Как найти предел функции примеры решения lim

Как решать пределы для чайников?

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что “скучная теория” должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ lim_{x to 0} frac{1}{x} $; б)$ lim_{x to infty} frac{1}{x} $
Решение

а) $$ lim limits_{x to 0} frac{1}{x} = infty $$

б)$$ lim_{x to infty} frac{1}{x} = 0 $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ text{a)} lim limits_{x to 0} frac{1}{x} = infty text{ б)}lim limits_{x to infty} frac{1}{x} = 0 $$
Пример 2
$$ lim limits_{x to 1} frac{x^2 + 2x + 1}{x + 1} $$
Решение

Внимание “чайникам” 🙂 Чтобы вычислить предел любого типа и вида нужно подставить значение x, указанное под пределом, в функцию, стоящую под знаком предела. Давайте попробуем это сделать:

$$ lim limits_{x to 1} frac{x^2+2 cdot x+1}{x+1}=frac{1^2+2 cdot 1+1}{1+1} = $$

$$ = frac{4}{2}=2 $$

Как видим в итоге у нас вычислился предел, результатом стала двойка. Хорошо, когда так получается, но бывает так, что результатом становятся неопределенности. Попробуем разобраться с ними – это не так страшно как кажется 🙂

Ответ
$$ lim limits_{x to 1} frac{x^2 + 2x + 1}{x + 1} = 2 $$

Что делать с неопределенностью вида: $ bigg [frac{0}{0} bigg ] $

Пример 3
Решить $ lim limits_{x to -1} frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела. 

$$ lim limits_{x to -1} frac{x^2-1}{x+1} = frac{(-1)^2-1}{-1+1}=frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её 🙂

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ lim limits_{x to -1}frac{x^2-1}{x+1} = lim limits_{x to -1}frac{(x-1)(x+1)}{x+1} = $$

$$ = lim limits_{x to -1}(x-1)=-1-1=-2 $$

Ответ
$$ lim limits_{x to -1} frac{x^2-1}{x+1} = -2 $$
Пример 4
$$ lim limits_{x to 2}frac{x^2-4}{x^2-4x+4} $$
Решение

$$ lim limits_{x to 2}frac{x^2-4}{x^2-4x+4} = frac{0}{0} = $$

$$ = lim limits_{x to 2}frac{(x-2)(x+2)}{(x-2)^2} = $$

$$ = lim limits_{x to 2}frac{x+2}{x-2} = frac{2+2}{2-2} = frac{4}{0} = infty $$

Бесконечность получилась в результате – это следует из примера 1. Когда число делится на 0 под знаком предела, то получается бесконечность.

Ответ
$$ lim limits_{x to 2}frac{x^2-4}{x^2-4x+4} = infty $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ bigg [frac{infty}{infty} bigg ] $

Пример 5
Вычислить $ lim limits_{x to infty} frac{x^2-1}{x+1} $
Решение

$ lim limits_{x to infty} frac{x^2-1}{x+1} = frac{infty}{infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное – возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем…

$$ lim limits_{x to infty} frac{x^2-1}{x+1} =lim limits_{x to infty} frac{x^2(1-frac{1}{x^2})}{x(1+frac{1}{x})} = $$

$$ = lim limits_{x to infty} frac{x(1-frac{1}{x^2})}{(1+frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = frac{infty(1-frac{1}{infty})}{(1+frac{1}{infty})} = frac{infty cdot 1}{1+0} = frac{infty}{1} = infty $$

