, где
K — константа равновесия
E10 и E20 – стандартные потенциалы окислителя и восстановителя соответственно
n – число электронов, отдаваемых восстановителем или принимаемых окислителем.
Если E10 > E20, то lgK > 0 и K > 1.
Следовательно, реакция протекает в прямом направлении (слева направо) и если разность (E10 — E20) достаточно велика, то она идет практически до конца.
Напротив, если E10 < E20, то K будет очень мала.
Реакция протекает в обратном направлении, т.к. равновесие сильно смещено влево. Если разность (E10 — E20) незначительна, то и K ≈ 1 и данная реакция не идет до конца, если не создать необходимых для этого условий.
Зная значение константы равновесия, не прибегая к опытным данным, можно судить о глубине протекания химической реакции. Следует иметь ввиду, что данные значений стандартных потенциалов не позволяют определить скорость установления равновесия реакции.
По данным таблиц окислительно-восстановительных потенциалов возможно найти значения констант равновесия примерно для 85000 реакций.
Как составить схему гальванического элемента?
Приведем рекомендации ИЮПАК, которыми следует руководствоваться, чтобы правильно записать схемы гальванических элементов и протекающие в них реакции:
- ЭДС элемента — величина положительная, т.к. в гальваническом элементе работа производится.
- Значение ЭДС гальванической цепи – это сумма скачков потенциалов на границах раздела всех фаз, но, учитывая, что на аноде происходит окисление, то из значения потенциала катода вычитают значение потенциала анода.
Таким образом, при составлении схемы гальванического элемента слева записывают электрод, на котором происходит процесс окисления (анод), а справа – электрод, на котором происходит процесс восстановления (катод).
- Граница раздела фаз обозначается одной чертой — |
- Электролитный мостик на границе двух проводников обозначается двумя чертами — ||
- Растворы, в которые погружен электролитный мостик записываются слева и справа от него (если необходимо, здесь же указывается концентрация растворов). Компоненты одной фазы, при этом записываются через запятую.
Например, составим схему гальванического элемента, в котором осуществляется следующая реакция:
Fe0 + Cd2+ = Fe2+ + Cd0
В гальваническом элементе анодом является железный электрод, а катодом – кадмиевый.
Анод Fe0|Fe2+ || Cd2+|Cd0Катод
Типичные задачи на составление схем гальванического элемента и вычисление ЭДС реакции с решениями вы найдете здесь.
Потенциал электрода E в химии и электрохимии, согласно определению, представляет собой электродвижущую силу ячейки, построенной из двух электродов.
На границе раздела между электродом и электролитом из-за процесса переноса заряженных частиц возникает электродный потенциал, связанный с удельной адсорбцией ионов и ориентацией полярных молекул, в том числе растворителя.
Электродный потенциал представляет собой электрический потенциал на электродном компоненте. В ячейке имеется электродный потенциал для катода и электродный потенциал для анода. Разность между электродными потенциалами катода и анода будет равна потенциалу ячейки:
E ячейки = E катода – E анода
Таким образом потенциал электрода зависит от характера и состава контактных фаз и от кинетики электродных реакций на границе раздела.
Разность потенциалов зависит от конкретных веществ, составляющих электроды. Для любой электрической ячейки общий потенциал представляет собой сумму сумм, вырабатываемых реакциями на двух электродах.
Электрохимический ряд напряжений металлов
На практике были измерены напряжения большого числа электродов, подключая их в ячейку со стандартным водородным электродом, который представляет собой газообразный водород при 1 атмосфере, барботирующий поверх платиновой проволоки, погруженной в 1 М раствор (вод.). Этот стандартный электрод произвольно был назначен в качестве обладателя потенциала в 0 вольт (он был взят за отправную точку шкалы), а измерение ЭДС всей ячейки позволяет определить потенциал другого, изучаемого электрода. В таблице 1 приведены некоторые стандартные потенциалы для электродов, при которых происходит измерение.
Значения данных стандартных электродных потенциалов измерены для следующих условий:
Температура 298,15 К (25,00°С, 77,00°F).
Эффективная концентрация 1 моль/л.
