Как найти потенциал зная напряжение

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду: Потенциал электростатического поля

 – энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Потенциал электростатического поля

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически)

– следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически)

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах: В СИ потенциал измеряется в вольтах

Разность потенциалов

Разность потенциалов

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.         

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Напряжение

Единица разности потенциалов

Единица разности потенциалов  

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Единица разности потенциалов

Связь между напряженностью и напряжением.

Из доказанного выше:  Связь между напряженностью и напряжением →    Связь между напряженностью и напряжением 

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Связь между напряженностью и напряжением

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: Единица напряженности    –   Напряженность поля равна 1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Вектор напряженности направлен в сторону уменьшения потенциала

Единица напряженности

Эквипотенциальные поверхности.

ЭПП – поверхности равного потенциала.

Свойства ЭПП:

– работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

– вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Эквипотенциальные поверхностиЭПП - поверхности равного потенциала

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Измерение электрического напряжения (разности потенциалов)

Потенциальная энергия взаимодействия зарядов.

Потенциальная энергия взаимодействия зарядов

Потенциал поля точечного заряда

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (!!!) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Потенциал заряженного шара

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

ads

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.


Содержание:

    • Электрический заряд
    • Напряженность
    • Потенциал, напряжение
  •  

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10-9 Кл.

Формула Электрического заряда

где N – целое число.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер  за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Формула кулоновская сила

Сила взаимодействия зарядов

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц; 

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной  области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Переход незаряженного объекта в заряженное состояние

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность  взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Формула Напряженности электрического поля

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Вектор напряженности E, созданной зарядом q, в точке А

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

напряженности поля в точке А

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

изолированные заряды

а) изолированные заряды
Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов
б) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Формула потенциала электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).
Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q  [Дж/Кл] или [В]

Графическая интерпретация напряжения электрического поля

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли.
Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле
Напряжение формула

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

#1. Физическая величина измеряемая в кулонах?

Напряжение

Электрический заряд

Потенциал

Электрический заряд обозначается через q и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

#2. Какие пары электрических зарядов будут притягиваться к друг другу?

Два отрицательных заряда

Два положительных заряда

Один отрицательный заряд, а другой положительный

Одноименные заряды отталкиваются, а разноименные – притягиваются.

#3. … – это работа совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

Сопротивление

Напряжение

Потенциал

Результат

Отлично!

Попытайтесь снова(

Потенциал. Разность потенциалов.

Разность потенциалов (напряжение) между 2-мя точками поля равняется отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду:

Потенциал Разность потенциалов

,

Так как работа по перемещению заряда в потенциальном поле не зависит от формы траектории, то, зная напряжение между двумя точками, мы определим работу, которая совершается полем по перемещению единичного заряда.

Если есть несколько точечных зарядов, значит, потенциал поля в некоторой точке пространс­тва определяется как алгебраическая сумма потенциалов электрических полей каждого заряда в данной точке:

Потенциал Разность потенциалов

.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, является поверхность, для любых точек которой разность потенциалов равна нулю. Это означяет, что работа по перемещению заряда по такой поверхности равна нулю, следовательно, линии напряженности электрического поля перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности однородного поля представляют собой плоскости, а точечного заряда — концентрические сферы.

Вектор напряженности Потенциал Разность потенциалов(как и сила Потенциал Разность потенциалов) перпендикулярен эквипотенциальным поверхнос­тям. Эквипотенциальной является поверхность любого проводника в электростатическом поле, так как силовые линии перпендикулярны поверхности проводника. Внутри проводника разность потенциалов между любыми его точками равна нулю.

Напряжение и напряженность однородного поля .

Потенциал Разность потенциалов

В однородном электрическом поле напряженность E в каждой точке одинакова, и работа A по перемещению заряда q параллельно на расстояние d между двумя точками с потенциалами φ1, и φ2 равна:

Потенциал Разность потенциалов

,

Потенциал Разность потенциалов

.

Т.о., напряженность поля пропорциональна разности потенциалов и направлена в сторону уменьшения потенциала. Поэтому положительный заряд будет двигаться в сторону уменьшения потенциала, а отрицательный — в сторону его увеличения.

Единицей напряжения (разности потенциалов) является вольт. Исходя из формулы Потенциал Разность потенциалов, Потенциал Разность потенциалов, разность потенциалов между двумя точками равна одному вольту, если при перемещении заряда в 1 Кл между этими точками поле совершает работу в 1 Дж.

