10.1. Потенциальная энергия при объемном напряженном состоянии. Удельная потенциальная энергия формоизменения
Потенциальной
энергией деформации называется энергия,
накапливаемая в теле при его упругих
деформациях. Под действием внешней
статической нагрузки тело деформируется,
точки приложения внешних сил перемещаются
и потенциальная энергия положения
внешних нагрузок уменьшается на величину,
равную работе внешних сил на вызванных
ими перемещениях. Энергия, потерянная
внешними силами, не исчезает, а
превращается, в основном, в потенциальную
энергию деформации тела. Остальная,
незначительная часть энергии рассеивается,
главным образом, в виде тепла за счет
различных процессов, происходящих в
материале при его деформации.
Вычислим полную
потенциальную энергию, накапливаемую
в элементарном параллелпипеде при его
упругой деформации. В качестве объекта
элемент, приведенный на рис.10.1.
(10.1)
Рис.10.1
Потенциальная
энергия деформации накапливается в
обратимой форме – в процессе разгрузки
тела она снова превращается в энергию
внешних сил или кинетическую энергию.
Величину потенциальной энергии,
накапливаемую, в единице объема материала,
принято называть удельной потенциальной
энергией:
.
(10.2)
Подставляя в
(10.2) выражения для относительной
деформации из (9.73), получаем:
. (10.3)
Выражение (10.3)
записано для удельной потенциальной
энергии для случая, когда известны
значения главных напряжений
и деформаций.
В том случае, если известны неглавные
нормальные напряженияи,
касательные напряжения,
соответствующие линейные удлинения,и
угловые деформацииполная потенциальная энергия, накапливаема
в элементарном параллелепипеде, равна:
(10.4)
Удельная
потенциальная энергия имеет вид:
(10.5)
или
.
(10.6)
Иногда удельную
потенциальную энергию удобно выразить
через деформации:
,
(10.7)
где
;объемная деформация;объемный модуль упругости (9.85).
При деформации
элемента меняется как его объем, так и
форма (из кубика он превращается в
параллелепипед) (Рис.10.1). В связи с этим
можно считать, что полная удельная
потенциальная энергия деформации
состоит из удельной потенциальной
энергии изменения объемаи удельной потенциальной энергии
изменения формы:
(10.8)
Вначале вычислим
удельную потенциальную энергию изменения
объема. Для этого сделаем предположение
о том, что в различных элементах (Рис.10.2)
при действии разных главных напряжений
величина
будет одинаковой, если у элементов будет
одинаковое изменение объема элемента.
Рис.10.2
На рис.10.2,а
изображен элемент со стороной, равной
единице (единичный элемент), нагруженный
различными по величине главными
напряжениями. На рис.10.2,б приведен
вспомогательный единичный элемент, по
граням которого действуют одинаковые
главные напряжения
.
Для этого элемента относительное
изменение объема будет равно:
,
(10.9)
а полная удельная энергия
деформаций из формулы (10.3):
. (10.10)
Дополнительный
элемент (Рис.10.2,б) при деформации меняет
только объем, форма его остается
кубической. Следовательно,
=0,
и значит:
.
(10.11)
Величину
определим из условия равенства
относительных изменений объемов обоих
элементов:
.
(10.12)
Отсюда
.
Поскольку у
обоих элементов изменения объемов
одинаковы, на основании принятого
предположения можно утверждать, что
или
.
(10.13)
Теперь из формулы
(10.8) можно найти удельную потенциальную
энергию изменения формы:
.
(10.14)
Подставляя в
(10.14) значения
ииз формул (10.3) и (10.13), после элементарных
преобразований окончательно получаем:
(10.15)
или
.
(10.16)
Следует отметить,
что удельная потенциальная энергия
деформации играет значительную роль
при оценке прочности констркукций и
деталей машин, пребывающих в сложном
напряженном состоянии.
Пример 9.4. Определить
относительные линейные деформации в
главных направлениях, относительное
изменение объема элементарного
параллелепипеда (Рис.10.3), величину полной
удельной потенциальной эенергии
деформации, удельную потенциальную
энергию изменения объема и удельную
потенциальную энергию изменения формы.
Матерал параллелепипеда – сталь с
модулем упругости первого рода
МПа
и коэффициентом Пуассона.
Решение:
1.
Воспользуемся результатами решения,
приведенного в примере 9.3. Главные
напряжения при исходных нормальных и
касательных напряжениях, численные
значения которых приведены на рис.10.3,
в примере 9.3. были получены такими:
МПа,МПа.
В этом же примере были определены
направления главных напряжений.
Рис.10.3
2.