Парциальное давление 101,325 кПа (абсолютное) (1 атм, 1,01325 бар) для каждого газообразного реагента. Данное давление считается традиционным для подобного рода.
Таблица электродных потенциалов
Е, В | Полуреакция |
---|---|
2.87 | F2(г) + 2 e- → 2F(ж) |
1.36 | Cl2(г) + 2 e→2Cl (ж) |
1.20 | Pt2+(ж) + 2 e→ Pt(тв) |
0.92 | Hg2+(ж) + 2 e→Hg(I) |
0.53 | I2(тв) + 2 е→ 2I(ж) |
0.34 | Cu2+(ж) + 2 e→Cu(тв) |
0 | 2H+(ж) + 2 e → H2(г) |
-0.13 | Pb2+(ж) + 2e → Pb(тв) |
-0.26 | Ni2+(ж) + 2 e → Ni(тв)2 |
-0.44 | Fe2+(ж) + 2 e→Fe(тв) |
-0.76 | Zn2+(ж) + 2 e→Zn(тв) |
-1.66 | Al3+(ж) + 3 e→Al(тв) |
-2.71 | Na+(ж) + e→Na(тв) |
-2.87 | Ca2+(ж) + 2 e→Ca(тв) |
-2.91 | K+(ж) + e→K(тв) |
-3.04 | Li+(ж) + e→Li(тв) |
В середине списка вы увидите 0 вольт – произвольно назначенный за стандартный водородный электрод; все остальные потенциалы относительны к полуреакции водорода.
Уравнение Нернста
В электрохимии уравнение Нернста представляет собой уравнение, которое связывает восстановительный потенциал электрохимической реакции (полуреакции) со стандартным электродным потенциалом, температурой и активностью (часто аппроксимируемыми концентрациями) химических веществ, подвергающихся восстановлению и окислению. Это самое важное уравнение в области электрохимии. Оно было названо в честь Вальтера Нернста, немецкого физика и химика, который сформулировал уравнение:
Е=Е0+RTnFln(a)Е=Е^0 + frac{RT}{nF} ln(a),
где EE – электродный потенциал (В);
E0E^0 – нормальный (стандартный) электродный потенциал (В);
RR – универсальная газовая постоянная равная 8,313 Дж/К · моль;
ТТ – температура (по шкале Кельвина);
nn – заряд иона;
FF – постоянная Фарадея 96500 Кл/моль;
aa – активность ионов.
Чтобы упростить расчет вместо активности ионов можно использовать концентрацию:
Е=Е0+RTnFln(C)Е=Е^0+frac{RT}{nF} ln(C).
Тест по теме «Электродные потенциалы»
Электро́дный
потенциа́л —
разность электрических
потенциалов между электродом и
находящимся с ним в контакте электролитом (чаще
всего между металлом и
раствором электролита).
Возникновение
электродного потенциала обусловлено
переносом заряженных частиц через
границу раздела фаз,
специфической адсорбцией ионов,
а при наличии полярных молекул (в
том числе молекул растворителя) —
ориентационной адсорбцией их. Величина
электродного потенциала в неравновесном
состоянии зависит как от природы и
состава контактирующих фаз, так и от
кинетических закономерностей электродных
реакций на границе раздела фаз.
Равновесное
значение скачка потенциалов на границе
раздела электрод/раствор определяется
исключительно особенностями электродной
реакции и не зависит от природы электрода
и адсорбции на нём поверхностно-активных
веществ. Эту абсолютную разность
потенциалов между
точками, находящимися в двух разных
фазах, нельзя измерить экспериментально
или рассчитать теоретически.
45. Электродный потенциал. Уравнение Нернста.
Электро́дный
потенциа́л —
разность электрических
потенциалов между электродом и
находящимся с ним в контакте электролитом (чаще
всего между металлом и
раствором электролита).
Вывод
уравнения Нернста
,
где
E —
электродный потенциал, E0 —
стандартный электродный потенциал,
измеряется в вольтах;
R — универсальная
газовая постоянная, равная 8.31 Дж/(моль·K);
T —
абсолютная температура;
F — постоянная
Фарадея, равная 96485,35 Кл·моль−1;
т —
число моль электронов, участвующих
в процессе;
и — активности соответственно окисленной
и восстановленной форм вещества,
участвующего в полуреакции.