Электрический потенциал простыми словами: формулы, единица измерения

Электрический потенциал – это скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля.

Если вы хотите расширить свои знания об электрическом потенциале или сначала узнать, что такое электрический потенциал, то вы пришли по адресу.

Простое объяснение

В классической механике рассмотрение проблемы с точки зрения энергии может значительно упростить ситуацию по сравнению с рассмотрением ее с точки зрения сил, действующих на систему. В частности, в этом контексте существенную роль играет тот факт, что энергия является сохраняющейся переменной.

Также в классической электродинамике рассмотрение на энергетическом уровне оказывается очень полезным. Поэтому электрический потенциал φ (также называемый электростатическим потенциалом) определяется как отношение потенциальной энергии Eпот пробного электрического заряда и его величины электрического заряда q: φ = Eпот / q .

Возможность определения такого электрического потенциала обусловлена тем, что электрическое поле E распределения заряда и результирующая электростатическая сила Fc на пробном электрическом заряде является консервативной силой, подобной гравитационной силе.

Электрический потенциал имеет единицу измерения вольт В или также джоуль на кулон Дж / Кл .

Формулы

В этом разделе мы познакомим вас с двумя важными формулами для электрического потенциала определенных распределений электрических зарядов. Мы также кратко обсудим аналогию между электрическим потенциалом и гравитацией.

Пластинчатый конденсатор

Мы рассматриваем ситуацию, когда две плоские пластины расположены параллельно на расстоянии d друг от друга. Кроме того, пусть одна из двух пластин заряжена положительно, а другая – отрицательно. Такая комбинация также называется пластинчатым конденсатором. Обозначим точку на положительной пластине через A, а точку на отрицательной пластине через B. Тогда для разности потенциалов между этими двумя точками получим:

Здесь E – величина электрического поля между двумя пластинами, которое предполагается однородным. Такая разность потенциалов также называется электрическим напряжением, которое существует между этими двумя точками.

Из этого уравнения видно, что электрический потенциал на положительно заряженной пластине (пластина A) выше, чем потенциал на отрицательно заряженной пластине (пластина B). Поэтому положительный заряд в пластинчатом конденсаторе перемещается к отрицательной пластине. В общем случае электрическое поле – а значит, и направление движения положительного заряда – направлено в ту сторону, в которой электрический потенциал убывает быстрее всего.

Пластинчатый конденсатор

Рис. 1. Пластинчатый конденсатор

Аналогия с гравитационным полем

Если умножить уравнение (приведенное выше в статье) на величину электрического заряда q пробного электрического заряда и предположить, что отрицательно заряженная пластина имеет электрический потенциал, равный нулю, то электрическая потенциальная энергия на расстоянии h от пластины равна:

Eпот. эл = q * φ = q * E * h

Здесь φ обозначает электрический потенциал в точке пробного электрического заряда.

Сравним это уравнение с потенциальной энергией в однородном гравитационном поле:

Eпот. гр = m * g * h .

Мы определяем, что количество заряда электрического q играет роль массы m, а величина электрического поля E играет роль гравитационного ускорения g. Масса, находящаяся на высоте h над землей, ускоряется по направлению к земле под действием земного притяжения.

Таким образом, масса движется в том направлении, в котором уменьшается ее потенциальная энергия. Аналогично, положительный электрический заряд движется в направлении, в котором его электрическая потенциальная энергия будет уменьшаться. Поскольку электрическая потенциальная энергия и электрический потенциал линейно связаны, это наблюдение аналогично тому, что положительно заряженная частица движется в направлении уменьшения электрического потенциала.

Аналогия с гравитационным полем

Рис. 2. Аналогия с гравитационным полем

Подобно потенциальной энергии, только разность потенциалов имеет физический смысл, поскольку при определении электрического потенциала необходимо произвольно определить точку отсчета, от которой затем можно обозначить другие точки в пространстве. В этом смысле электрический потенциал сам по себе не имеет реального физического смысла, поскольку для данной точки в пространстве его значение можно изменить, выбрав другую точку отсчета. Таким образом, электрический потенциал ведет себя подобно высоте, потому что вы не можете говорить о высоте, пока у вас нет точки отсчета.

На топографической карте – пути, вдоль которых высота не меняется, называются изолиниями. Аналогично, пути, вдоль которых электрический потенциал постоянен, называются эквипотенциальными линиями.