В рассматриваемом элементарном
параллелепипеде имеет место плоское
напряженное состояние. Учитывая, что
главное напряжение
по формуле (9.73) найдем относительные
линейные удлиинения:
,
,
.
3.
Относительное изменение объема
параллелепипеда в результате деформации
найдем, воспользовавшись формулой
(9.81):
.
4. В
качестве проверки вычислим относительное
изменение объема элементарного
параллелепипеда по формуле (9.82), учитывая,
что главное напряжение
:
.
Получилось
то же самое число.
5. Определяем полную
удельную потенциальную энергию
деформации, используя выражение (10.3),
учитывая равенство нулю
:
Н/м2.
6.
Определяем удельную потенциальную
энергию изменения объема по формуле
(10.13) при условии, что
:
Н/м2.
7.
Определяем удельную потенциальную
энергию изменения формы по формуле
(10.16), учитывая, что
:
Н/м2.
8.
Выполняем проверку по формуле (10.8):
Н/м2.
Сравнивая
полученную сумму с величиной полной
удельной потенциальной энергиии
деформации, вычисленной в п.5 рассматриваемого
примера, приходим к выводу, что значения
энергии практически совпадают.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
Потенциальная энергия:
По определению потенциальная энергия – это энергия взаимодействия. Т. е. потенциальную энергию имеют все взаимодействующие тела. Для каждого вида механического взаимодействия можно рассчитать потенциальную энергию, учитывая особенности данного взаимодействия.
Самым распространенным в природе является гравитационное взаимодействие, проявлением которого является сила тяжести. При определенных условиях эта сила может выполнять работу.
Допустим, тело массой т подвешено над полом на высоте
Если нить перерезать, то тело начнет падать под действием силы тяжести.
По определению работа А = Fs cos = mgs cos.
Если учесть, что a то или
Поскольку работа равна изменению энергии, то можно считать, что выражение mgh определяет потенциальную энергию тела в поле силы тяжести Земли на высоте Л. Движение под действием силы тяжести может происходить по разным траекториям. Выясним, будет ли это влиять на значение работы.
Дадим возможность телу свободно скользить без трения по наклонной плоскости под действием силы тяжести (рис. 2.70).
Если учитывать, что А = mgscos, s=AB, то А = mgABcos.
Из треугольника ABC ABcos = ВС и вместе с тем BD = – h.
Тогда работа силы тяжести при скольжении тела без трения по наклонной плоскости будет равна А = mg(h – ).
Следовательно, работа силы тяжести по перемещению тела по наклонной плоскости будет такой же, как и при его падении из точки В, расположенной на высоте , в точку D, находящуюся на высоте Л.
Таким образом, работа силы тяжести определяется положением точек начала и конца движения и не зависит от формы траектории.
В тех случаях, когда работа силы не зависит от формы траектории, а определяется начальным и конечным положением тела, пользуются понятием потенциальной энергии.
Если записать формулу для работы силы тяжести в виде
т. е. работа определяется изменением величины mgh, которая называется потенциальной энергией тела в поле силы тяжести:
Работа силы тяжести равна изменению потенциальной энергии тела с противоположным знаком. Это означает, что при падении тела, когда сила тяжести выполняет положительную работу, его потенциальная энергия уменьшается. И наоборот, при движении тела вверх, когда сила тяжести выполняет отрицательную работу, его потенциальная энергия увеличивается. Эта особенность характерна для всех случаев, когда работа силы не зависит от формы траектории.
Что такое потенциальная энергия
Потенциальная энергия (от латинского слова потенциал – возможность) – это энергия, которая определяется взаимным положением взаимодействующих тел или частей одного тела.
Поскольку любое тело и Земля притягивают друг друга, т. е. взаимодействуют, то потенциальная энергия тела, поднятого над Землей, будет зависеть от высоты подъёма h. Чем больше высота подъёма тела, тем больше его потенциальная энергия.
Опытами установлено, что потенциальная энергия тела зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела подняты на одинаковую высоту, то тело, у которого масса больше, будет иметь и ббльшую потенциальную энергию. Во время падения поднятого тела на поверхность Земли сила тяжести выполнила работу, соответствующую изменению потенциальной энергии тела со значения её на высоте И до значения на поверхности Земли. Если для удобства принять, что потенциальная энергия тела на поверхности Земли равна нулю, то потенциальная энергия поднятого тела будет равна выполненной во время падения работе:
Итак, потенциальную энергию тела, поднятого на некоторую высоту, будем определять по формуле:
где Еп — потенциальная энергия поднятого тела; m — масса тела; = 9,81
h — высота, на которую поднято тело.