Ответ
$$ lim limits_{x to infty} frac{x^2-1}{x+1} = infty $$
Пример 6
$$ lim limits_{x to infty}frac{x^2-4}{x^2-4x+4} $$
Решение

$$ lim limits_{x to infty}frac{x^2-4}{x^2-4x+4} = frac{infty}{infty} $$

Чтобы устранить такую неопределенность нужно вынести за скобки икс в числителе и в знаменателе, далее их сократить. В полученное выражение подставить икс равное бесконечности. Пробуем…

$$ lim limits_{x to infty}frac{x^2-4}{x^2-4x+4} = frac{infty}{infty} = $$

$$ lim limits_{x to infty}frac{x^2(1-frac{4}{x^2})}{x^2(1-frac{4}{x}+frac{4}{x^2})} = $$

$$ lim limits_{x to infty}frac{1-frac{4}{x^2}}{1-frac{4}{x}+frac{4}{x^2}} = frac{1}{1} = 1 $$

Ответ
$$ lim limits_{x to infty}frac{x^2-4}{x^2-4x+4} = 1 $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: “ноль делить на ноль” или “бесконечность делить на бесконечность” и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность “ноль делить на ноль” нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность “бесконечность делить на бесконечность”, тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Простое объяснение принципов решения пределов 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения пределов

Пределом называется значение функции, вычисленное в точке к которой стремиться независимый аргумент.

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать работу

Примеры решений пределов

Задача

Найти предел:

    [lim_{x to 3}(x^{2} - 7x + 4).]

Решение

Заменим в выражении x^{2} - 7x + 4 аргумент x его предельным значением:

    [lim_{x to 3}(x^{2} - 7x + 4) = 3^{2} - tcdot 3 + 4 = -8]

Ответ

    [lim_{x to 3}(x^{2} - 7x + 4) = -8]

Задача

Найти предел:

    [lim_{x to 2}(2x^{3} - 7x^{2} + 4x + 2)]

Решение

Заменим в выражении 2x^{3} - 7x^{2} + 4x + 2 аргумент x его предельным значением:

    [lim_{x to 2}(2x^{3} - 7x^{2} + 4x + 2) = 2cdot 2^{3} - 7cdot 2^{2} + 4cdot 2 + 2 = -2]

Ответ

    [lim_{x to 2}(2x^{3} - 7x^{2} + 4x + 2) = -2]

Задача

Найти предел:

    [lim_{x to 4}(frac{1}{2}x^{3} - x + 2)]

Решение

Заменим в выражении frac{1}{2}x^{3} - x + 2 аргумент x его предельным значением:

    [lim_{x to 4}(frac{1}{2}x^{3} - x + 2) = frac{1}{2}cdot 4^{3} - 4 + 2 = 30]

Ответ

    [lim_{x to 4}(frac{1}{2}x^{3} - x + 2) = 30]

Задача

Найти предел:

    [lim_{x to 3}frac{x^{2} + x + 2}{x^{2} + 2x + 8}]

Решение

Проверяем, не обращается ли в нуль знаменатель дробно-рациональной функции при предельном значении аргумента. Для этого подставим значение x = 3 в x^{2} + 2x + 8

3^{2} + 2cdot 3 + 8 = 23 neq 0

Вычисляем передел:

    [lim_{x to 3}frac{x^{2} + x + 2}{x^{2} + 2x + 8} = frac{3^{2} + 3 + 2}{3^{2} + 2cdot 3 + 8} = frac{14}{23}]

Ответ

    [lim_{x to 3}frac{x^{2} + x + 2}{x^{2} + 2x + 8} = frac{14}{23}]

Задача

Найти предел:

    [lim_{x to 1}frac{x^{2} - 3x + 2}{x^{3} + x + 4}]

Решение

Проверяем, не обращается ли в нуль знаменатель дробно-рациональной функции при предельном значении аргумента. Для этого подставим значение x = 1 в x^{3} + x + 4

1^{3} + 1 + 4 = 6 neq 0

Вычисляем предел:

    [lim_{x to 1}frac{x^{2} - 3x + 2}{x^{3} + x + 4} = frac{1^{2} -3cdot 1 + 2}{1^{3} + 1 + 4} = frac{0}{6} = 0]

Ответ

    [lim_{x to 1}frac{x^{2} - 3x + 2}{x^{3} + x + 4} = 0]