Заряженные частицы

Предположим, что частица с зарядом q находится в начале выбранной нами системы координат. Пусть положение другой точки равно r и пусть r – расстояние между двумя точками. Для электрического потенциала в точке r действует следующее соотношение:

φ (r) = q / 4 * π * ε0 * r ,

здесь ε0 – электрическая постоянная.

В этом уравнении предполагается, что под действием электрического поля положительный пробный электрический заряд переносится из бесконечности в положение r.

Примеры задач

Наконец, давайте вместе рассчитаем небольшой пример. Предположим, что электрон ускоряется от отрицательно заряженной пластины к положительно заряженной через разность потенциалов 2000 В. Как изменяется потенциальная энергия электрона?

Для разности электрических потенциалов между двумя пластинами: φB – φA = ΔEпот / q , преобразованной в искомое изменение потенциальной энергии, получаем:

Величина электрического заряда электрона равна qe = e = – 1,6 * 10 -19 Кл и поэтому получаем:

ΔEпот = e * ( φB – φA ) = – 1,6 * 10 -19 Кл * 2000 В = -3,2 * 10 -19 Дж.

Обратите внимание, что [ В ] = Дж / Кл. Кроме того, мы предположили, что пластина с точкой B заряжена положительно, поэтому перед 2000 В нет знака минус. Расчет показывает, что потенциальная энергия электрона уменьшается.

Найти потенциал электрического поля в точке, лежащей посредине между двумя

Найти потенциал электрического поля в точке, лежащей посредине между двумя зарядами по 50 нКл, расположенными на расстоянии 1 м в вакууме.

Задача №6.3.9 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Решение задачи:

Схема к решению задачи

Так как заряды одинаковы, и они находятся на одинаковом расстоянии (r) от точки A, в которой нужно определить потенциал, значит потенциалы электрических полей в точке A, создаваемых каждым зарядом, также одинаковы. Это видно из формулы:

Здесь (k) – коэффициент пропорциональности, равный 9·10 9 Н·м 2 /Кл 2 .

Учитывая, что точка A находится посредине между двумя зарядами ((r=frac)), то:

Искомый потенциал (varphi) равен сумме потенциалов электрических полей в точке A, создаваемых каждым зарядом, поскольку потенциал – величина скалярная. Учитывая вышесказанное, имеем:

В итоге решение задачи в общем виде выглядит так:

Ответ: 1,8 кВ.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Понятие электрического потенциала является одним из важных основ теории электростатики и электродинамики. Понимание его сущности является необходимым условием для дальнейшего изучения этих разделов физики.

Формула разности потенциалов.

Содержание

  • 1 Что такое электрический потенциал
  • 2 Свойства потенциала
  • 3 Разность потенциалов
  • 4 Эквипотенциальные поверхности

Что такое электрический потенциал

Пусть в поле, создаваемым неподвижным зарядом Q, помещён единичный заряд q, на который действует сила Кулона F=k*Qq/r.

Здесь и далее k=((1/4)*π* ε0* ε), где ε0 — электрическая постоянная (8,85*10-12 Ф/м), а ε – диэлектрическая постоянная среды.

Внесённый заряд под действием этой силы может перемещаться, а сила при этом совершит определенную работу. Это означает, что система из двух зарядов обладает потенциальной энергией, зависящей от величины обоих зарядов и расстояния между ними, причём величина этой потенциальной энергии не зависит от величины заряда q. Здесь и вводится определение электрического потенциала – он равен отношению потенциальной энергии поля к величине заряда:

φ=W/q,

где W – потенциальная энергия поля, создаваемого системой зарядов, а потенциал является энергетической характеристикой поля. Чтобы переместить заряд q в электрическом поле на какое-то расстояние, надо затратить определённую работу на преодоление кулоновских сил. Потенциал точки равен работе, которую надо затратить для перемещения единичного заряда из этой точки в бесконечность. При этом надо отметить, что:

  • эта работа будет равна убыли потенциальной энергии заряда (A=W2-W1);
  • работа не зависит от траектории перемещения заряда.

В системе СИ единицей измерения потенциала является один Вольт (в русскоязычной литературе обозначается буквой В, в зарубежной – V). 1 В=1Дж/1 Кл, то есть, можно говорить о потенциале точки в 1 вольт, если для перемещения заряда в 1 Кл в бесконечность потребуется совершить работу в 1 Джоуль. Название выбрано в честь итальянского физика Алессандро Вольта, внесшего значительный вклад в развитие электротехники.

