Говорят, что в своё время между Эдисоном и Тесла проходило соперничество – какой ток выбрать для передачи на большие расстояния – переменный или постоянный? Эдисон был за то, чтобы для передачи электричества использовать постоянный ток. Тесла утверждал, что переменный ток легче передавать и преобразовывать.
Впоследствии, как известно, победил Тесла. Сейчас повсеместно используется переменный ток, в России с частотой 50 Гц. Такой ток дешевле передавать на большие расстояния. Хотя, есть и линии электропередач постоянного тока специального применения.
А если использовать высокие напряжения (например, 110 или 10 кВ), то выходит значительная экономия на проводах, по сравнению с низким напряжением. Об этом я рассказываю на Дзене в статье про то, чем отличается напряжение 380В от 220В.
Тесла потом пошёл ещё дальше – нашёл способ, как передавать электрический ток совсем без проводов. Чем вызвал большое недовольство производителей меди. Но это уже тема совсем другой статьи.
Забегая вперед, скажу, что расчет сечения провода для постоянного тока строится на двух критериях:
- Падение напряжения (потери)
- Нагрев провода
Первый пункт для постоянного тока наиболее важен, а второй лишь вытекает из первого.
Теперь обстоятельно, по порядку, для тех, кто хочет ПОНИМАТЬ.
Ниже все расчеты для постоянного тока. Для переменного есть своя специфика, ссылки в конце.
Падение напряжения на проводе
Статья будет конкретная, с теоретическими выкладками и формулами. Кому не интересно, что откуда и почему, советую перейти сразу к Таблице 2 – Выбор сечения провода в зависимости от тока и падения напряжения.
Итак, если взять неизменной мощность, то при понижении напряжения ток должен возрастать, согласно формуле:
P = I U. (1)
При этом падение напряжения на проводе (потери в проводах) за счет сопротивления рассчитывается, исходя из закона Ома:
U = R I. (2)
Из этих двух формул видно, что при понижении питающего напряжения потери на проводе возрастают. Поэтому чем ниже питающее напряжение, тем большее сечение провода нужно использовать, чтобы передать ту же мощность.
Для постоянного тока, где используется низкое напряжение, приходится тщательно подходить к вопросу сечения и длины, поскольку именно от этих двух параметров зависит, сколько вольт пропадёт зря.
Сопротивление медного провода постоянному току
Сопротивление провода зависит от удельного сопротивления ρ, которое измеряется в Ом·мм²/м. Величина удельного сопротивления определяет сопротивление отрезка провода длиной 1 м и сечением 1 мм².
Сопротивление того же куска медного провода длиной 1 м рассчитывается по формуле:
R = (ρ l) / S, где (3)
R – сопротивление провода, Ом,
ρ – удельное сопротивление провода, Ом·мм²/м,
l – длина провода, м,
S – площадь поперечного сечения, мм².
Удельное сопротивление медного провода равно ρ = 0,0175 Ом·мм²/м, это значение будем дальше использовать при расчетах.
Не факт, что производители медного кабеля используют чистую медь “0,0175 пробы”, поэтому на практике всегда сечение берется с запасом, а от перегрузки провода используют защитные автоматы, тоже с запасом.
Из формулы (3) следует, что для отрезка медного провода сечением 1 мм² и длиной 1 м сопротивление будет 0,0175 Ом. Для длины 1 км – 17,5 Ом. Но это только теория, на практике всё хуже.
Ниже приведу табличку, рассчитанную по формуле (3), в которой приводится сопротивление медного провода для разных площадей сечения.
Таблица 0. Сопротивление медного провода в зависимости от площади сечения
Расчет падения напряжения на проводе для постоянного тока
Теперь по формуле (2) рассчитаем падение напряжения на проводе:
U = ((ρ l) / S) I , (4)
То есть, это то напряжение, которое упадёт на проводе заданного сечения и длины при определённом токе.
Вот такие табличные данные будут для длины 1 м и тока 1А:
Таблица 1.
Падение напряжения на медном проводе 1 м разного сечения и токе 1А:
Эта таблица не очень информативна, удобнее знать падение напряжения для разных токов и сечений. Напоминаю, что расчеты по выбору сечения провода для постоянного тока проводятся по формуле (4).
Таблица 2.
Падение напряжения при разном сечении провода (верхняя строка) и токе (левый столбец).
Длина = 1 метр
Какие пояснения можно сделать для этой таблицы?
1. Красным цветом я отметил те случаи, когда провод будет перегреваться, то есть ток будет выше максимально допустимого для данного сечения. Пользовался таблицей из статьи, приведенной у меня на канале: Выбор площади сечения провода.
2. Синий цвет – когда применение слишком толстого провода экономически и технически нецелесообразно и дорого. За порог взял падение менее 1 В на длине 100 м.
Эта же таблица 2, с токами до 100А:
Как пользоваться таблицей выбора сечения?
Пользоваться таблицей 2 очень просто. Например, нужно запитать некое устройство током 10А и постоянным напряжением 12В. Длина линии – 5 м. На выходе блока питания можем установить напряжение 12,5 В, следовательно, максимальное падение – 0,5В.
В наличии – провод сечением 1,5 квадрата. Что видим из таблицы? На 5 метрах при токе 10 А потеряем 0,1167 В х 5м = 0,58 В. Вроде бы подходит, учитывая, что большинство потребителей терпит отклонение +-10%.