Задача

Найти предел:

    [lim_{x to -1}frac{x^{2} - x + 1}{2x^{3} - x^{2} + x + 2}]

Решение

Проверяем, не обращается ли в нуль знаменатель дробно-рациональной функции при предельном значении аргумента. Для этого подставим значение x = -1 в 2x^{3} - x^{2} + x + 2

2cdot(-1)^{3} - (-1)^{2} - 1 + 2 = -2 neq 0

Вычисляем предел:

    [lim_{x to -1}frac{x^{2} - x + 1}{2x^{3} - x^{2} + x + 2} = frac{(-1)^{2} - (-1) + 1}{2cdot(-1)^{3} - (-1)^{2} - 1 + 2} = frac{3}{-2} = -frac{3}{2}]

Ответ

    [lim_{x to -1}frac{x^{2} - x + 1}{2x^{3} - x^{2} + x + 2} = -frac{3}{2}]

Задача

Найти предел:

    [lim_{x to 2}frac{x^{3} - 8}{x - 2}]

Решение

В данном примере знаменатель x - 2 обращается в нуль при предельном значении аргумента x = 2

Преобразуем выражение

    [frac{x^{3} - 8}{x - 2}]

    [lim_{x to 2}frac{x^{3} - 8}{x - 2} = lim_{x to 2}frac{(x - 2)(x^{2} + 2x + 4)}{x - 2} =]

    [lim_{x to 2}(x^{2} + 2x + 4) = 2^{2} + 2cdot 2 + 4 = 12]

Ответ

    [lim_{x to 2}frac{x^{3} - 8}{x - 2} = 12]

Задача

Найти предел:

    [lim_{x to -1}frac{1 + sqrt[7]{x}}{1 + sqrt[5]{x}}]

Решение

При x = -1 числитель и знаменатель дроби обращаются в нуль. Для решения задачи необходимо сделать подстановку x = y^{35}. Число 35 является наименьшим общим кратным показателей корней.

x = y^{35}, sqrt[7]{x} = y^{5}, sqrt[5]{x} = y^{7}

    [frac{1 + sqrt[7]{x}}{1 + sqrt[5]{x}} = frac{1 + y^{5}}{1 + y^{7}}, y rightarrow -1 при x rightarrow -1]

    [lim_{x to -1}frac{1 + sqrt[7]{x}}{1 + sqrt[5]{x}} = lim_{y to -1}frac{1 + y^{5}}{1 + y^{7}}]

Разделим числитель и знаменатель дроби

    [frac{1 + y^{5}}{1 + y^{7}}]

на 1 + y

В итоге получим:

    [lim_{y to -1}frac{1 + y^{5}}{1 + y^{7}} = frac{5}{7}]

Ответ

    [lim_{x to -1}frac{1 + sqrt[7]{x}}{1 + sqrt[5]{x}} = frac{5}{7}]

Задача

Найти предел:

    [lim_{x to 3}frac{2x - 5}{x^{2} - 7x + 12}]

Решение

При x = 3 знаменатель дроби x^{2} - 7x + 12 обращается в нуль, поэтому вычислить непосредственно предел нельзя.

Рассмотрим обратную дробь

    [frac{x^{2} - 7x + 12}{2x - 5}]

и её предел при x rightarrow 3

    [lim_{x to 3}frac{x^{2} - 7x + 12}{2x - 5} = frac{3^{2} - 7cdot 3 + 12}{2cdot 3 - 5} = frac{0}{1} = 0]

Т.к.