Если
в формулу Нернста подставить числовые
значения констант R и F и
перейти от натуральных
логарифмов к десятичным, то
при получим
46. Газовые электроды. Уравнение Нернста для расчета потенциалов газовых электродов
Газовые
электроды состоят из проводника 1-го
рода, контактирующего одновременно с
газом и раствором, содержащим ионы
этого газа. Проводник 1-го рода служит
для подвода и отвода электронов и, кроме
того, является катализатором электродной
реакции (ускоряет установление равновесия
на электроде). Проводник 1-го рода не
должен посылать в раствор собственные
ионы. Лучше всего удовлетворяют этому
условию платина и платиновые металлы,
поэтому они чаще всего используются
при создании газовых электродов. Так
как в равновесных электродных реакциях
газовых электродов участвуют газообразные
компоненты, то электродные потенциалы
этих электродов зависят от парциальных
давлений газов. Это можно показать на
примерах водородного и кислородного
электродов. Равновесие на водородном
электроде выражается уравнением
2Н++3е↔Н2.
Уравнение для расчетов потенциалов
водородного электрода можно вывести
так же, как было введено уравнение для
расчета потенциала металлического
электрода. Оно имеет вид:
=
или для 298 Кlg
47. Гальванический элемент. Расчет эдс гальванического элемента.
ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ-
химический источник тока, в котором
лектрическаяэнергиявырабатывается
в результате прямого преобразования
химической энергии окислительно-восстановительной
реакцией. В состав гальванического
элемента входят два разнородных
электрода (один-
содержащий окислитель, другой –
восстановитель), контактирующие с
электролитом. Различают гальванические
элементы одноразового использования
(т. н. первичные элементы, напр.Лекланше
элемент), многоразового действия
(электрические аккумуляторы) и с
непрерывной подачей реагентов (топливные
элементы). Ранеетермин”гальванический
элемент” относился только к первичным
элементам.
ЭДС
гальванического элемента определяется
как
разность
электродных
потенциалов.
По
уравнению НЕРНСТА
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
From Wikipedia, the free encyclopedia
In electrochemistry, electrode potential is the electromotive force of a galvanic cell built from a standard reference electrode and another electrode to be characterized.[1] By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference between the charged metallic rods and salt solution.
The electrode potential has its origin in the potential difference developed at the interface between the electrode and the electrolyte. It is common, for instance, to speak of the electrode potential of the M+/M redox couple.
Origin and interpretation[edit]
Electrode potential appears at the interface between an electrode and electrolyte due to the transfer of charged species across the interface, specific adsorption of ions at the interface, and specific adsorption/orientation of polar molecules, including those of the solvent.
In an electrochemical cell, the cathode and the anode have a certain electrode potential independently and the difference between them is the cell potential:
The electrode potential may be either that at equilibrium at the working electrode (“reversible potential”), or a potential with a non-zero net reaction on the working electrode but zero net current (“corrosion potential”, “mixed potential”), or a potential with a non-zero net current on the working electrode (like in galvanic corrosion or voltammetry). Reversible potentials can be sometimes converted to the standard electrode potential for a given electroactive species by extrapolation of the measured values to the standard state.
The value of the electrode potential under non-equilibrium depends on the nature and composition of the contacting phases, and on the kinetics of electrode reactions at the interface (see Butler–Volmer equation).
An operational assumption for determinations of the electrode potentials with the standard hydrogen electrode involves this reference electrode with hydrogen ion in an ideal solution having is “zero potential at all temperatures” equivalently to standard enthalpy of formation of hydrogen ion is also “zero at all temperatures”.
Measurement[edit]
Three-electrode setup for measurement of electrode potential
The measurement is generally conducted using a three-electrode setup (see the drawing):
- working electrode,
- counter electrode,
- reference electrode (standard hydrogen electrode or an equivalent).