Чтобы наглядно представить, что такое потенциал, его можно сравнить с температурой двух тел или температурой, замеренной в разных точках пространства. Температура служит мерой нагрева объектов, а потенциал – мерой электрической заряженности. Говорят, что одно тело нагрето более другого, также можно сказать, что одно тело заряжено более, а другое – менее. Эти тела обладают разным потенциалом.

Значение потенциала зависит от выбора системы координат, поэтому требуется какой-то уровень, который надо принять за ноль. При измерении температуры за базовую границу можно принять, например, температуру тающего льда. Для потенциала за нулевой уровень обычно принимают потенциал бесконечно удаленной точки, но для решения некоторых задач за нулем можно считать, например, потенциал земли или потенциал одной из обкладок конденсатора.

Свойства потенциала

Среди важных свойств потенциала надо отметить следующие:

  • если поле создается несколькими зарядами, то потенциал в конкретной точке будет равен алгебраической (с учетом знака заряда) сумме потенциалов, создаваемых каждым из зарядов φ=φ12345+…+φn;
  • если расстояния от зарядов таковы, что сами заряды можно считать точечными, то суммарный потенциал считается по формуле φ=k*(q1/r1+q2/r2+q3/r3+…+qn/rn), где r – расстояние от соответствующего заряда то рассматриваемой точки.

Если поле образовано электрическим диполем (двумя связанными зарядами противоположного знака), то потенциал в любой точке, находящейся на расстоянии r от диполя будет равен φ=k*p*cosά/r2, где:

  • p – электрическое плечо диполя, равное q*l, где l – расстояние между зарядами;
  • r – расстояние до диполя;
  • ά – угол между плечом диполя и радиус-вектором r.

Если точка лежит на оси диполя, то cosά=1 и φ=k*p/r2.

Разность потенциалов

Если две точки обладают определённым потенциалом, и если они не равны, то говорят о том, что между двумя точками существует разность потенциалов. Разность потенциалов возникает между точками:

  • потенциал которых определяется зарядами разных знаков;
  • точкой с потенциалом от заряда любого знака и точкой с нулевым потенциалом;
  • точками, имеющими потенциал равного знака, но отличающимися по модулю.

То есть, разность потенциалов не зависит от выбора системы координат. Можно провести аналогию с бассейнами с водой, расположенными на разной высоте относительно нулевой отметки (например, уровня моря).

Объяснение понятия разности потенциалов на примере бассейнов с водой.

Вода каждого бассейна имеет определенную потенциальную энергию, но если соединить два любых бассейна трубкой, то в каждой из них возникнет поток воды, расход которой определяется не только размерами трубки, но и разностью потенциальных энергий в гравитационном поле Земли (то есть, разностью высот). Абсолютное значение потенциальных энергий значения в данном случае не имеет.

Переток потенциала при соединении двух точек.

Точно так же, если соединить проводником две точки с разным потенциалом, по нему потечёт электрический ток, определяемый не только сопротивлением проводника, но и разностью потенциалов (но не их абсолютным значением). Продолжая аналогию с водой, можно сказать, что вода в верхнем бассейне скоро закончится, и если не найдется той силы, которая переместит воду обратно наверх (например, насоса), то и поток очень быстро прекратится.

Поддержание разности потенциалов на одном уровне.

Так и в электрической цепи – чтобы поддерживать разность потенциалов на определенном уровне, потребуется сила, переносящая заряды (точнее, носители зарядов) к точке с наибольшим потенциалом. Такая сила называется электродвижущей силой и сокращенно обозначается ЭДС. ЭДС может носить различную природу – электрохимическую, электромагнитную и т.п.

На практике имеет значение в основном разность потенциалов между начальной и конечной точками траектории движения носителей зарядов. В этом случае эту разность называют напряжением, и оно в СИ также измеряется в вольтах. О напряжении в 1 Вольт можно говорить, если поле совершает работу в 1 Джоуль при перемещении заряда в 1 Кулон из одной точки в другую, то есть 1В=1Дж/1Кл, и Дж/Кл также может являться единицей измерения разности потенциалов.

Эквипотенциальные поверхности

Если потенциал нескольких точек одинаков, и эти точки образуют поверхность, то такая поверхность называется эквипотенциальной. Таким свойством обладает, например, сфера, описанная вокруг электрического заряда, ведь электрическое поле убывает с расстоянием одинаково во все стороны.