Но. ПрОвода ведь у нас фактически два, плюс и минус, эти два провода образуют кабель, на котором и падает напряжение питания нагрузки. И так как общая длина – 10 метров, то падение будет на самом деле 0,58+0,58=1,16 В.
Иначе говоря, при таком раскладе на выходе БП 12,5 Вольт, а на входе устройства – 11,34. Этот пример актуален для питания светодиодной ленты.
Эй, коллега и комментариев, я в курсе, что это не учитывая переходное сопротивление контактов и неидеальность провода (“проба” меди не та, примеси, и т.п.)
Поэтому такой кусок кабеля скорее всего не подойдет, нужен провод сечением 2,5 квадрата. Он даст падение 0,7 В на линии 10 м, что приемлемо.
А если другого провода нет? Есть два пути, чтобы снизить потерю напряжения в проводах.
1. Надо размещать источник питания 12,5 В как можно ближе к нагрузке. Если брать пример выше, 5 метров нас устроит. Так всегда и делают, чтобы сэкономить на проводе.
2. Повышать выходное напряжение источника питания. Это чревато тем, что с уменьшением тока нагрузки напряжение на нагрузке может подняться до недопустимых пределов.
Например, в частном секторе на выходе трансформатора (подстанции) устанавливают 250-260 Вольт, в домах около подстанции лампочки горят как свечи. В смысле, недолго. А жители на окраине района жалуются, что напряжение нестабильное, и опускается до 150-160 Вольт. Потеря 100 Вольт! Умножив на ток, можно вычислить мощность, которая отапливает улицу, и кто за это платит? Мы, графа в квитанции “потери”.
Вывод по выбору сечения провода для постоянного напряжения:
Чем короче и толще провод, по которому течет постоянный ток, тем меньше падение напряжения на нём, тем лучше. То есть, потеря напряжения в проводах минимальна.
Если смотреть на таблицу 2, нужно выбирать значения сверху-справа, не переходя в “синюю” зону.
Для переменного тока ситуация та же, но вопрос не стоит столь остро – там мощность передается за счет повышения напряжения и понижения тока. См. формулу (1).
В заключение – таблица, в которой падение постоянного напряжения задано пределом 2% , а напряжение питания равно 12 В. Искомый параметр – максимальная длина провода.
Внимание! Имеется ввиду двухпроводная линия, например кабель, содержащий 2 провода. То есть, тот случай, когда через кабель длиной 1 м ток делает путь 2 м, туда-сюда. Я привёл этот вариант, т.к. он чаще всего встречается на практике. Для одного провода, чтобы узнать падение на нём напряжения, надо число внутри таблицы умножить на 2. Спасибо внимательным читателям!
Таблица 3. Максимальная длина провода для падения постоянного напряжения 2%.
Наша полторашка по этой таблице может иметь длину только 1 метр. Падать на ней будет 2%, или 0,24В. Проверяем по формуле (4) – всё сходится.
Если напряжение выше (например, 24 В постоянного тока), то и длина может быть соответственно больше (в 2 раза).
Всё вышесказанное относится не только к постоянному, но и вообще к низкому напряжению. И при выборе площади сечения в таких случаях следует руководствоваться не только нагревом провода, но и падением напряжения на нём. Например, при питании галогенных ламп через понижающий трансформатор.
Прошу прокомментировать статью, у кого как теория совпадает с практикой?
Источник статьи
Статьи в тему на Дзене
Питание светодиодной ленты. Вопрос, на который нет ответа
Расчет падения напряжения на кабеле 0,4 кВ
Площадь сечения провода. Таблицы и формулы
Сечение провода: таблицы не нужны!
——————————————————————-
Статья заинтересовала? Лайк, подписка, комментарий!
Ещё больше статей на канале СамЭлектрик.ру
и на блоге СамЭлектрик.ру.
Спасибо, что читаете меня! Мне тоже интересно то, о чем я пишу!
Пожалуйста, будьте вежливы и уважайте мнение автора и читателей!
Внимание! Автор не гарантирует, что всё написанное на этой странице – истина. За ваши действия и за вашу безопасность ответственны только вы!
Содержание
- 1 Как рассчитать падение напряжения на участке цепи?
- 2 Как рассчитать сопротивление для понижения напряжения?
- 3 Как рассчитать падение напряжения?
- 4 Как рассчитать падение напряжения после резистора?
- 5 Как зависит падение напряжения на участке цепи от величины тока?
- 6 Как рассчитать падение напряжения в проводах?
- 7 Как рассчитать сопротивление гасящего резистора?
- 8 Как рассчитать сопротивление?
- 9 Чему равно падение напряжения?
- 10 Как рассчитать потери напряжения в линии?
Как рассчитать падение напряжения на участке цепи?
Как найти падение напряжения и правильно рассчитать его потерю в кабеле
- определение номинального тока, проходящего через проводник. …
- определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
Как рассчитать сопротивление для понижения напряжения?
Чтобы , на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом),
- P(Вт) — мощность,
- R(Ом) — сопротивление цепи (в данном случае резистора),
- I(А) — ток, протекающий через резистор.
Как рассчитать падение напряжения?