    [lim_{x to 3}frac{x^{2} - 7x + 12}{2x - 5} = 0]

, то при x rightarrow 3 функция frac{x^{2} - 7x + 12}{2x - 5} является бесконечно малой, поэтому frac{2x - 5}{x^{2} - 7x + 12} при x rightarrow 3 является бесконечно большой, а

    [lim_{x to 3}frac{2x - 5}{x^{2} - 7x + 12} = infty]

Ответ

    [lim_{x to 3}frac{2x - 5}{x^{2} - 7x + 12} = infty]

Задача

Найти предел:

    [lim_{x to infty}frac{2x^{3} + x^{2} + 5}{3x^{3} + x - 1}]

Решение

Разделим числитель и знаменатель дроби на x^{3} – высшую степень x, встречающуюся в дроби

    [frac{2x^{3} + x^{2} + 5}{3x^{3} + x - 1}]

    [lim_{x to infty}frac{2x^{3} + x^{2} + 5}{3x^{3} + x - 1} = lim_{x to infty}frac{2 + frac{1}{x} + frac{5}{x^{3}}}{3 + frac{1}{x^{2}} - frac{1}{x^{3}}} = frac{lim_{x to infty}(2 + frac{1}{x} + frac{5}{x^{3}})}{lim_{x to infty}(3 + frac{1}{x^{2}} - frac{1}{x^{3}})}]

При x rightarrow infty frac{1}{x} rightarrow 0, поэтому

    [frac{lim_{x to infty}(2 + frac{1}{x} + frac{5}{x^{3}})}{lim_{x to infty}(3 + frac{1}{x^{2}} - frac{1}{x^{3}})} = frac{lim_{x to infty}2 + lim_{x to infty}frac{1}{x} + lim_{x to infty}frac{5}{x^{3}}}{lim_{x to infty}3 + lim_{x to infty}frac{1}{x^{2}} - lim_{x to infty}frac{1}{x^{3}}} = frac{2}{3}]

Ответ

    [lim_{x to infty}frac{2x^{3} + x^{2} + 5}{3x^{3} + x - 1} = frac{2}{3}]

Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Понятие предела в математике

Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции , так как именно с ними чаще всего сталкиваются студенты. Но сначала – самое общее определение предела:

Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.

Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.

Звучит громоздко, но записывается очень просто:

понятие предела для чайников

Lim – от английского limit – предел.

Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

Приведем конкретный пример. Задача – найти предел.

вычислить пределы для чайников

Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

математический анализ пределы для чайников

Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.

В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

пределы с нуля для чайников

Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!

Решение пределов требует контроля

 

Неопределенности в пределах

Неопределенность вида бесконечность/бесконечность

Пусть есть предел:

пределы с подробным решением для чайников пошагово

Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

пределы объяснение

Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

задания по математике пределы

Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.

Пределы

 

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Еще один вид неопределенностей: 0/0

В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:

предел функции в точке для чайников

Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

как решать пределы для чайников с корнями

Сократим и получим:

объяснение пределов для чайников

Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

Математика. Таблица пределов

 

Правило Лопиталя в пределах

Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

Наглядно правило Лопиталя выглядит так:

пределы математика для чайников

Важный момент: предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

А теперь – реальный пример:

Правило Лопиталя

Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:

Правило Лопиталя для чайников

Вуаля, неопределенность устранена быстро и элегантно.

Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос “как решать пределы в высшей математике”. Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.

Если в процессе трансформации, некоторая величина неограниченно приближается к числу a, то это число является пределом (lim) данной величины. Число а всегда находится в интервале определения функции.

Предел функции:
lim⁡x→af(x)=Alim limits _{x rightarrow a} {f(x)} = A

При бесконечном росте к функции 1/x1/x предел стремится к нулю:

lim⁡x→∞1x=0lim limits _{xrightarrow infty}{frac{1}{x}=0}

Правила решения пределов

  • предел суммы двух функций равен сумме пределов этих функций;
  • предел произведения двух функций равен произведению пределов этих функций;
  • предел частного двух функций равен частному пределов этих функций;
  • предел числа в степени (корня из числа) равен степени (корню) предела этого числа;
  • постоянный множитель (число) выносится за знак предела;
  • предел числа равен этому числу