Большой запас потенциальной энергии у воды горных или равнинных рек, поднятых плотинами. Падая с высоты вниз, вода выполняет работу: приводит в движение турбины гидроэлектростанций. В Украине на Днепре построено несколько гидроэлектростанций, в которых используют энергию воды для получения электроэнергии. На рисунке 174 изображено сечение такой станции. Вода с более высокого уровня падает вниз и вращает колесо гидротурбины. Вал турбины соединён с генератором электрического тока.
Потенциальной энергией обладает самолёт, летящий высоко в небе; дождевые капли в туче; молот копра при забивании свай. Открывая двери с пружиной, мы растягиваем её, преодолевая силу упругости, т. е. выполняем работу. Вследствие этого пружина приобретает потенциальную энергию. За счёт этой энергии пружина, сокращаясь, выполняет работу – закрывает двери. Потенциальную энергию пружин используют в часах, разнообразных заводных игрушках. В автомобилях, вагонах пружины амортизаторов и буферов, деформируясь, уменьшают толчки.
Потенциальная энергия пружины зависит от её удлинения (изменения длины при сжатии или растяжении) и жёсткости (зависит от конструкции пружины и упругости материала, из которого она изготовлена). Чем больше удлинение (деформация) пружины, и чем больше её жёсткость, тем большую потенциальную энергию она приобретает при деформации. Такая зависимость свойственна любому упруго деформированному телу.
Потенциальную энергию упругодеформированного тела определяют по формуле:
где — потенциальная энергия упруго деформированного тела (пружины); — жёсткость тела (единица жёсткости — 1 — удлинение (деформация) тела (пружины).
Но тела могут обладать энергией не только потому, что они находятся в определённом положении или деформируются, а и потому, что они находятся в движении.
Определение потенциальной энергии
В повседневной жизни можно обнаружить множество различных тел, при перемещении которых может выполняться работа. Так, выпавший из рук шарик начнет падать под действием силы притяжения, которая будет выполнять работу по перемещению шарика.
Сжатая пружина может поднять на определенную высоту груз. В этом случае сила упругости выполняет работу по перемещению груза.
Что такое энергия
Энергия – это физическая величина, показывающая, какая работа может быть выполнена при перемещении тела.
Можно привести еще много разных примеров из природы, из повседневной жизни, из техники, в которых речь идет о телах, находящихся в таком состоянии, что при определенных условиях может выполняться работа при их перемещении. О таких телах говорят, что они обладают энергией. При различных условиях результат выполнения работы может быть разным. Поэтому и энергия может иметь различные значения и может быть рассчитана.
Единицы энергии
Поскольку речь идет о возможности выполнения работы, то энергию целесообразно измерять в таких же единицах, что и работу. Поэтому единицей энергии есть 1 Дж.
Виды механической энергии
В физике выделяют два вида механической энергии: потенциальную и кинетическую. Если тело неподвижно, но па него действует определенная сила, то говорят, что оно обладает потенциальной энергией.
Потенциальной энергией обладает тело, поднятое над поверх-136 ностью Земли, сжатая пружина, сжатый газ, речная вода в водоеме и другие тела.
Как рассчитывают потенциальную энергию
Рассчитывают потенциальную энергию с учетом природы сил, действующих на эти тела. Проще всего рассчитать потенциальную энергию тела, поднятого над поверхностью Земли, поскольку сила, действующая на него, остается практически постоянной на протяжении всего времени его движения под действием этой силы.
Пусть тело массой находится на высоте над землей. Если оно упадет на поверхность, то будет выполнена работа
Следовательно, о таком теле можно сказать, что оно обладает потенциальной энергией
Потенциальная энергия тела, поднятого над поверхностью Земли, пропорциональна массе тела и его высоте над поверхностью Земли.
При расчете потенциальной энергии важно помнить, что высота является путем, который тело преодолеет в вертикальном направлении. Таким образом, всегда следует указывать, относительно какой поверхности определяется потенциальная энергия. Например, тело массой 2 кг, поднятое над столом на высоту 1,5 м, будет обладать потенциальной энергией, равной примерно 30 Дж, а потенциальная энергия этого тела, рассчитанная для высоты 3 м над полом, будет 60 Дж.
Потенциальная энергия упруго деформированного тела
Расчет работы силы упругости усложняется тем, что в ходе выполнения работы значение силы изменяется. Поскольку изменение силы упругости происходит линейно, то при расчетах работы используют среднее значение силы:
где – значения силы упругости в начале и в конце процесса.
Учитывая, что (по закону Гука), то
В случае, когда = 0, т. е. сила упругости действует вдоль прямой, по которой происходит перемещение, получим выражение для расчета работы силы упругости:
где – удлинение, характеризующее начальную и конечную деформации соответственно.