In case of non-zero net current on the electrode, it is essential to minimize the ohmic IR-drop in the electrolyte, e.g., by positioning the reference electrode near the surface of the working electrode (e.g., see Luggin capillary), or by using a supporting electrolyte of sufficiently high conductivity. The potential measurements are performed with the positive terminal of the electrometer connected to the working electrode and the negative terminal to the reference electrode.
Sign conventions[edit]
Historically, two conventions for sign for the electrode potential have formed:[2]
- convention “Nernst–Lewis–Latimer” (sometimes referred to as “American”),
- convention “Gibbs–Ostwald–Stockholm” (sometimes referred to as “European”).
In 1953 in Stockholm[3] IUPAC recognized that either of the conventions is permissible; however, it unanimously recommended that only the magnitude expressed according to the convention (2) be called “the electrode potential”. To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.
The main difference between the two conventions[4] is that upon reversing the direction of a half-cell reaction as written, according to the convention (1) the sign of E also switches, whereas in the convention (2) it does not. The logic behind switching the sign of E is to maintain the correct sign relationship with the Gibbs free energy change, given by ΔG = –nFE where n is the number of electrons involved and F is the Faraday constant. It is assumed that the half-reaction is balanced by the appropriate SHE half-reaction. Since ΔG switches sign when a reaction is written in reverse, so too, proponents of the convention (1) argue, should the sign of E. Proponents of the convention (2) argue that all reported electrode potentials should be consistent with the electrostatic sign of the relative potential difference.
Potential difference of a cell assembled of two electrodes[edit]
Potential of a cell assembled of two electrodes can be determined from the two individual electrode potentials using
or, equivalently,
This follows from the IUPAC definition of the electric potential difference of a galvanic cell,[5] according to which the electric potential difference of a cell is the difference of the potentials of the electrodes on the right and the left of the galvanic cell. When ΔVcell is positive, then positive electrical charge flows through the cell from the left electrode (anode) to the right electrode (cathode).
See also[edit]
- Absolute electrode potential
- Electric potential
- Galvani potential
- Nernst equation
- Overpotential
- Potential difference (voltage)
- Standard electrode potential
- Table of standard electrode potentials
- Thermodynamic activity
- Volta potential
References[edit]
- ^ IUPAC, IUPAC, Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”) (1997). Online corrected version: (2006–) “electrode potential, E”. doi:10.1351/goldbook.E01956
- ^ C.A. Hamel, “The Encyclopedia of Electrochemistry”, Reinhold Publishing Corporation, New York-Chapman & Hall Ltd., London, 1964, p. 429–431.
- ^ P. van Rysselberghe, “Bericht der Kommission für electrochemische Nomenklatur und Definitionen”, Z. Electrochem., 58 (1954), 530–535.
- ^ Anson, Fred C. “Common sources of confusion; Electrode Sign Conventions,” J. Chem. Educ., 1959, 36, p. 394.
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”) (1997). Online corrected version: (2006–) “electric potential difference, ΔV of a galvanic cell“. doi:10.1351/goldbook.E01934
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 мая 2020 года; проверки требуют 7 правок.
В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или , является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/л и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей). Объёмы чаще всего взяты при 25 °C. Основой для электрохимической ячейки, такой, как гальваническая ячейка, всегда является окислительно-восстановительная реакция, которая может быть разбита на две полуреакции: окисление на аноде (потеря электрона) и восстановление на катоде (приобретение электрона). Электричество вырабатывается вследствие различия электростатического потенциала двух электродов. Эта разность потенциалов создаётся в результате различий индивидуальных потенциалов двух металлов электродов по отношению к электролиту.
Вычисление стандартных электродных потенциалов[править | править код]
Электродный потенциал не может быть получен эмпирически. Потенциал гальванической ячейки вытекает из «пары» электродов. Таким образом, невозможно определить величину для каждого электрода в паре, используя эмпирически полученный потенциал гальванической ячейки. Для этого установлен водородный электрод, для которого этот потенциал принят равным 0,00 В, и любой электрод, для которого электродный потенциал ещё неизвестен, может быть соотнесён со стандартным водородным электродом с образованием гальванической ячейки — и в этом случае потенциал гальванической ячейки даёт потенциал неизвестного электрода.
Так как электродные потенциалы традиционно определяют как восстановительные потенциалы, знак окисляющегося металлического электрода должен быть изменён на противоположный при подсчёте общего потенциала ячейки. Также нужно иметь в виду, что потенциалы не зависят от количества передаваемых электронов в полуреакциях (даже если оно различно), так как они рассчитаны на 1 моль переданных электронов. Отсюда при расчёте какого-либо электродного потенциала на основании двух других следует проявлять внимательность.
Например:
Fe3+ + 3e− → Fe(тв) −0,036 В
Fe2+ + 2e− → Fe(тв) −0,44 В
Для получения третьего уравнения:
Fe3+ + e− → Fe2+ (+0,77 В)
следует умножить потенциал первого уравнения на 3, перевернуть второе уравнение(поменять знак) и умножить его потенциал на 2. Сложение этих двух потенциалов даст стандартный потенциал третьего уравнения.[источник не указан 1611 дней]
Таблица стандартных электродных потенциалов[править | править код]
Чем больше Eo, тем легче их можно восстановить (тем более сильными окислителями они являются). И наоборот: низкий отрицательный потенциал означает, что данная форма является сильным восстановителем.
Например, F2 (Eo= 2,87 В) — окислитель, Li+ (Eo= −3,05 В) — восстановитель. Таким образом, Zn2+(Eo= −0,76 В), может быть окислен любым другим электродом, стандартный потенциал которого больше −0,76 В. (напр., H+(0 В), Cu2+(0,16 В), F2(2,87 В)) и может быть восстановлен любым электродом, стандартный потенциал которого меньше −0,76 В (напр., H−(−2,23 В), Na+(−2,71 В), Li+(−3,05 В)).
Связь Eo с энергией Гиббса[править | править код]
В гальванической ячейке, где протекает самопроизвольная (энергия Гиббса носит “-” отрицательных характер) окислительно-восстановительная реакция заставляющая ячейку производить электрический потенциал и совершать работу во внешней цепи. Тогда Энергия Гиббса ΔGo должна быть отрицательной и в соответствии со следующим уравнением, описывающем связь свободной энергии с работой электрического тока по переносу электричества, выражаться:
- ΔGoяч = -nFEoяч
где n это количество молей электронов на моль продуктов, а F является постоянной Фарадея, ~96485 Кл/моль. Таким образом применимы следующие правила:
- если Eoяч> 0, тогда процесс самопроизвольный (гальваническая ячейка)
- если Eoяч< 0, тогда процесс несамопроизвольный (электролитическая ячейка)
Нестандартные условия[править | править код]
Стандартные электродные потенциалы даны при стандартных условиях. Однако реальные ячейки действуют и при нестандартных условиях. При данном стандартном потенциале потенциал при нестандартных эффективных концентрациях может быть вычислен с использованием уравнения Нернста:
Величины E0 зависят от температуры (кроме стандартного водородного электрода), концентрации и обычно относятся к стандартному водородному электроду при этой температуре. Для конденсированных фаз величины потенциалов также зависят от давления.
См. также[править | править код]
- Таблица стандартных электродных потенциалов
- Восстановительный потенциал
- Абсолютный электродный потенциал
- Электрохимический потенциал
- Равновесный электродный потенциал
- Уравнение Нернста
- Электрохимическая ячейка
- Гальваническая ячейка
Литература[править | править код]
- Zumdahl, Steven S., Zumdahl, Susan A (2000) Chemistry (5th ed.), Houghton Mifflin Company. ISBN 0-395-98583-8
- Atkins, Peter, Jones, Loretta (2005) Chemical Principles (3rd ed.), W.H. Freeman and Company. ISBN 0-7167-5701-X
- Zu, Y, Couture, MM, Kolling, DR, Crofts, AR, Eltis, LD, Fee, JA, Hirst, J (2003) Biochemistry, 42, 12400-12408
- Shuttleworth, SJ (1820) Electrochemistry (50th ed.), Harper Collins.
Ссылки[править | править код]
- [www.xumuk.ru/encyklopedia/2/5296.html Электродный потенциал]
- Онлайн-справочник стандартных электродных потенциалов
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных ссылок
|