Падение напряжения на участке кабеля определённой длины рассчитывается как произведение тока, протекающего по кабелю на электрическое сопротивление кабеля, т. е. ? U=I*R.
Как рассчитать падение напряжения после резистора?
Напряжение источника должно компенсировать падение напряжения в линии, принимающем реле и переходных сопротивлениях заземляющих шин: U=I∙rл+I∙rр+I∙2∙rз; U=I∙(rл+rр+2∙rз). Напряжение источника равно произведению тока на общее сопротивление цепи.
Как зависит падение напряжения на участке цепи от величины тока?
По закону Ома падение напряжения в каком-либо участке цепи U равно произведению сопротивления этого участка цепи R на силу тока в нем I, т. е. U — RI. Таким образом, чем больше сопротивление участка цепи, тем больше падение напряжения в этом участке цепи при данной силе тока.
Как рассчитать падение напряжения в проводах?
Падение напряжения на проводе
- P = I U. ( …
- U = R I. ( …
- R = (ρ l) / S, где (3)
- R – сопротивление провода, Ом,
- ρ – удельное сопротивление провода, Ом·мм²/м,
- l – длина провода, м,
- S – площадь поперечного сечения, мм².
- Таблица 0. Сопротивление медного провода в зависимости от площади сечения
Как рассчитать сопротивление гасящего резистора?
R = U / I = 2В / 0,02А = 100 Ом. В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора: P = U * I = 2В * 0,02А = 0,04 Вт.
Как рассчитать сопротивление?
Если известны значения общей силы тока и напряжения в цепи, общее сопротивление вычисляется по закону Ома: R = V/I. Например, напряжение в параллельной цепи равно 9 В, а общая сила тока равна 3 А. Общее сопротивление: RO = 9 В / 3 А = 3 Ом.
Чему равно падение напряжения?
На каждом сопротивлении r при прохождении тока I возникает напряжение U=I∙r, которое называется обычно падением напряжения на этом сопротивлении. … падений напряжения, равна напряжению источника: Uист=U1+U2. Напряжение источника питания равно сумме падений напряжения в цепи (2-й закон Кирхгофа).
Как рассчитать потери напряжения в линии?
потеря напряжения в проводе равна: ΔU=(2*I*L)/(γ*s), где L — длина линии (мм), γ — величина, обратная удельному сопротивлению, а s — сечение провода (мм2); по формуле s=(2*I*L)/(γ*ΔU) можно рассчитывать необходимое сечение провода по требуемой нагрузке или производить проверочный расчёт потери.
На чтение 9 мин. Просмотров 42.2k. Опубликовано 17.05.2020
Резистор — элемент в электрической цепи, служащий для снижения напряжения на выходе. Его название происходит от лат. «resisto» — «сопротивляюсь». Из этой статьи вы узнаете, как с помощью резисторов понижается напряжение, об их характеристиках, а также о том, как произвести расчёт резистора, гасящего ток для понижения напряжения.
Что такое падение напряжения на резисторе
Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.
На значение его величины влияют следующие факторы:
- сила тока;
- длина проводящих частей;
- напряжение;
- материал проводниковых элементов;
- нагрев (температура);
- площадь поперечного сечения.
Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга — возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.
Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.
Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.
Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.
Сравнительная таблица напряжений
Источник питания | Напряжение |
NiCd аккумулятор | 1,2 В |
Литий-железо-фосфатный аккумулятор | 3,3 В |
Батарея типа «Крона» | 9 В |
Автомобильный аккумулятор | 12 В |
Аккумулятор для грузовых автомобилей | 24 В |
В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.
В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.
Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:
R = R1*R2 / (R1+R2)
При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).
Закон Ома для электрической цепи
В основе расчёта входного и выходного напряжения цепи лежит закон Ома, знакомый ещё со школы по курсу физики. Базовая формула расчёта напряжения на участке цепи выглядит так:
Определить напряжение в цепи переменного тока можно по следующей формуле:
U=I/ Z, где
в этой формуле Z означает сопротивление (Ом), которое было получено на протяжении всей цепи.
В ряде случаев показатели не могут быть рассчитаны по этим фармулам напрямую.
- В случаях нахождения проводников или диэлектриков под воздействием высокого напряжения.
- В случаях быстро изменяющихся электромагнитных полей при прохождении токов высокой частоты. В этом случае требуется учитывать также инерцию переносящих заряд частиц.
- В условиях возникновении свойств сверхпроводимости, если цепи работают при экстремально низких температурах.
- При нагреве проводника протекающим по нему током.
- Для светодиодов. Зависимость между током и падением напряжения в этом случае нелинейная.
- Для процессов в устройствах на основе полупроводников.
В зависимости от того, как элементы включены в цепь — последовательно или параллельно — общее сопротивление рассчитывают по-разному.
Расчёт при последовательном подключении
При последовательном соединении элементы идут друг за другом, и выход предыдущего соединяется с входом последующего. Общее сопротивление в этом случае можно посчитать по формуле:
R = R1 + R2 + … +Rn, где
R1…Rn – сопротивления n-элементов (Ом).
Расчёт при параллельном подключении
При параллельном соединении оба элемента цепи включаются параллельно друг другу. Сопротивление в этом случае получают через дробь, формула для его расчёта выглядит так:
1/R = 1/R1 + 1/R2 + … + 1/Rn, где
R1 … Rn – сопротивления n-элементов (Ом).
Внимание! При разработке схем устройств обычно используются комбинированные соединения. Для расчёта сопротивления схема упрощается, и общее сопротивление сперва определяется для участков с параллельным соединением, а потом суммируется как для цепи с последовательными соединениями элементов.
Для упрощения и ускорения расчётов можно это сделать онлайн.
Единица измерения сопротивления резистора
В Международной системе единиц (СИ) сопротивление измеряется в омах – единице измерения, названной так в честь физика Георга Ома, который также открыл знаменитый закон для электрической цепи. Международное обозначение выглядит так: Ω. Физический смысл этой единицы заключается в следующем:
Сопротивление проводника равно 1 Ом при силе тока, равной 1 А, и напряжении на концах проводников, равном 1 В.
Оно может быть измерено с помощью прибора, называющегося омметр.
Для справки. В системе СГС сопротивление не имеет определённого названия, но в её расширениях используются статом (1 statΩ; рассчитываетсся как ток 1 статампер разделить на напряжение 1 статвольт) и абом (1 abΩ = 1*10-9 Ом, наноом; его расчёт — ток 1 абампер разделить на напряжение величиной 1 абвольт). Размерность этой величины в СГСЭ и гауссовой системе равна TL−1, в СГСМ — LT−1. Обратная величина — электропроводность, её единица измерения — сименс (См), статсименс или абсименс для разных систем соотвественно.
Существует большое разнообразие резисторов с широкой линейкой стандартных величин сопротивления. Рассмотрим соотношение этих номиналов и различные приставки, использующиеся для их обозначения.
Приставка кило- (килоом):
1 КОм равен 1000 Ом
Приставка мега- (мегаом):
1 МОм соответствует 1000 КОм или 1 000 000 Ом
Часто показатели резисторов наносятся непосредственно на их корпус. Это очень удобно. Рассмотрим обозначение их номиналов более подробно.
Номинал резистора — это то же самое, что его сопротивление. Раньше резисторы были достаточно крупными, поэтому все значения прописывались целиком на их корпусах с использованием обычных букв. Помимо сопротивления на резисторе могли указать ещё и класс точности или мощность рассеивания.
Сопротивление – основная характеристика резистора. О том, что оно из себя представляет и как рассчитывается, было рассказано выше, поэтому сейчас подробнее остановимся на особенностях их обозначений.
Для простановки значения, не привышающего 1КОм после цифры, обозначающей величину сопротивления, ставится R (или величина указывается совсем без буквы). На резисторах, выпускавшихся давно, можно встретить слово Ом. Позже принятая маркировка изменилась, теперь она используется в формате:
целая величина — R — дробный остаток
Примеры обозначений:
300 = 300 Ом
200 R = 200 Ом
Современные обозначения выглядят так:
4R02 = 4,02 Ом
2R2 = 2,2 Ом
Если значение меньше 1 ома, то ноль в начале обозначения опускают:
0R5 = R5 = 0,5 Ом
Если сопротивление больше тысячи ом, то применяются специальные приставки (мега-, кило-) для упрощения написания. Очень большие значения этой величины почти не встречаются, поэтому необходимость в префиксах Тера- и Гига- возникает крайне редко. Примеры обозначений:
K200 = 200 Ом
2К0 = 2 КОм = 2000 Ом
M200 = 0,2 МОм = 200 KОм = 100 000 Ом
3М0 = 3 МОм = 3 000 КОм = 3 000 000 Ом
Дополнительно можно рассмотреть следующую характеристику — удельное сопротивление.
Бывает, что возникает необходимость также рассчитать удельное сопротивление. Оно измеряется величиной Ом*м.
Для однородного проводника вычисляемое удельное сопротивление находится так:
R = (ρ*l) / S, где
l — длина отрезка проводника (м),
S — площадь сечения проводникового элемента (м2)
Подробнее о буквенной маркировке резисторов читайте здесь.
Характеристика мощности резистора
Мощность электрического тока на участке цепи можно узнать через произведение силы тока для него и напряжения на данном участке. Формула имеет следующий вид:
P= I * U (произведение силы тока и напряжения), где
P — значение мощности (Вт).
Резистор совершает работу по снижению силы тока, при этом он выделяет тепло в окружающее пространство. Но если работа по ограничению тока очень велика и тепло вырабатывается слишком быстро, то он перегреется и может сгореть, так как не будет успевать его рассеивать. Следует учитывать этот момент, подбирая мощность резистора
Важно! Мощность резистора — это очень важный параметр, который обязательно нужно учитывать при разработке электрических схем устройств Мощность резистора характеризуется максимальной величиной силы тока, которую он может выдерживать без перегрева и не выходя из строя.
Расчет мощности резистора
Определим мощность резистора на примере схемы с включённой нагрузкой. Например, мы имеем ток, равный 0,4А, а падение напряжения на резисторе составляет 5В. Значит, расчёт будет выглядеть следующим образом:
P = I * V;
0,4А * 5В = 2Вт.
Следовательно, здесь потребуется резистор, мощность которого не ниже двух ватт. Лучше, если эта характеристика будет чуть выше, чтобы резистор не перегревался и не вышел из строя.