Для потенциальной энергии тела в поле силы тяжести можно записать:
Потенциальная энергия упруго деформированного тела зависит от его деформации.
Работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятой с противоположным знаком.
Как и в случае работы силы тяжести, работа силы упругости зависит не от формы траектории, а только от начальной и конечной деформации тела.
Механическая работа и кинетическая энергия
Чтобы шли механические часы, их нужно завести — закрутить пружину; раскручиваясь, пружина совершит работу. Поднявшись на вершину горы, лыжник создаст «запас работы» и в результате сможет скатиться вниз; при этом работу совершит сила тяжести. Самый простой способ разбить окно в горящем доме — бросить в окно камень. Если скорость движения камня достаточна, он разобьет окно — совершит работу. О теле или системе тел, которые могут совершить работу, говорят, что они обладают энергией.
Когда сила совершает механическую работу
Основная задача механики — определение механического состояния тела (координат тела и скорости его движения) в любой момент времени. Механическое состояние тела не изменяется само по себе — необходимо взаимодействие, то есть наличие силы. Когда тело перемещается (изменяет свое механическое состояние) под действием силы, говорят, что данная сила совершает механическую работу.
Механическая работа (работа силы) A — физическая величина, характеризующая изменение механического состояния тела и равная произведению модуля силы F, модуля перемещения s и косинуса угла a между вектором силы и вектором перемещения:
Единица работы в СИ — джоуль:
1 Дж равен механической работе, которую совершает сила 1 Н, перемещая тело на 1 м в направлении действия этой силы.
Работа силы — величина скалярная, однако она может быть положительной, отрицательной, равной нулю — в зависимости от того, куда направлена сила относительно направления движения тела (см. таблицу).
Геометрический смысл работы силы
Рассмотрим силу, действующую под некоторым углом α к направлению движения тела. Найдем проекцию этой силы на направление перемещения тела, для чего ось ОХ направим в сторону движения тела (рис. 15.1, а). Из рисунка видим, что , следовательно, .
Построим график — зависимости проекции силы от модуля перемещения. Если сила, действующая на тело, постоянна, график этой зависимости представляет собой отрезок прямой, параллельной оси перемещения (рис. 15.1, б). Из рисунка видим, что произведение и s соответствует площади S прямоугольника под графиком.
Рис. 15.1. Если направление оси ОХ совпадает с направлением движения тела, то работа A силы численно равна площади S фигуры под графиком зависимости
В этом состоит геометрический смысл работы силы: работа силы численно равна площади фигуры под графиком зависимости проекции силы от модуля перемещения. Это утверждение распространяется и на случаи, когда сила переменная (рис. 15.1, в, г).
Когда тело имеет кинетическую энергию
Рассмотрим тело массой m, которое под действием равнодействующей силы увеличивает скорость своего движения от v0 до v. Пусть равнодействующая не изменяется со временем и направлена в сторону движения тела. Определим работу этой силы.
Величину называют кинетической энергией тела .
Кинетическая энергия — физическая величина, которая характеризует механическое состояние движущегося тела и равна половине произведения массы m тела на квадрат скорости v его движения:
Теорема о кинетической энергии: работа равнодействующей всех сил, которые действуют на тело, равна изменению кинетической энергии тела:
Если в начальный момент времени тело неподвижно ( = 0), то есть= 0, то теорема о кинетической энергии сводится к равенству:
Кинетическая энергия тела, движущегося со скоростью v, равна работе, которую совершает сила, чтобы придать неподвижному телу данную скорость.
Мощность
До сих пор мы говорили о работе силы. Но любая сила характеризует действие определенного тела (или поля). Поэтому работу силы часто называют работой тела (работой поля), со стороны которого действует эта сила. На практике большое значение имеет не только выполненная работа, но и время, за которое эта работа была выполнена. Поэтому для характеристики механизмов, предназначенных для совершения работы, используют понятие мощности.
Мощность P (или N) — физическая величина, характеризующая скорость выполнения работы и равная отношению работы А к интервалу времени t, за который эта работа выполнена:
Единица мощности в СИ — ватт:
(Названа в честь Джеймса Ватта (1736–1819). Как единицу мощности он ввел лошадиную силу, которую иногда используют и сейчас: 1 л. с. = 746 Вт.)
Мощность, которую развивает транспортное средство, удобно определять через силу тяги и скорость движения. Если тело движется равномерно, а направление силы тяги совпадает с направлением перемещения, тяговую мощность двигателя можно вычислить по формуле:
Обратите внимание! Данная формула справедлива для любого движения: мощность, которую развивает двигатель в данный момент времени, равна произведению модуля силы тяги двигателя на модуль его мгновенной скорости: P = Fv (рис. 15.3).
Рис. 15.3. Когда для движения автомобиля требуется большая сила тяги, водитель переходит на меньшую скорость или нажимает на газ, увеличивая таким образом мощность двигателя
Чтобы определить механическую работу и мощность, нужно знать силу, действующую на тело, перемещение тела и время его движения. Поэтому обычно решение задач на определение работы и мощности сводится к решению задач по кинематике и динамике.
Пример №1
Автомобиль массой 2 т движется равномерно со скоростью 20 м/с по горизонтальному участку дороги. Какие силы действуют на автомобиль? Найдите работу каждой силы и тяговую мощность двигателя автомобиля, если коэффициент сопротивления движению равен 0,01, а время движения — 50 с.
Решение:
Выполним пояснительный рисунок, на котором укажем силы, действующие на автомобиль: силу тяжести , силу тяги , силу сопротивления движению , силу нормальной реакции опоры. По определению работы: A = Fscosα
Чтобы определить работу каждой силы, нужно найти::
- угол между направлением этой силы и направлением перемещения;
- модуль силы и модуль перемещения.
1. Автомобиль движется равномерно, поэтому действующие на него силы скомпенсированы: — сила тяжести уравновешена силой нормальной реакции опоры: N = mg; — сила тяги уравновешена силой сопротивления движению:
2. Перемещение автомобиля можно найти по формуле: s = vt .
3. Сила тяжести и сила нормальной реакции опоры перпендикулярны направлению движения автомобиля (α = 90°, cosα = 0). Следовательно, работа этих сил равна нулю. Сила тяги направлена в сторону движения тела: α = 0, cosα = 1, поэтому:
Сила сопротивления противоположна движению: α = 180°, cosα = −1, поэтому:
4. Тяговую мощность двигателя автомобиля определим по формуле Проверим единицы, найдем значения искомых величин:
Выводы:
Потенциальная энергия и закон сохранения механической энергии
Поднятый молот не обладает кинетической энергией, так как его скорость равна нулю. Но если молот отпустить, он совершит работу (расплющит металл). Натянутая тетива лука не имеет кинетической энергии, но, выпрямляясь, она придаст скорость стреле, а значит, совершит работу. И деформированное тело, и тело, поднятое над поверхностью Земли, способны совершить работу, то есть обладают энергией. Что это за энергия и как ее рассчитать?
Когда тело обладает потенциальной энергией
Механическая энергия E — физическая величина, характеризующая способность тела (системы тел) совершить работу.
Единица энергии (как и работы) в СИ — джоуль [E] = 1 Дж (J).
Любое движущееся тело может совершить работу, поскольку оно обладает кинетической энергией, или «живой силой», как ее называли раньше. Есть еще один вид механической энергии — ее называли «мертвая сила». Это — потенциальная энергия (от лат. potentia — сила, возможность), — энергия, которую имеет тело в результате взаимодействия с другими телами.
Потенциальная энергия — энергия, которой обладает тело вследствие взаимодействия с другими телами или вследствие взаимодействия частей тела.
Рис. 16.1. И девочка в результате взаимодействия с Землей (а), и сжатая пружина в результате взаимодействия ее витков (б) обладают потенциальной энергией
Девочка на вершине горки (рис. 16.1, а) обладает потенциальной энергией, поскольку в результате взаимодействия с Землей может начать движение и сила тяжести совершит работу. Но как вычислить эту работу, ведь горка неровная и в течение всего времени движения угол между направлением силы тяжести и направлением перемещения будет изменяться?
Сжатая пружина (рис. 16.1, б) тоже обладает потенциальной энергией: при распрямлении пружины сила упругости совершит работу — подбросит брусок. Но как вычислить эту работу, ведь во время действия пружины на брусок сила упругости непрерывно уменьшается?
Оказывается, все не так сложно. И сила тяжести, и сила упругости имеют одно «замечательное» свойство — работа этих сил не зависит от формы траектории. Силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным механическими состояниями тела (системы тел), называют потенциальными, или консервативными, силами (от лат. conservare — сохранять, охранять).
Потенциальная энергия поднятого тела
Докажем, что сила тяжести — консервативная сила. Для этого определим работу силы тяжести при движении тела из точки K в точку B по разным траекториям.
Случай 1. Пусть траектория движения тела — «ступенька» (рис. 16.2, а): сначала тело падает с некоторой высоты до высоты h и сила тяжести совершает работу , затем тело движется горизонтально и сила тяжести совершает работу . Работа — величина аддитивная, поэтому общая работа .
= 0, так как сила тяжести перпендикулярна перемещению тела. Итак: .