Примеры задач в практическом применении пределов функции

Пример 1

Предел приближения к числу

lim⁡x→15×3+123x−8×4+x2=lim⁡x→15⋅13+123⋅1−814+12=5+123−84+1=15lim limits _{x rightarrow 1} {frac{5x^3+frac{12}{3x}-8^x}{4+x^2}}=lim limits _{x rightarrow 1} {frac{5{cdot1}^3+frac{12}{3cdot1}-8^1}{4+1^2}}=frac{5+ frac{12}{3}-8}{4+1}=frac{1}{5}

Однако не всегда предел приближения к числу разрешается. В некоторых случаях возможна неопределенность.

lim⁡x→1×2−2x+1x−1=lim⁡x→112−2⋅1+11−1=<00>lim limits _{x rightarrow 1}{frac{x^2-2x+1}{x-1}}=lim limits _{x rightarrow 1}{frac{1^2-2cdot1+1}{1-1}}= <frac{0}{0}>

Неопределенность вида <00><frac{0}{0}> возможно разрешить путем разложения числителя или знаменателя на множители.

lim⁡x→1×2−2x+1x−1=lim⁡x→1(x−1)(x−1)x−1=lim⁡x→1(x−1)=1−1=0lim limits _{x rightarrow 1}{frac{x^2-2x+1}{x-1}}=lim limits _{x rightarrow 1}{frac{left(x-1right)left(x-1right)}{x-1}}=lim limits _{x rightarrow 1}{left(x-1right)=1-1=0}

Другой способ раскрытия неопределенности – правило Лопиталя (производная от числителя и знаменателя пока неопределенность не спадет)

lim⁡x→1×2−2x+1x−1=lim⁡x→1(x2−2x+1)‘(x−1)‘=lim⁡x→12x−21=lim⁡x→12x−2=lim⁡x→12⋅1−2=0lim limits _{x rightarrow 1}{frac{x^2-2x+1}{x-1}}=lim limits _{x rightarrow 1}{frac{left(x^2-2x+1right)^`}{left(x-1right)^`}}=lim limits _{x rightarrow 1}{frac{2x-2}{1}}=lim limits _{x rightarrow 1}{2x-2}=lim limits _{x rightarrow 1}{2cdot1-2=0}

Пример 2

Предел приближения к бесконечности

lim⁡x→∞x2−4x+21+x2=lim⁡x→∞∞2−4⋅∞+21+∞2=<∞∞>lim limits _{x rightarrow infty}{frac{x^2-4x+2}{1+x^2}}=lim limits _{x rightarrow infty}{frac{infty^2-4cdot infty+2}{1+ infty^2}}= <frac{infty} {infty}>

Неопределенность вида, <∞∞><frac{infty} {infty}> возможно разрешить только путем деления каждого члена функции на xx в большей степени (в данном примере максимальная степень x2x^2).

lim⁡x→∞x2x2−4xx2+2x21x2+x2x2=lim⁡x→∞1−4x+2x21x2+1lim limits _{x rightarrow infty}{frac{frac{x^2}{x^2}-frac{4x}{x^2}+frac{2}{x^2}}{frac{1}{x^2}+frac{x^2}{x^2}}}=lim limits _{x rightarrow infty}{frac{1-frac{4}{x}+frac{2}{x^2}}{frac{1}{x^2}+1}}

Зная, что lim⁡x→∞1x=0lim limits _{x rightarrow infty}{frac{1}{x}=0},

причем в числителе дроби может быть любое число, а в знаменателе х любой степени, имеем

lim⁡x→∞1−4x+2x21x2+1=lim⁡x→∞1−4∞+2∞21∞2+1=lim⁡x→∞1−0+00+1=11=1lim limits _{x rightarrow infty}{frac{1-frac{4}{x}+frac{2}{x^2}}{frac{1}{x^2}+1}}=lim limits _{x rightarrow infty}{frac{1-frac{4}{infty}+frac{2}{infty^2}}{frac{1}{infty^2}+1}}=lim limits _{x rightarrow infty}{frac{1-0+0}{0+1}=frac{1}{1}}=1

Другие неопределенности

  • 1∞1^infty – раскрытие через второй замечательный предел;
  • 000^0, ∞0infty^0 – необходимо найти логарифм предела;
  • 0⋅∞0cdotinfty, ∞−∞infty-infty – преобразование функции, правило Лопиталя.
Замечательные пределы (математические тождества)

lim⁡x→0sinxx=1lim limits _{x rightarrow 0}{frac{sinx}{x}=1}

lim⁡x→∞(1+1x)x=elim limits _{x rightarrow infty}{left(1+frac{1}{x}right)^x=e}

Примеры применения замечательных пределов

Пример 1

Вычислить предел функции lim⁡x→0sin3x9xlim limits _{x rightarrow 0}{frac{sin3x}{9x}}

lim⁡x→0sin⁡3x9x=<00>lim limits _{x rightarrow 0} frac{sin3x}{9x}=<frac{0}{0}>

Выполним преобразования

lim⁡x→0sin3x9x=lim⁡x→0sin⁡3×3⋅3x=13lim⁡x→0sin3x3x=13⋅1=13lim limits _{x rightarrow 0}{frac{sin3x}{9x}}=lim limits _{x rightarrow 0}{frac{sin3x}{3cdot3x}}=frac{1}{3}lim limits _{x rightarrow 0}{frac{sin3x}{3x}}=frac{1}{3}cdot1=frac{1}{3}

Пример 2

Вычислить предел функции

lim⁡x→∞(x+5x+4)(x+4)lim limits _{x rightarrow infty} (frac {x+5}{x+4})^{(x+4)}

lim⁡x→∞(x+5x+4)(x+4)=<∞∞>∞lim limits _{x rightarrow infty} (frac {x+5}{x+4})^{(x+4)}= <frac {infty} {infty}>^ {infty}

Выполним преобразования (прибавление и отнимание единицы)

lim⁡x→∞(x+5x+4)(x+4)=lim⁡x→∞(1−1+x+5x+4)(x+4)=lim⁡x→∞(1−x+4x+4+x+5x+4)(x+4)=lim limits _{x rightarrow infty} (frac {x+5}{x+4})^{(x+4)}=lim limits _{x rightarrow infty} (1-1+frac {x+5}{x+4})^{(x+4)}= lim limits _{x rightarrow infty} (1-frac {x+4}{x+4} + frac {x+5}{x+4})^{(x+4)}=

lim⁡x→∞(1+x+5−x−4x+4)(x+4)=lim⁡x→∞(1+1x+4)(x+4)=elim limits _{x rightarrow infty} (1+frac {x+5-x-4}{x+4})^{(x+4)}= lim limits _{x rightarrow infty} (1+frac {1}{x+4})^{(x+4)}=e

Пределы находят практическое применение в различных областях математики, геометрии, экономики и финансов, поэтому умение разрешать такие задачи и быстро раскрывать неопределенности крайне необходимо для достижения иной главной цели.

Тест по теме «Примеры решения пределов»

В данной публикации мы рассмотрим одно из главных понятий математического анализа – предел функции: его определение, а также различные способы решения с практическими примерами.

  • Определение предела функции

  • Решение пределов

    • С заданным числом

    • С бесконечностью

    • С неопределенностью (икс стремится к бесконечности)

    • С неопределенностью (икс стремится к конкретному числу)

Определение предела функции

Предел функции – величина, к которой стремится значение данной функции при стремлении ее аргумента к предельной для области определения точке.

Запись предела:

  • предел обозначается значком lim;
  • под ним добавляется, к какому значению стремится аргумент (переменная) функции. Обычно, это x, но не обязательно, например: “x→1″;
  • затем справа дописывается сама функция, например:
    Пример функции

Таким образом, финальная запись предела выглядит выглядит так (в нашем случае):

Пример предела функции

Читается как “предел функции при икс, стремящемся к единице”.

x→1 – это значит, что “икс” последовательно принимает значения, которые бесконечно приближаются к единице, но никогда с ней не совпадут (ее не достигнут).

Решение пределов

С заданным числом

Давайте решим рассмотренный выше предел. Для этого просто подставляем единицу в функцию (т.к. x→1):

Пример решения предела

Таким образом, чтобы решить предел, сперва пробуем просто подставить заданное число в функцию под ним (если икс стремится к конкретному числу).

С бесконечностью

В данному случае аргумент функции бесконечно возрастает, то есть “икс” стремится к бесконечности (∞). Например:

Предел с бесконечностью (пример)

Если x→∞, то заданная функция стремится к минус бесконечности (-∞), т.к.:

  • 3 – 1 = 2
  • 3 – 10 = -7
  • 3 – 100 = -97
  • 3 – 1000 – 997 и т.д.

Другой более сложный пример

Предел с бесконечностью (пример)

Для того, чтобы решить этот предел, также, просто увеличиваем значения x и смотрим на “поведение” функции при этом.

  • При x = 1, y = 12 + 3 · 1 – 6 = -2
  • При x = 10, y = 102 + 3 · 10 – 6 = 124
  • При x = 100, y = 1002 + 3 · 100 – 6 = 10294

Таким образом при “икс”, стремящемся к бесконечности, функция x2 + 3x – 6 неограниченно растет.

С неопределенностью (икс стремится к бесконечности)

Неопределенность

В данном случае речь идет про пределы, когда функция – это дробь, числитель и знаменатель которой представляют собой многочлены. При этом “икс” стремится к бесконечности.

Пример: давайте вычислим предел ниже.

Пример предела с неопределенностью

Решение

Выражения и в числителе, и а знаменателе стремятся к бесконечности. Можно предположить, что в таком случае решение будет таким:

Неопределенность

Однако не все так просто. Чтобы решить предел нам нужно сделать следующее:

1. Находим x в старшей степени для числителя (в нашем случае – это два).

Старшая степень переменной в числителе

2. Аналогичным образом определяем x в старшей степени для знаменателя (тоже равняется двум).

Старшая степень переменной в знаменателе

3. Теперь делим и числитель, и знаменатель на x в старшей степени. В нашем случае в обоих случаях – во второй, но если бы они были разные, следовало бы взять наибольшую степень.

Деление числителя и знаменателя предела на переменную в старшей степени

4. В получившемся результате все дроби стремятся к нулю, следовательно ответ равен 1/2.

Пример решения предела

С неопределенностью (икс стремится к конкретному числу)

Дробь с нулями в числителе и знаменателе

И в числителе, и в знаменателе представлены многочлены, однако, “икс” стремится к конкретному числу, а не к бесконечности.

В данном случае условно закрываем глаза на то, что в знаменателе стоит ноль.

Пример: Найдем предел функции ниже.

Пример предела с неопределенностью

Решение

1. Для начала подставим в функцию число 1, к которому стремится “икс”. Получаем неопределенность рассматриваемого нами вида.

Пример нахождения предела

2. Далее раскладываем числитель и знаменатель на множители. Для этого можно воспользоваться формулами сокращенного умножения, если они подходят, или решить квадратное уравнение.

В нашем случаем корнями выражения в числителе (2x2 – 5x + 3 = 0) являются числа 1 и 1,5. Следовательно его можно представить в виде: 2(x-1)(x-1,5).

Знаменатель (x – 1) изначально является простым.

3. Получаем вот такой видоизмененный предел:

Преобразование предела (пример)

4. Дробь можно сократить на (x – 1):

Сокращение дроби в пределе (пример)

5. Остается только подставить число 1 в выражение, получившееся под пределом:

Пример нахождения предела функции

Добавить комментарий