Как понизить напряжение с помощью резистора
Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:
В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:
Uвых= (Uвх*R2)/(R1+R2), где
Uвх – напряжение на входе, В;
Uвых – напряжение на выходе, В
R1 – показатель сопр. 1-ого резистора (Ом)
R2 – показатель сопр. 2-ого элемента, (Ом)
Подбор резистора для понижения напряжения
Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.
Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:
- EasyEDA;
- Circuit Sims;
- DcAcLab;
и другие.
В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.
Что такое падение напряжения на резисторе
Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.
На значение его величины влияют следующие факторы:
- сила тока;
- длина проводящих частей;
- напряжение;
- материал проводниковых элементов;
- нагрев (температура);
- площадь поперечного сечения.
Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.
Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.
Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.
Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.
Сравнительная таблица напряжений
Источник питания | Напряжение |
NiCd аккумулятор | 1,2 В |
Литий-железо-фосфатный аккумулятор | 3,3 В |
Батарея типа «Крона» | 9 В |
Автомобильный аккумулятор | 12 В |
Аккумулятор для грузовых автомобилей | 24 В |
В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.
В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.
Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:
R = R1*R2 / (R1+R2)
При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).
Физическое определение
Резистор — это элемент, использующийся в электрической цепи и не требующий для своей работы источника питания. Предназначен он для трансформирования силы тока в напряжение и обратно. Кроме этого, он может преобразовывать электрическую энергию в тепловую и ограничивать величину тока. Но перед расчётом падения напряжения на резисторе желательно разобраться в сути этого процесса.
Резистор — весьма распространённый элемент, характеризующийся рядом параметров. Основными из них являются:
- сопротивление;
- величина рассеиваемой энергии;
- рабочее напряжение;
- мощность;
- устойчивость к влиянию окружающей среды;
- паразитная составляющая.
Пассивный электрический элемент обозначается на схеме в виде прямоугольника с двумя выводами из середины его боковых сторон. В центре фигуры может указываться мощность римскими цифрами или чёрточками. Например, вертикальная полоска обозначает выдерживаемую мощность элемента, равную 1 Вт. Перечёркнутый прямоугольник в обозначениях на схеме указывает, что такой резистор является переменным.
Резисторы могут выпускаться с постоянным и переменным сопротивлением. Разновидностью вторых являются подстроечные элементы. Отличие их от переменных заключается лишь в способе установки нужного значения.
На схемах и в технической литературе устройство обозначается латинской буквой R, рядом с которой указывается порядковый номер и его номинал в соответствии с Международной системой единиц (СИ). Например, R12 5 кОм — резистор на пять килоом, расположенный в схеме под 12 номером.
При изготовлении элемента используется резистивный слой, который может быть плёночным или объёмным. Он наносится на диэлектрическое основание, а сверху покрывается защитной плёнкой.
Значение сопротивления
Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:
R = U / I, где:
- R — сопротивление на участке цепи, Ом.
- I — сила тока, проходящая через этот участок, А.
- U — разность потенциалов на узлах части схемы, В.
Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.
Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры. Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.
Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.
Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.
Импеданс резистора
Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.
Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.
Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:
- R — активное значение, R = p*l/s.
- Xc — ёмкостная величина, Хс = 1/w*C.
- Xl — индуктивная величина, Хl = w*C.
- w- циклическая частота, w = 2πƒ.
Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.
Характеристика мощности резистора
Мощность электрического тока на участке цепи можно узнать через произведение силы тока для него и напряжения на данном участке. Формула имеет следующий вид:
P= I * U (произведение силы тока и напряжения), где
P – значение мощности (Вт).
Резистор совершает работу по снижению силы тока, при этом он выделяет тепло в окружающее пространство. Но если работа по ограничению тока очень велика и тепло вырабатывается слишком быстро, то он перегреется и может сгореть, так как не будет успевать его рассеивать. Следует учитывать этот момент, подбирая мощность резистора
Важно! Мощность резистора – это очень важный параметр, который обязательно нужно учитывать при разработке электрических схем устройств Мощность резистора характеризуется максимальной величиной силы тока, которую он может выдерживать без перегрева и не выходя из строя.
Схема делителя напряжения на резисторах
Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.
Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.
Как рассчитать сопротивление для понижения напряжения: формула падения на резисторе
Резистор является одним из самых распространённых элементов в электрической цепи. С его помощью ограничивается ток и изменяется напряжение. Конструируя схемы, часто может понадобится рассчитать сопротивление для понижения напряжения. Это актуально при построении делителей цифровых устройств или блоков питания, поэтому уметь выполнять такие вычисления должен каждый радиолюбитель.
Резистор — это элемент, использующийся в электрической цепи и не требующий для своей работы источника питания. Предназначен он для трансформирования силы тока в напряжение и обратно. Кроме этого, он может преобразовывать электрическую энергию в тепловую и ограничивать величину тока. Но перед расчётом падения напряжения на резисторе желательно разобраться в сути этого процесса.
Резистор — весьма распространённый элемент, характеризующийся рядом параметров. Основными из них являются:
- сопротивление;
- величина рассеиваемой энергии;
- рабочее напряжение;
- мощность;
- устойчивость к влиянию окружающей среды;
- паразитная составляющая.
Пассивный электрический элемент обозначается на схеме в виде прямоугольника с двумя выводами из середины его боковых сторон. В центре фигуры может указываться мощность римскими цифрами или чёрточками. Например, вертикальная полоска обозначает выдерживаемую мощность элемента, равную 1 Вт. Перечёркнутый прямоугольник в обозначениях на схеме указывает, что такой резистор является переменным.
Резисторы могут выпускаться с постоянным и переменным сопротивлением. Разновидностью вторых являются подстроечные элементы. Отличие их от переменных заключается лишь в способе установки нужного значения.
На схемах и в технической литературе устройство обозначается латинской буквой R, рядом с которой указывается порядковый номер и его номинал в соответствии с Международной системой единиц (СИ). Например, R12 5 кОм — резистор на пять килоом, расположенный в схеме под 12 номером.
При изготовлении элемента используется резистивный слой, который может быть плёночным или объёмным. Он наносится на диэлектрическое основание, а сверху покрывается защитной плёнкой.
Значение сопротивления
Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:
R = U / I, где:
- R — сопротивление на участке цепи, Ом.
- I — сила тока, проходящая через этот участок, А.
- U — разность потенциалов на узлах части схемы, В.
Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.
Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры. Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.
Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.
Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.
Импеданс резистора
Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.
Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.
Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:
- R — активное значение, R = p*l/s.
- Xc — ёмкостная величина, Хс = 1/w*C.
- Xl — индуктивная величина, Хl = w*C.
- w- циклическая частота, w = 2πƒ.
Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.
Параллельное соединение
В электрических схемах на участках цепи используется как параллельное, так и последовательное соединение. Первое представляет собой цепь, в которой каждый её элемент подключён к другому обоими контактами, но при этом между собственными его выводами нет прямой электрической связи. Т. е. существует две точки (электрические узлы), к которым присоединено несколько резисторов.
При таком включении ток, проходя через узел, начинает разделяться, и через каждый элемент потечёт разное его значение. Величина тока на каждом элементе будет прямо пропорциональна сопротивлению резистора, поэтому общая проводимость на этом участке увеличится, а её импеданс уменьшится.
Формула, с помощью которой можно рассчитать общую проводимость, выглядит так: G = 1/ Rобщ = 1/ R1 + 1/ R2 +…+ 1/ Rn, где n — обозначает порядковый номер резистора в цепи.
Преобразовав эту формулу, получится выражение вида: R общ = 1/G = (R1*R2*…* Rn) / (R1*R2 + R2*Rn +…+ R1*Rn. Проанализировав его, можно сделать вывод, что при параллельном соединении импеданс всегда будет меньше самого маленького значения отдельного резистора.
При таком соединении напряжение между узлами одновременно является общей разностью потенциалов для всего участка и на каждом отдельно взятом резисторе. Поэтому если рассчитать падение напряжения на одном приборе, то оно будет таким же на любом параллельно подключённом элементе: U общ = U 1 = U 2 =…= U n.
А вот электрический ток, проходящий через отдельный элемент, исходя из закона Ома будет равен: I Rn = U Rn / R n.
Последовательное включение
Так называется объединение в один участок цепи двух или более резисторов, в котором их соединение между собой происходит только в одной точке. Импеданс при последовательном включении определяется как сумма сопротивлений каждого отдельного элемента: Rобщ = R1+R2+…+Rn.
Следовательно, ток, протекающий через такую цепочку, будет становиться всё меньше после прохождения через последовательно включённый резистор. Чем будет больше элементов в цепи, тем труднее ему будет пройти их всех. Таким образом, его общее значение определяется как Iобщ = U / (R1+R2+…+Rn).
Поэтому можно утверждать, что в последовательном соединении существует только один путь для протекания тока. Чем будет больше количество резисторов в линии, тем меньше будет ток на этом участке.
Падение разности потенциалов при таком типе соединения на каждом элементе будет иметь своё значение. Оно определяется формулой URn = IRn*Rn, и чем больше будет импеданс элемента, тем больше энергии в нём начнёт выделяться.
Расчёт делителя напряжения
Резистивный делитель напряжения представляет элементарную схему для понижения напряжения. Состоять он может из двух или более элементов. Простейший делитель можно представить в виде двух участков цепи, которые называют плечами. Одно из них, которое располагается между положительной точкой потенциала и нулевой, — верхнее, а другое, между отрицательной и минусовой, — нижнее.
Такая схема используется для снижения напряжения как в постоянных, так и переменных цепях. Суть процесса заключается в следующем.
- На резистивную схему от источника питания подаётся напряжение U.
- Через резисторы последовательного участка цепи, образованного резисторами R1 и R2, начинает протекать ток.
- В результате на каждом из них выделяется какое-то количество энергии, т. е. возникает падение напряжения.
Сумма напряжений на всём размахе линии равняется значению разности потенциалов источника питания. В соответствии с формулой: U = I*R падение напряжения прямо пропорционально силе тока и величине сопротивления. Учитывая, что ток, протекающий через резисторы, одинаковый, справедливыми будут формулы U1 = I*R1 и U2= I*R2.
Тогда общее падение напряжение на участке будет равно U = I *(R1+ R2). Исходя из этого можно найти силу тока: I = U /(R1+ R2). Используя эти два выражения, можно получить окончательные формулы для расчёта падения напряжения на каждом элементе:
- U1 = R1*U/(R1+R2);
- U2 = R2*U/(R1+R2).
Практическое применение такого делителя очень распространено из-за несложности реализации понижения напряжения. Например, пусть источник питания выдаёт 12 В, а на нагрузку необходимо подать 6 В, при этом её сопротивление составляет 10 кОм. Для решения такой задачи рекомендуется использовать резисторы, сопротивление которых в десять раз меньше нагрузочного значения, поэтому, приняв R 1 = 1 кОм и подставив все известные значения в формулу напряжения на резисторе, получится, что 6 = R 2*12 (1000+ R 2) отсюда R 2 = 1 кОм.
Теперь, зная все величины, можно проверить верность расчёта. Падение разности потенциалов на первом элементе высчитывается как U 1 = 1000*12/(1000+1000) = 6 В, а общее напряжение — Uобщ = U 1+ U 2 = 12 В, что соответствует значению источника питания.
Следует отметить, что использование резисторов для понижения используется только при маломощных нагрузках, так как часть энергии превращается в тепло, а коэффициент полезного действия (КПД) очень низкий.
Определение силы тока на резисторе при разных типах соединения
Самым простым способом определить силу тока в резисторе можно воспользовавшись мультиметром. Измерение проводятся в разрыве цепи после резистора. На тестере выставляется максимальный диапазон величин, а щупы прибора подсоединяются к месту разъединения проводника. На дисплее мультиметра будут отображены результаты измерения силы тока в резисторе.
I = U/R, где у нас I – сила тока, U – напряжение, R – сопротивление.
В системе СИ эти величины измеряются в амперах (А), вольтах (В), омах (Ом) соответственно.
Подставляя необходимые значения в формулу можно определить сопротивление, напряжение и силу тока на резисторе или любом участке, или элементе электрической цепи.
Как понизить напряжение с помощью резистора
Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:
В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:
Uвых= (Uвх*R2)/(R1+R2), где
Uвх – напряжение на входе, В;
Uвых – напряжение на выходе, В
R1 – показатель сопр. 1-ого резистора (Ом)
R2 – показатель сопр. 2-ого элемента, (Ом)
Подбор резистора для понижения напряжения
Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.
Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:
- EasyEDA;
- Circuit Sims;
- DcAcLab;
и другие.
В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.
Какое напряжение после резистора
Есть другой способ снижения напряжения на нагрузке, но только для цепей постоянного тока. Про смотри здесь.
Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении, диодов.
Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него — от 0,5 до 1,2 Волта.
На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта. Исходя из того, на сколько вольт нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.
Чтобы понизить напряжение на 6 В необходимо приблизительно включить: 6 В: 1,0 = 6 штук кремниевых диодов, 6 В: 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.
Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?
У резистора (проволочного сопротивления) линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.
Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В. На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.
Совсем другая картина будет если вместо резистора будет цепочка диодов.
Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.
Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.
Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем ток в рассчитываемой цепи.
Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.
В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).
Для человека, который знаком с электрооборудованием на уровне простого пользователя (знает, где и как включить/выключить), многие используемые электриками термины кажутся какой-то бессмыслицей. Например, чего только стоит «падение напряжения» или «сборка схемы». Куда и что падает? Кто разобрал схему на детали? На самом же деле, физический смысл происходящих процессов, скрывающийся за большинством этих слов, вполне доступен для понимания даже со школьными знаниями физики.
Чтобы объяснить, что такое падение напряжения, необходимо вспомнить, какие вообще напряжения бывают в (имеется в виду глобальная классификация). Их всего два вида. Первый — это напряжение который подключен к рассматриваемому контуру. Оно может также называться приложенным ко всей цепи. А второй вид — это именно падение напряжения. Может быть рассмотрено как в отношении всего контура, так и любого отдельно взятого элемента.
На практике это выглядит следующим образом. Например, если взять обычную вкрутить ее в патрон, а провода от него подключить в домашнюю сетевую розетку, то приложенное к цепи (источник питания — проводники — нагрузка) напряжение составит 220 Вольт. Но стоит нам с помощью вольтметра замерять его значение на лампе, как станет очевидно, что оно немного меньше, чем 220. Так произошло потому, что возникло падение напряжения на которым обладает лампа.
Пожалуй, нет человека, который не слышал бы о законе Ома. В общем случае формулировка его выглядит так:
где R — активное сопротивление цепи или ее элемента, измеряется в Омах; U — электрическое напряжение, в Вольтах; и, наконец, I — ток в Амперах. Как видно, все три величины непосредственно связаны между собой. Поэтому, зная любые две, можно довольно просто вычислить третью. Конечно, в каждом конкретном случае придется учесть род тока (переменный или постоянный) и некоторые другие уточняющие характеристики, но основа — вышеуказанная формула.
Электрическая энергия — это, фактически, движение по проводнику отрицательно заряженных частиц (электронов). В нашем примере спираль лампы обладает высоким сопротивлением, то есть замедляет перемещающиеся электроны.
Благодаря этому возникает видимое свечение, но общая энергия потока частиц снижается. Как видно из формулы, с уменьшением тока уменьшается и напряжение. Именно поэтому результаты замеров у розетки и на лампе различаются. Эта разница и является падением напряжения.
Данная величина всегда учитывается, чтобы предотвратить слишком большое снижение на элементах в конце схемы.
Падение напряжения на резисторе зависит от его и силы протекающего по нему тока. Также косвенное влияние оказывают температура и характеристики тока. Если в рассматриваемую цепь включить амперметр, то падение можно определить умножением значения тока на сопротивление лампы.