Случай 2. Пусть тело перемещается из точки K в точку В, скользя по наклонной плоскости (рис. 16.2, б). В этом случае работа силы тяжести равна:
Рис. 16.2. При перемещении тела с высоты до высоты h работа силы тяжести, независимо от траектории движения тела, определяется по формуле:
Тот же результат получим и для случаев перемещения тела по произвольной траектории. Следовательно, работа силы тяжести не зависит от траектории движения тела, то есть сила тяжести — консервативная сила. Величину mgh называют потенциальной энергией поднятого тела:
Потенциальная энергия поднятого тела зависит от высоты, на которой находится тело, то есть зависит от выбора нулевого уровня, — уровня, от которого будет отсчитываться высота. Нулевой уровень выбирают из соображений удобства. Так, находясь в комнате, за нулевой уровень целесообразно взять пол, определяя высоту горы — поверхность Мирового океана.
Обратите внимание! Изменение потенциальной энергии, а следовательно, и работа силы тяжести от выбора нулевого уровня не зависят.
- Заказать решение задач по физике
Потенциальная энергия упруго деформированного тела
Пусть имеется упруго деформированное тело — растянутая пружина. Определим работу, которую совершит сила упругости при уменьшении удлинения пружины от до x (рис. 16.3). Воспользуемся для этого геометрическим смыслом механической работы (рис. 16.4):
Таким образом, работа силы упругости определяется только начальным и конечным состояниями пружины, то есть сила упругости — консервативная сила. Величину называют потенциальной энергией упруго деформированного тела:
Работа силы упругости (как и силы тяжести) равна изменению потенциальной энергии тела, взятому с противоположным знаком:
Данное выражение — математическая запись теоремы о потенциальной энергии: работа всех консервативных сил, действующих на тело, равна изменению потенциальной энергии тела, взятому с противоположным знаком.
Состояние с меньшей потенциальной энергией является энергетически выгодным; любая замкнутая система стремится перейти в такое состояние, в котором ее потенциальная энергия минимальна, — в этом заключается принцип минимума потенциальной энергии. Действительно, камень, выпущенный из руки, никогда не полетит вверх — он будет падать, стремясь достичь состояния с наименьшей потенциальной энергией. Недеформированная пружина никогда не станет сама растягиваться или сжиматься, а деформированная пружина стремится перейти в недеформированное состояние.
Закон сохранения полной механической энергии
Как правило, тело или система тел обладают и потенциальной, и кинетической энергиями. Сумму кинетических и потенциальных энергий тел системы называют полной механической энергией системы тел: (рис. 16.5).
Рассмотрим замкнутую систему тел, взаимодействующих друг с другом только консервативными силами (силами тяготения или силами упругости). По теореме о потенциальной энергии работа A, совершаемая этими силами, равна: . С другой стороны, согласно теореме о кинетической энергии эта же работа равна: . Приравняв правые части равенств, получим закон сохранения и превращения полной механической энергии:
В замкнутой системе тел, взаимодействующих только консервативными силами, полная механическая энергия остается неизменной (сохраняется):
Закон сохранения полной механической энергии предполагает превращение кинетической энергии в потенциальную и наоборот (рис. 16.6). Однако сохраняется ли при этом полная механическая энергия? Наш опыт подсказывает, что нет. И действительно, закон сохранения полной механической энергии справедлив только в случаях, когда в системе отсутствует трение. Однако в природе не существует движений, не сопровождающихся трением. Сила трения всегда направлена против движения тела, поэтому при движении она совершает отрицательную работу, при этом полная механическая энергия системы уменьшается:
где — работа силы трения; E, — полная механическая энергия системы в конце и в начале наблюдения соответственно.
Потери энергии наблюдаются и в случае неупругого удара. Так что, при наличии трения или при неупругой деформации энергия бесследно исчезает? Казалось бы, да. Однако измерения показывают, что в результате и трения, и неупругого удара температуры взаимодействующих тел увеличиваются, то есть увеличиваются внутренние энергии тел. Значит, кинетическая энергия не исчезает, а переходит во внутреннюю энергию.
Энергия никуда не исчезает и ниоткуда не появляется: она только переходит из одного вида в другой, передается от одного тела к другому.
Алгоритм решения задач с применением закона сохранения механической энергии
- Прочитайте условие задачи. Выясните, является ли система замкнутой, можно ли пренебречь действием сил сопротивления. Запишите краткое условие задачи.
- Выполните пояснительный рисунок, на котором укажите нулевой уровень, начальное и конечное состояния тела (системы тел).
- Запишите закон сохранения механической энергии. Конкретизируйте запись, воспользовавшись данными условия задачи и соответствующими формулами для определения энергии.
- Решите полученное уравнение относительно неизвестной величины.
- Проверьте единицу, найдите значение искомой величины.
- Проанализируйте результат, запишите ответ.
Пример №2
Какую минимальную скорость нужно сообщить шарику, подвешенному на нити длиной 0,5 м, чтобы он смог совершить полный оборот в вертикальной плоскости? Сопротивлением воздуха пренебречь.
Анализ физической проблемы
- Сопротивлением воздуха пренебрегаем, поэтому система «шарик — нить — Земля» является замкнутой и можно воспользоваться законом сохранения механической энергии.
- За нулевой уровень примем самое низкое положение шарика.
- В самой высокой точке траектории шарик имеет некоторую скорость, иначе он не продолжил бы вращаться, а стал бы падать вертикально вниз.
- Для определения скорости движения шарика в наивысшей точке траектории воспользуемся определением центростремительного ускорения и вторым законом Ньютона.
- Нужно найти минимальную скорость движения шарика в момент толчка, поэтому понятно, что в наивысшей точке траектории нить натянута не будет, то есть сила ее натяжения будет равна нулю.
Решение:
На рисунке отметим положения шарика в самой нижней и самой верхней точках траектории; силы, действующие на шарик в верхней точке; направление ускорения. По закону сохранения механической энергии:
Согласно второму закону Ньютона: .
Поскольку
Подставим выражение (2) в выражение (1): Проверим единицу, найдем значение искомой величины:
Ответ:
Выводы:
- Кинетическая энергия
- Закон сохранения и превращения механической энергии
- Работа, мощность и энергия
- Движение и силы
- Мощность в физике
- Взаимодействие тел
- Механическая энергия и работа
- Золотое правило механики
Потенциальная энергия упруго деформированного тела — физическая величина, равная половине произведения жесткости тела на квадрат его деформации.
Потенциальная энергия упруго деформированного тела зависит от взаимного положения частей тела относительно друг друга, например витков пружины. Работа, которую может совершить растянутая пружина при перемещении ее конца, зависит только от начального и конечного растяжений пружины.
Найдем работу, которую может совершить растянутая пружина, возвращаясь к не растянутому состоянию, то есть найдем потенциальную энергию растянутой пружины.
Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.
Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.
Обозначения:
— потенциальная энергия тела
— коэффициент жесткости (или просто жесткость) пружины
— абсолютная деформация (удлинение или сжатие пружины)
A — работа, которую совершает растянутая пружина
Энергия упругой деформации
Потенциальная энергия имеется у системы взаимодействующих тел. Но отдельное деформированное тело также обладает такого типа энергией. В таком случае потенциальная энергия зависит от взаимного расположения частей тела.
Энергия упругой деформации
Если груз, подвешенный на проволоке, растягивает подвес и опускается, значит, сила тяжести совершает работу. За счет такой работы увеличивается энергия деформированного тела, которое перешло из ненапряженного состояния в напряженное. Получается, что при деформации внутренняя энергия тела увеличивается. Рост внутренней энергии тела заключается в увеличении потенциальной энергии, которая связана со взаимным расположением молекул тела. Если мы имеем дело с упругой деформацией, то после снятия нагрузки, дополнительная энергия исчезает, и за ее счет силы упругости совершают работу. В ходе упругой деформации температура твердых тел существенно не увеличивается. В этом состоит их значительное отличие от газов, которые при сжатии нагреваются. При пластической деформации твердые тела могут значительно увеличивать свою температуру. В повышении температуры, следовательно, кинетической энергии молекул, отражается рост внутренней энергии тела при пластической деформации. При этом увеличение внутренней энергии происходит также за счет работы сил, вызывающих деформацию.
Для того чтобы растянуть или сжать пружину следует выполнить работу () равную:
где – величина характеризующая изменение длины пружины (удлинение пружины); – коэффициент упругости пружины. Данная работа идут на изменение потенциальной энергии пружины ():
При записи выражения (2) считаем, что потенциальная энергия пружины без деформации равна нулю.
Потенциальная энергия упруго деформированного стержня
Потенциальная энергия упруго деформированного стержня при его продольной деформации равна:
где – модуль Юнга; – относительное удлинение; – объем стержня. Для однородного стержня при равномерной его деформации плотность энергии упругой деформации можно найти как:
Если деформация стержня является неравномерной, то при использовании формулы (3) для поиска энергии в точке стержня в эту формулу подставляют значение для рассматриваемой точки.
Плотность энергии упругой деформации при сдвиге находят, используя выражение:
где – модуль сдвига; – относительный сдвиг.
Примеры решения задач
Понравился сайт? Расскажи друзьям! | |
3.4 Потенциальная энергия деформации
Вначале рассмотрим одноосное напряженное состояние. Пусть
к стержню приложена статическая сила, т. е. сила, значение которой медленно возрастает от нуля до конечного значения F. С возрастанием силы стержень будет удлиняться, и окончательная деформация составит (см. рис. 3.4 а).
В результате деформации стержня сила переместится с точки 1
в точку 2. Если сила совершает путь, то выполняется работа, величина которой равна произведению силы на путь. В данном случае сила изменилась от нуля до F. Поскольку деформация подчиняется закону Гука, то график зависимости изображается наклонной прямой,
а работа равна площади заштрихованного треугольника (см. рис. 3.4 б)
.
Рисунок 3.4
В общем случае к стержню может быть приложено несколько сил, поэтому лучше от внешних сил перейти к внутренним, т. е. заменить F на N — продольную силу:
.
Рекомендуемые материалы
Определить концентрацию свободных электронов в металле при температуре T=0, при которой уровень Ферми E_F=2,1 эВ. Чему равна средняя энергия электронов в таком металле?
В процессе изменения состояния 1 кг газа внутренняя энергия его увеличивается на Δu. При этом над газом совершается работа, равная l. Начальная температура газа – t1, конечное давление p2. Определить для заданного газа показатель политропы n, начальн
FREE
Физические основы пластической деформации
Определить силу тока, протекающего по вольфрамовой проволоке диаметром d=0,8 мм, температура которой в вакууме поддерживается равной t=2800 °C. Поверхность проволоки принять серой с поглощательной способностью α=0,343. Удельное сопротивление проволок
Сколько килограммов свинца можно нагреть от температуры 15 ℃ до температуры его плавления t = 327 ℃ посредством удара молота массой в 200 кг при падении его с высоты 2 м, если считать, что вся энергия падения молота, превращается в тепло, которое цел
Вариант 34 – Домашнее задание
Заменим по формуле
,
получим
.
Числитель и знаменатель умножим на А:
;
Произведение представляет собой объём тела V . Так как
,
то получим:
.
Согласно закону сохранения энергии, потенциальная энергия деформации равна совершаемой работе:
. (3.12)
Для характеристики свойств материалов из формулы (3.12) нужно удалить объём V. С этой целью вводят понятие удельной потенциальной энергии деформации, т. е. энергии, приходящейся на единицу объема:
, Дж/м3
Используя закон Гука
;
получим
. (3.13)
При одном и том же напряжении запас энергии тем больше, чем меньше модуль Е. Резина имеет малый модуль Е и является одним из самых энергоёмких материалов. Ее используют в амортизирующих устройствах для смягчения динамических воздействий.
При одноосном напряжённом состоянии удельная потенциальная энергия деформации определяется по формуле (3.13), при трёхосном напряженном состоянии энергия будет равна сумме энергий вдоль каждой из главных осей:
;
Подставив значения , и из обобщённого закона Гука и преобразовав, получим:
(3.14)
При действии шарового тензора тело меняет размеры, но форму сохраняет, при действии девиатора — сохраняет объём, но меняет форму. Поэтому энергию деформации можно разделить на энергию изменения объёма и изменения формы:
.
Энергия деформации для трёхосного напряженного состояния:
.
В случае, если , то и
Из обобщенного закона Гука:
получим:
(3.15)
По этой формуле находят удельную потенциальную энергию изменения объема.
Для нахождения энергии изменения формы нужно от общей энергии деформации отнять энергию на изменение объема.
еф = е – е0
Подставив значения е и е0 из формул (3.14) и (3.15), после преобразований получим:
, (3.16)
т. е. энергия изменения формы зависит только от τ0.
Между потенциальной энергией, напряжением и деформацией существует зависимость
Контрольные вопросы
1. Почему при определении работы, совершаемой силой, берется множитель ½?
2. Почему вводится понятие удельной потенциальной энергии деформации?
3. Какова размерность удельной потенциальной энергии?
4. Напишите формулу удельной потенциальной энергии деформации при одноосном напряженном состоянии.
5. Может ли быть потенциальная энергия отрицательной?
Бесплатная лекция: “ЛЕОНАРДО ДА ВИНЧИ” также доступна.
6. Из-за какого свойства резина используется в различных амортизаторах и виброгасителях?
7. Напишите формулу удельной потенциальной энергии деформации при трехосном напряженном состоянии.
8. Почему при определении энергии изменения объема берутся октаэдрические нормальные напряжение и деформация?
9. Напишите формулу удельной потенциальной энергии изменения объема.
10. Напишите формулу удельной потенциальной энергии изменения формы? С каким октаэдрическим напряжением она связана?
11. Существует ли зависимость между удельной потенциальной энергией и деформациями?