Эквипотенциальная поверхность.

Все точки этой поверхности имеют одинаковую потенциальную энергию, поэтому при перемещении заряда по такой сфере работа затрачиваться не будет. Эквипотенциальные поверхности систем из нескольких зарядов имеют более сложную форму, но у них есть одно интересное свойство – они никогда не пересекаются. Силовые линии электрического поля всегда перпендикулярны поверхностям с одинаковым потенциалом в каждой их точке. Если эквипотенциальную поверхность рассечь плоскостью, получится линия равных потенциалов. Она имеет те же свойства, что и эквипотенциальная поверхность. На практике равный потенциал имеют, например, точки на поверхности проводника, помещенного в электростатическое поле.

Разобравшись с понятием потенциала и разности потенциалов, можно приступать к дальнейшему изучению электрических явлений. Но не ранее, потому что без понимания базовых принципов и понятий углубить знания не получится.

Потенциал. Разность потенциалов.

Потенциал
электростатического поля — скалярная
величина, равная отношению потен­циальной
энергии заряда в поле к этому заряду:

  –
энергетическая характеристика поля в
данной точке. Потенциал
не зависит от величины заряда, помещенного
в это поле.

Т.к.
потенциальная энергия зависит от выбора
системы координат, то и потенциал
определяется с точностью до постоянной.


следствие принци­па суперпозиции
полей (потенциалы складываются
алгебраически).

Потенциал
численно равен работе поля по перемещению
единичного положительного заряда из
данной точки электрического поля в
бесконечность.

В
СИ потенциал измеряется в вольтах:

 Разность
потенциалов

 

Напряжение
— разность значений потенциала в
начальной и конечной точках траектории.

Напряжение
численно равно работе электростатического
поля при перемещении единичного
положительного заряда вдоль силовых
линий этого поля.

Разность
потенциалов (напряжение) не зависит от
выбора

системы
координат!

Единица разности потенциалов

напряженность
равна градиенту потенциала (скорости
изменения потенциала вдоль направления
d).

Из
этого соотношения видно:

1.
Вектор напряженности направлен в сторону
уменьшения потенциала.

2.
Электрическое поле существует, если
существует разность потенциалов.

3.
Единица напряженности:
Напряженность
поля равна

Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.

Потоком
вектора магнитной индукции (магнитным
потоком)

через площадку dS
называется
скалярная

физическая величи­на, равная

Поток
вектора магнитной индук­ции
Ф
в
через произвольную поверхность S
равен

Теорема
Гаусса для поля В:

поток век­тора магнитной индукции
через любую замкнутую поверхность равен
нулю:

полный
магнитный поток, сцепленный со всеми
витками соленоида и называемый
потокосцеплением,

Проводники в электростатическом поле. Электроемкость уединенного проводника.

Если
поместить проводник во внешнее
электростатическое поле или его зарядить,
то на заряды проводника будет действо­вать
электростатическое поле, в результа­те
чего они начнут перемещаться. Переме­щение
зарядов (ток) продолжается до тех пор,
пока не установится равновесное
рас­пределение зарядов, при котором
электро­статическое поле внутри
проводника обра­щается в нуль. Это
происходит в течение очень короткого
времени. В самом деле, если бы поле не
было равно нулю, то в проводнике возникло
бы упорядоченное движение зарядов без
затраты энергии от внешнего источника,
что противоречит закону сохранения
энергии. Итак, напря­женность поля во
всех точках внутри проводника равна
нулю:

Е
= 0.

По
гауссу

Величину

С =
Q/ф

называют
электроемкостью
(или просто емкостью)
уединенного проводника. Ем­кость
уединенного проводника определяет­ся
зарядом, сообщение которого провод­нику
изменяет его потенциал на единицу.

Емкость
проводника зависит от его размеров и
формы, но не зависит от мате­риала,
агрегатного состояния, формы и размеров
полостей внутри проводника. Это связано
с тем, что избыточные заряды распределяются
на внешней поверхности проводника.
Емкость не зависит также ни от заряда
проводника, ни от его потенциа­ла.
Сказанное не противоречит формуле, так
как она лишь показывает, что емкость
уединенного проводника прямо
пропорциональна его заряду и обратно
пропорциональна потенциалу.

Единица
электроемкости —
фарад
(Ф):

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий