Векторное произведение в трёхмерном евклидовом пространстве
Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого численно равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой[⇨]. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору.
Таким образом, для определения векторного произведения двух векторов необходимо задать ориентацию пространства, то есть сказать, какая тройка векторов является правой, а какая — левой. При этом не является обязательным задание в рассматриваемом пространстве какой-либо системы координат. В частности, при заданной ориентации пространства результат векторного произведения не зависит от того, является ли рассматриваемая система координат правой или левой. При этом формулы выражения координат векторного произведения через координаты исходных векторов в правой и левой ортонормированной прямоугольной системе координат отличаются знаком.
Векторное произведение не обладает свойствами коммутативности и ассоциативности. Оно является антикоммутативным и, в отличие от скалярного произведения векторов, результат является опять вектором.
Полезно для «измерения» перпендикулярности векторов — модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы коллинеарны.
Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения.
История[править | править код]
Векторное произведение было введено У. Гамильтоном в 1846 году[1] одновременно со скалярным произведением в связи с кватернионами — соответственно, как векторная и скалярная часть произведения двух кватернионов, скалярная часть которых равна нулю[2].
Определение[править | править код]
Векторным произведением вектора на вектор в трёхмерном евклидовом пространстве называется вектор , удовлетворяющий следующим требованиям:
Обозначения:
Замечания[править | править код]
В качестве определения можно использовать описанное далее выражение векторного произведения в координатах в правой (или левой) прямоугольной системе координат.
Также в качестве исходного определения может быть взят набор алгебраических свойств векторного произведения.
Правые и левые тройки векторов в трёхмерном евклидовом пространстве[править | править код]
Рассмотрим упорядоченную тройку некомпланарных (линейно независимых) векторов в трёхмерном евклидовом пространстве. В ориентированном пространстве такая тройка векторов будет либо «правой», либо «левой».
Геометрическое определение[править | править код]
Совместим начала векторов в одной точке. Упорядоченная тройка некомпланарных векторов в трёхмерном пространстве называется правой, если с конца вектора кратчайший поворот от вектора к вектору виден наблюдателю против часовой стрелки. И наоборот, если кратчайший поворот виден по часовой стрелке, то тройка называется левой.
Определение с помощью руки[править | править код]
Другое определение связано с правой рукой человека, откуда и берётся название. На рисунке тройка векторов , , является правой.
Алгебраическое определение[править | править код]
Существует также аналитический способ определения правой и левой тройки векторов, который требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.
Нужно составить матрицу, первой строкой которой будут координаты вектора , второй — вектора , третьей — вектора . Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:
- Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
- Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
- Если определитель равен нулю, то векторы компланарны (линейно зависимы).
Замечания[править | править код]
Определения «правой» и «левой» тройки векторов зависят от ориентации пространства, но не требуют задания в рассматриваемом пространстве какой-либо системы координат, как и не требует этого определение самого векторного произведения. При этом формулы выражения координат векторного произведения через координаты исходных векторов будут отличаться знаком в правой и левой прямоугольной системе координат.
Все правые между собой (и левые между собой) тройки векторов называются одинаково ориентированными.
При заданной ориентации пространства система координат называется правой (левой), если тройка из векторов с координатами , , является правой (левой).
Геометрическое определение и определение с помощью руки сами задают ориентацию пространства. Алгебраическое определение задаёт способ разбить тройки некомпланарных векторов на два класса одинаково ориентированных векторов, но оно не задаёт ориентацию пространства, а использует уже заданную — ту, на основании которой данная система координат считается правой или левой. При этом, если ориентация системы координат неизвестна, можно сравнивать знак определителя со знаком определителя другой тройки некомпланарных векторов, ориентация которой известна — если знаки совпадают, то тройки одинаково ориентированы, если знаки противоположны — тройки ориентированы противоположно.
Свойства[править | править код]
Геометрические свойства векторного произведения[править | править код]
Рисунок 1: Площадь параллелограмма равна модулю векторного произведения
Рисунок 2: Объём параллелепипеда при использовании векторного и скалярного произведения векторов; пунктирные линии показывают проекции вектора c на
a × b и вектора
b × c на
a, первым шагом является нахождение векторного произведения (модуль которого равен площади одной из сторон), а вторым — нахождение скалярного произведения (которое равно объёму параллелепипеда)
- При использовании векторного и скалярного произведений можно высчитать объём параллелепипеда, построенного на приведённых к общему началу векторах a, b и c (см. Рисунок 2). Такое произведение трех векторов называется смешанным.
На рисунке показано, что этот объём может быть найден двумя способами: геометрический результат сохраняется даже при замене «скалярного» и «векторного» произведений местами:
Величина векторного произведения зависит от синуса угла между изначальными векторами, поэтому векторное произведение может восприниматься как степень «перпендикулярности» векторов так же, как и скалярное произведение может рассматриваться как степень «параллельности». Векторное произведение двух единичных векторов равно 1 (единичному вектору), если изначальные векторы перпендикулярны, и равно 0 (нулевому вектору), если векторы параллельны либо антипараллельны.
Алгебраические свойства векторного произведения[править | править код]
Далее и обозначают соответственно векторное и скалярное произведение векторов и .
Представление | Описание |
---|---|
Антикоммутативность. | |
Ассоциативность умножения на скаляр. | |
Дистрибутивность по сложению. | |
Тождество Якоби. | |
Формула «БАЦ минус ЦАБ», тождество Лагранжа. | |
Частный случай мультипликативности нормы кватернионов. | |
Значение этого выражения называют смешанным произведением векторов , , . |
Выражение в координатах[править | править код]
В правом ортонормированном базисе[править | править код]
Если два вектора и представлены в правом ортонормированном базисе координатами
то их векторное произведение имеет координаты
Для запоминания этой формулы удобно использовать мнемонический определитель:
где , , , или
где — символ Леви-Чивиты.
В левом ортонормированном базисе[править | править код]
Если базис левый ортонормированный, то векторное произведение в координатах имеет вид
Для запоминания, аналогично:
или
Формулы для левой системы координат можно получить из формул правой системы координат, записав те же векторы и во вспомогательной правой системе координат ():
В произвольной аффинной системе координат[править | править код]
Векторное произведение в произвольной аффинной системе координат имеет координаты
Вариации и обобщения[править | править код]
Кватернионы[править | править код]
Координаты векторного произведения в правом ортонормированном базисе можно также записать в кватернионной форме, поэтому буквы , , — стандартные обозначения для ортов в : они рассматриваются как воображаемые кватернионы.
Заметим, что соотношения через векторное произведение между , и соответствуют правилам умножения для кватернионов , и . Если представить вектор как кватернион , то векторное произведение двух векторов получается взятием векторной части от произведения соответствующих им кватернионов. Скалярное произведение этих векторов противоположно скалярной части произведения этих кватернионов.
Преобразование к матричной форме[править | править код]
Векторное произведение двух векторов в координатах в правом ортонормированном базисе можно записать как произведение кососимметрической матрицы и вектора:
где
Пусть равен векторному произведению:
тогда
Такая форма записи позволяет обобщить векторное произведение на высшие размерности, представляя псевдовекторы (угловая скорость, индукция и т. п.) как такие кососимметричные матрицы. Ясно, что такие физические величины будут иметь независимых компонент в -мерном пространстве. В трёхмерном пространстве получаются три независимые компоненты, поэтому такие величины можно представлять как векторы этого пространства.
С такой формой записи также зачастую проще работать (например, в эпиполярной геометрии[en]).
Из общих свойств векторного произведения следует, что
- и
а так как кососимметрична, то
В такой форме записи легко доказывается тождество Лагранжа (правило «БАЦ минус ЦАБ»).
Распространение на матрицы[править | править код]
В трёхмерном случае можно определить в координатах в произвольном базисе векторное произведение матриц и произведение матрицы на вектор. Это делает очевидным указанный выше изоморфизм и позволяет упростить многие выкладки. Представим матрицу как столбец векторов, тогда
Умножение матрицы на вектор слева определяется аналогично, если представить как строку векторов. Транспонирование матрицы, соответственно, переводит строку векторов в столбец векторов, и наоборот.
Легко обобщить многие соотношения для векторов на соотношения для векторов и матриц, например ( — матрица, , — векторы):
После этого можно изменить форму записи для векторного произведения:
— единичная матрица. Отсюда очевидны существование и вид матрицы, соответствующей векторному умножению на вектор слева. Аналогично можно получить выражение для матрицы умножения на вектор справа. Распространяя операции над векторами на матрицы покомпонентно, представляя их как «векторы из векторов», стандартные соотношения для векторов легко обобщаются на матрицы. Например, теорема Стокса в примет вид:
где ротор матрицы вычисляется как векторное произведение матрицы на оператор Гамильтона слева (базис считается правым ортонормированным). В этих обозначениях очень легко доказать, например, следующие формы теоремы Стокса:
Размерности, не равные трём[править | править код]
Пусть — размерность пространства.
Векторное произведение, обладающее всеми свойствами обычного трёхмерного векторного произведения, то есть бинарное билинейное антисимметричное невырожденное отображение , можно ввести только для размерностей 3 и 7.
Однако есть простое обобщение на остальные натуральные размерности, начиная с 3, а если нужно — и на размерность 2 (последнее, правда, сравнительно специфическим образом). Тогда это обобщение, в отличие от невозможного, описанного чуть выше, вводится не для пары векторов, а лишь для набора векторов-сомножителей. Вполне аналогично смешанному произведению, естественно обобщаемому в -мерном пространстве на операцию с сомножителями. Используя символ Леви-Чивиты с индексами, можно явно записать такое -валентное векторное произведение как
Такое обобщение дает гиперплощадь размерности .
Если нужно ввести операцию именно для двух сомножителей, имеющую геометрический смысл, предельно близкий к смыслу векторного произведения (то есть представляющую ориентированную площадь), то результат уже не будет вектором, так как при не найдется единственной, однозначно определённой нормали к двумерной плоскости, натянутой на множители. Можно ввести бивектор, компоненты которого равны проекциям ориентированной площади параллелограмма, натянутого на пару векторов, на координатные плоскости:
- .
Эта конструкция называется внешним произведением.
Для двумерного случая операция
- .
называется псевдоскалярным произведением, так как получающееся пространство одномерно и результат есть псевдоскаляр. (Двухиндексное внешнее произведение, описанное выше, можно ввести и для двумерного пространства, однако оно, очевидно, достаточно тривиально связано с псевдоскалярным произведением, а именно внешнее произведение в этом случае представляется матрицей, на диагонали которой нули, а оставшиеся два недиагональных элемента равны псевдоскалярному произведению и минус псевдоскалярному произведению.)
Алгебра Ли векторов[править | править код]
Векторное произведение вводит на структуру алгебры Ли (поскольку оно удовлетворяет обеим аксиомам — антисимметричности и тождеству Якоби). Эта структура соответствует отождествлению с касательной алгеброй Ли к группе Ли ортогональных линейных преобразований трёхмерного пространства.
См. также[править | править код]
Произведения векторов
Другое
- Ротор
- Дивергенция
Примечания[править | править код]
- ↑ Crowe M. J. A History of Vector Analysis – The Evolution of the Idea of a Vectorial System. — Courier Dover Publications, 1994. — С. 32. — 270 с. — ISBN 0486679101.
- ↑ Hamilton W. R. On Quaternions; or on a New System of Imaginaries in Algebra // Philosophical Magazine. 3rd Series. — London, 1846. — Т. 29. — С. 30.
Литература[править | править код]
-
- Кочин Н.Е. Векторное исчисление и начала тензорного исчисления. АН СССР: Изд-во «НАУКА», М. 1965.
Ссылки[править | править код]
- Многомерное векторное произведение Архивная копия от 5 сентября 2015 на Wayback Machine
- Векторное произведение и его свойства. Примеры решения задач Архивная копия от 23 февраля 2011 на Wayback Machine
- В. И. Гервидс. Правое и левое вращение. НИЯУ МИФИ (10 марта 2011). — Физические демонстрации. Дата обращения: 3 мая 2011. Архивировано 23 декабря 2015 года.
Три некомпланарных вектора $overline{a}$,
$overline{b}$ и $overline{c}$, приведенных к общему началу, образуют так
называемую связку трех векторов (или тройку векторов).
Тройка векторов называется упорядоченной, если четко сказано, какой вектор в ней идет первым, и так далее.
Тройка векторов $overline{a}$, $overline{b}$ и $overline{c}$ называется левой, если
поворот от вектора $overline{a}$ к вектору $overline{b}$, видимый с конца третьего вектора $overline{c}$,
осуществляется по ходу часовой стрелки (рис. 1).
Тройка векторов $overline{a}$, $overline{b}$ и $overline{c}$ называется правой, если
поворот от вектора $overline{a}$ к вектору $overline{b}$, видимый с конца третьего вектора $overline{c}$,
осуществляется против хода часовой стрелки (рис. 2).
Щебетун Виктор
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Понятие тройки векторов
Из курса физики известно, что скалярные величины или скаляры – это величины, вполне определяемые одним численным значением (например, масса, температура, объём, расстояние и пр.). То есть любое вещественное число является скаляром.
Векторные величины или векторы – это величины, которые определяют и численным значением, и направлением. Например, скорость.
Линейно зависимыми называются такие векторы $a,b,c,…$, что если подобрать такие числа $x,y,z,…$, из которых по крайней мере одно не равно $0$, то будет иметь место тождество $xa+yb+zc+…=0$. Если три вектора $a,b,c$ не равны $0$ и линейно зависимы, то они компланарны.
Определение 1
Связка трёх векторов – это приведённая к общему началу тройка некомпланарных векторов $a,b,c$.
Определение правой и левой тройки векторов
Приведём чертёж правой связки.
Рисунок 1. Чертёж правой связки. Автор24 — интернет-биржа студенческих работ
Рассмотрим кратчайшее вращение $vec{OA}=a$ к $vec{OB}=b$ на плоскости $OAB$ со стороны направления $vec{OC}=c$. Мы увидим, что вращение идёт против часовой стрелки.
Если большой палец и указательный пальцы левой руки вытянуть, а средний согнуть под углом ладони, то три пальца в порядке большой-указательный-средний составят правую связку. Те же пальцы на левой руке составят левую связку.
На чертеже левой связки то же вращение идёт по часовой стрелке.
Рисунок 2. Чертеж левой связки. Автор24 — интернет-биржа студенческих работ
«Определение правой и левой тройки векторов» 👇
Способы преобразования правой связки в левую и обратно:
- перестановка местами двух любых векторов;
- изменение знака при одном из векторов;
- замена какого-нибудь вектора его зеркальным отображением относительно плоскости двух других векторов.
Правая и левая системы координат
Напомним, что координатная ось – это ось, на которой выбрано начало и единица масштаба.
Ортогональная или прямоугольная система координат в пространстве – это система из трёх взаимно перпендикулярных координатных осей $Ox, Oy$ и $Oz$ с общим началом $O$. Ортами в ортогональной системе координат называют единичные векторы (то есть векторы равные $1$).
Рассмотрим чертёж ортогональной системы координат в пространстве. Отметим на ней орты $i, j, k$.
Рисунок 3. Чертёж ортогональной системы координат в пространстве. Автор24 — интернет-биржа студенческих работ
$i, j, k$ образуют правую связку. Система координат в данном случае называется правой.
Система координат называется левой, когда орты образуют левую связку. То есть:
Рисунок 4. Левая система координат. Автор24 — интернет-биржа студенческих работ
Подведём итог. В статье мы дали определение связки тройки векторов, описали правую и левую тройку векторов, а также правую и левую систему координат, как вытекающую тему из определения правой и левой тройки векторов. Стоит сказать, что на практике определение правой и левой тройки векторов со временем происходит интуитивно или “на автомате”. Самое важное, это один раз понять, как это делается. Также стоит заметить, что чаще в задачах используется всё-таки правая тройка векторов и соответственно правая система координат.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Тройка
векторов
,иназывается правой, еслинаправлен так, что из его конца кратчайший
поворот откпроисходит против часовой стрелки.
Векторным
произведением вектора
на векторназывается третий векторкоторый обладает следующими свойствами:
-
Его
длина равна
-
Вектор
перпендикулярен к плоскости, в которой
лежат вектораи -
Вектор
направлен так, что поворот от векторак векторуосуществляется против часовой стрелки,
если смотреть из конца вектора(тройка векторов,и– правая).
Основные
свойства векторного произведения:
1)
Векторное произведение
равно
нулю, если векторыиколлинеарны
или какой-либо из перемножаемых векторов
является нулевым.
2)
При перестановке местами векторов
сомножителей векторное произведение
меняет знак на противоположный
Геометрический
смысл векторного произведения: модуль
векторного произведения векторов
численно равен площади параллелограмма,
построенного на этих векторах как на
сторонах.
11. Смешанное произведение 3-х векторов, его свойства. Геометрический смысл. Вычисление в координатах. Необходимое и достаточное условие компланарности 3-х векторов.
Смешанным произведением векторов
,,называется число, равное (*)*= (,,)
Модуль смешанного произведения векторов
,,равен объёму параллелепипеда, построенного
на векторах,,.
Свойства:
1)
(*)*=*(*)
2)
(,,)
= (,,)
= (,)
= – (,,)
= … циклически меняем
3)
,,– компланарны (,,)
= 0
4)
,,– правая (,,)
> 0
,
,– левая (,,)
< 0
5)
(1+2,,)
= (1,,)
+ (2,,) (α*,,)
= α(,,)
Вычисление
в координатах:
Необходимое
и достаточное условие компланарности
3-х векторов :
Аналитическая
геометрия
12.
Виды уравнений прямой на плоскости.
Расстояние от точки до прямой.
Виды:
1)
Общее
уравнение прямой: Ax
+ By
+ C
= 0
2)
Уравнение прямой в отрезках:
3)
Уравнение прямой с угловым коэффициентом:
y
= kx
+ b
4)
Каноническое уравнение прямой на
плоскости:
5)
Параметрические уравнения прямой на
плоскости:
6)
Нормальное уравнение прямой:
p– длина перпендикуляра,
опущенного из начала координат на
прямую, β- угол наклона этого перпендикуляра к
осиO.
Расстояние
точки A(x1,
y1)
до прямой Ax
+ By
+ C
= 0 есть длина перпендикуляра, опущенного
из этой точки на прямую. Она определяется
по формуле:
13.
Взаимное расположение двух прямых на
плоскости, угол между прямыми.
Если
прямые
изаданы
общими уравнениямии,
тогда
угол между ними находится по формуле:
–условие параллельности
прямых
и;
–условие перпендикулярности
прямых
и.
– прямые совпадают.
14.
Виды уравнений плоскости. Расстояние
от точки до плоскости.
Виды
уравнений плоскости:
1)
Общее:
Ax + By + Cz + D = 0
2)
В отрезках:
3)
Нормальное:
Пусть плоскость
задана
уравнениемAx
+ By
+ Cz
+ D
= 0 и дана
точка
.
Тогда расстояниеp
от точки Mo
до плоскости
определяется
по формуле
15.
Взаимное расположение двух плоскостей,
угол между плоскостями.
Взаимное расположение двух плоскостей
характеризуется двумя возможностями^
1) Две плоскости не имеют общих точек, и
, в таком случае, они называются
параллельными
2) Две плоскости имеют хотя бы одну общую
точку, и в таком случае они называются
пересекающимися.
Пусть
наши плоскости изаданы
уравнениями:
:
:
Косинус
угла между плоскостями находится по такой
формуле:
1)
Плоскости параллельны:
2)
Плоскости совпадают, если выполняются
следующие условия:
a2*x0
+ b2*y0
+ c2*z0
+ d2
= 0
существует
точка M0(x0,y0,z0),
принадлежащая плоскости П1
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Как определить правая или левая тройка (векторы)?
В учебнике приводятся примеры параллелепипедов, построенных как написано на левой и правой тройке.
Но не могу понять почему тройки разные, если в обоих случаях направление против часовой стрелки.
Подскажите пожалуйста, почему на втором рисунке левая тройка?
-
Вопрос заданболее трёх лет назад
-
2530 просмотров
Пригласить эксперта
На левом рисунке a->b->c по часовой, на правом a->b->c – против часовой
Вопрос старый, но если у кого больше развито пространственно-образное мышление, то есть одна мнемоника. Нам в институте рассказывали, что можно определять по руке. Делаешь “базис” из пальцев: ладонь на себя, первый вектор – большой палец вверх, второй вектор – указательный палец в сторону, третий вектор – средний палец на себя. Дальше смотрим, какая рука больше подходит. Если получится “подставить” правую руку, не меняя продолжения пальцев (это важно), то тройка правая. Правило “против часовой” тоже подходит.
-
Показать ещё
Загружается…
24 мая 2023, в 22:26
9000 руб./за проект
24 мая 2023, в 22:20
1200 руб./за проект
24 мая 2023, в 21:54
100 руб./за проект