Но далеко не всегда удается вот так просто с помощью простейшей формулы и измерительного прибора выполнить расчет падения напряжения. В случае параллельно подключенных сопротивлений нахождение величины усложняется. На приходится дополнительно учитывать реактивную составляющую.
Рассмотрим пример с двумя параллельно включенными резисторами R1 и R2. Известно сопротивление провода R3 и источника питания R0. Также дано значение ЭДС — E.
Приводим параллельные ветки к одному числу. Для этой ситуации применяется формула:
R = (R1*R2) / (R1+R2)
Определяем сопротивление всей цепи через сумму R4 = R+R3.
Рассчитываем ток:
Остается узнать значение падение напряжения на выбраном элементе:
Здесь множитель «R5» может быть любым R — от 1 до 4, в зависимости от того, какой именно элемент схемы нужно рассчитать.
Итак, резистор… Базовый элемент построения электрической цепи.
Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.
Пример с лампочкой
Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А.
Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.
Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт.
На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В.
На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.
Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.
Единица измерения сопротивления резистора
Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.
Закон Ома для электрической цепи
Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).
Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0.
V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом
Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.
Характеристика мощности резистора
Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.
Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.
При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.
Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.
Расчет мощности резистора
Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А.
Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощностьтока через резистор равна P=I*V=0,2А*5В=1Вт.
Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.
Соединение резисторов
Резисторы в цепях электрического тока имеют последовательное и параллельное соединение.
При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:
При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:
Источники
- https://math-nttt.ru/teoriya/raschet-padeniya-napryazheniya-na-rezistore.html
- https://ugstroialyans.ru/podbor-rezistora-dlya-ponizheniya-napryazheniya/
- https://strop-snab.ru/teoriya/ponizhenie-napryazheniya-rezistorom.html
- https://1000eletric.com/kak-rasschitat-padenie-napryazheniya-na-rezistore/
Как вам статья?
Павел
Бакалавр “210400 Радиотехника” – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы
A simple electrical circuit contains a source of voltage (a power supply, such as a battery, generator or the utility wires coming into your building), a wire to carry current in the form of electrons, and a source of electrical resistance. In reality, such circuits are rarely simple and include a number of branching and re-joining points.
- Voltage (V) is measured in volts (the symbol is also V); current (I) is measured in amperes or “amps” (A); and resistance (R) is measured in ohms (Ω).
Along the branches, and sometimes along the main trunk of the circuit, items such as household appliances (lamps, refrigerators, television sets) are placed, each drawing current to keep itself going. But what exactly happens to the voltage and current within a given electrical circuit set-up from a physics standpoint when each resistor is encountered and the voltage “drops”?
Electrical Circuit Basics
Ohm’s law states that current flow is voltage divided by resistance. This can apply to a circuit as a whole, an isolated set of branches or to a single resistor, as you’ll see. The most common form of this law is written:
V = IR
Circuits can be arranged in two basic ways.
Series circuit: Here, current flows entirely along one path, through a single wire. Whatever resistances current encounters along the way simply add up to give the total resistance of the circuit as a whole:
RS = R1 + R2 + … + RN (series circuit)
Parallel circuit: In this case, a primary wire branches (shown as right angles) into two or more other wires, each with its own resistor. In this case, the total resistance is given by:
1/RP = 1/R1 + 1/R2 + … + 1/RN (parallel circuit)
If you explore this equation, you find that by adding the resistances of the same magnitude, you decrease the resistance of the circuit as a whole. (Picking 1 ohm, or 1 Ω, makes the math easier.) By Ohm’s law, this actually increases the current!
If this seems counterintuitive, imagine the flow of cars on a busy highway served by a single tollbooth that backs up traffic for a mile, and then imagine the same scenario with four more tollbooths identical to the first. This will plainly increase the flow of cars despite technically adding resistance.
Voltage Drop: Series Circuit
If you want to find voltage drops across individual resistors in a series, you proceed as follows:
- Calculate the total resistance by adding the individual R values.
- Calculate the current in the circuit, which is the same across each resistor since there is only one wire in the circuit.
- Calculate the voltage drop across each resistor using Ohm’s law.
Example: A 24-V power source and three resistors are connected in series with R1= 4 Ω, R2= 2 Ω and R3 = 6 Ω. What is the voltage drop across each resistor?
First, calculate total resistance: 4 + 2 + 6 = 12 Ω
Next, calculate the current: 24 V/12 Ω = 2 A
Now, use the current to calculate the voltage drop across each resistor. Using V = IR for each, the values of R1, R2 and R3 are 8 V, 4 V and 12 V.
Voltage Drop: Parallel Circuit
Example: A 24-V power source and three resistors are connected in parallel with R1= 4 Ω, R2= 2 Ω and R3 = 6 Ω, as before. What is the voltage drop across each resistor?
In this case, the story is simpler: Regardless of the resistance value, the voltage drop across each resistor is the same, making the current the variable that differs across resistors in this case. This means that the voltage drop across each is just the total voltage of the circuit divided by the number of resistors in the circuit, or 24 V/3 = 8 V.
Resistor Voltage Drop Calculator
See the Resources for an example of an instance in which you can use an automatic tool to calculate the voltage drop in a kind of circuit arrangement called a voltage divider.