Пределы со степенями: показательная, степенная и показательно-степенная функции
Пределы со степенями бывают различных видов в зависимости от положения неизвестной $x$ в пределе. Рассмотрим примеры решений для следующих ситуаций:
- Показательная функция
$$limlimits_{xto a} a^{f(x)} = a^{limlimits_{xto a} f(x)} $$ - Степенная функция
$$ limlimits_{xto a} (f(x))^a = bigg(limlimits_{xto a} f(x) bigg)^a $$ - Показательно-степенная функция
$$limlimits_{xto a} bigg(f(x)bigg)^{g(x)} = limlimits_{xto a} frac{ln(f(x))}{frac{1}{g(x)}} $$
Пример 1 |
Найти предел показательной функции $limlimits_{xto 2} 2^{frac{x^2-4}{x-2}}$ |
Решение |
Подставив точку $x=2$ в предел получим неопределенность $2^{big(frac{0}{0}big)}$. Итак, перенесем знак предела в показатель и попробуем его вычислить путем разложения числителя по формуле разности квадратов $a^2-b^2 = (a-b)(a+b)$. $$limlimits_{xto 2} 2^{frac{x^2-4}{x-2}} = 2^{limlimits_{xto 2} frac{(x-2)(x+2)}{x-2}} = $$ Сокращаем числитель со знаменателем на $x-2$ и вычисляем предел степени. $$ =2^{limlimits_{xto 2} (x+2)} = 2^{2+2} = 2^4 = 16 $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$limlimits_{xto 2} 2^{frac{x^2-4}{x-2}} = 16$$ |
Пример 2 |
Решить предел степенной функции $limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3$ |
Решение |
Внесем знак предела внутрь скобок, а степень останется при этом снаружи. $$limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3 = bigg(limlimits_{xto 0} frac{sin x^2}{1-cos x}bigg)^3 = $$ При подстановке точки $x=0$ в предел получаем неопределенность $frac{0}{0}$. Для её устранения воспользуемся таблицей эквивалентностей пределов. $$sin x^2 sim x^2$$ $$ 1-cos x sim frac{x^2}{2}$$ Подставляем эквивалентные функции в предел и сокращаем $x$. $$ = bigg(limlimits_{xto 0} frac{x^2}{frac{x^2}{2}}bigg)^3 = bigg(limlimits_{xto 0} frac{2x^2}{x^2} bigg)^3 = 2^3 = 8$$ |
Ответ |
$$limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3 = 8$$ |
Пример 3 |
Вычислить предел показательно-степенной функции $limlimits_{xto 0} (tg x)^{sin x} $ |
Решение |
Если подставим $x=0$, то получим предел ноль в степени ноль $(0^0)$. Превратим это в другую неопределенность $(frac{infty}{infty})$ с помощью третьей формулы. $$limlimits_{xto 0} (tg x)^{sin x} = limlimits_{xto 0} frac{ln (tg ;x)}{frac{1}{sin x}} = frac{infty}{infty} = $$ Используем правило Лопиталя для продолжения решения. По нему, как известно, предел отношения функций равен пределу отношения производных от этих функций. $$ = limlimits_{xto 0} frac{(ln (tg ;x))’}{(frac{1}{sin x})’} = limlimits_{xto 0} frac{frac{frac{1}{cos^2 x}}{tg ;x}}{-frac{cos x}{sin^2 x}} = $$ Преобразуем числитель в нормальный вид с помощью формулы $tg ; x = frac{sin x}{cos x}$ и выполняем все необходимые сокращения. $$ = limlimits_{xto 0} frac{frac{1}{sin x cos x}}{-frac{cos x}{sin^2 x}} = -limlimits_{xto 0} frac{sin x}{cos^2 x} = $$ Теперь подставляя точку $x=0$ возможно получить окончательный ответ. $$ = – frac{sin 0}{cos^2 x} = -frac{0}{1} = 0 $$ |
Ответ |
$$limlimits_{xto 0} (tg x)^{sin x} = 0$$ |
Вычисление пределов степенно-показательных функций
Пусть функции
и
заданы на множестве
и функция
на нем положительна. Функция
называется степенно
– показательной.
Предположим, что
– точка сгущения множества
и существуют конечные пределы
,
,
где
.
Нужно найти
.
Воспользовавшись
тождествами
,
запишем исходное выражение в виде
.
В силу теоремы 6.1
получим
.
При заданных
значениях пределов будем иметь
.
Из проведенного
рассуждения видно, что предположение
о существовании конечных пределов
и
можно отбросить. Действительно, для
нахождения предела выражения
достаточно знать предел произведения
(конечный или бесконечный).
1) Пусть
.
Тогда
.
2) Если
,
то
.
3) Если
,
то
.
Заметим, что
произведение
может оказаться неопределенностью типа
.
Тогда и исходное выражение
представляет собой неопределенность.
Перечислим возникающие здесь
неопределенности.
1) Если
,
то вычисление предела
приводит к неопределенности типа
.
2) Если
,
то вычисление предела
приводит к неопределенности типа
.
3) Если
,
то вычисление предела
приводит к неопределенности типа
.
Во всех указанных
случаях (,
,
)
можно раскрыть неопределенность
в показателе степени, преобразуя ее к
типу
и используя соответствующие эквивалентные
бесконечно малые.
Замечание 8.3.
Приведенные выше рассуждения справедливы
и для вычисления предела степенно-показательной
функции в бесконечно удаленной точке:
.
Пример 8.2.
Вычислить
.
Решение.
Здесь
,
,
поэтому имеем неопределенность типа
.
Преобразуем выражение под знаком
предела:
.
В показателе
степени имеем неопределенность типа
.
Заменой
при
на эквивалентную бесконечно малую
раскрываем ее:
.
Таким образом,
.
Замечание 8.4.
Аналогично доказывается равенство
.
Пределы
,
образуют две формы
одного и того же равенства, которое
также является замечательным
пределом
и часто служат определением числа
.
Задачи к §8
Задача
1. Вычислить
.
Решение.
Здесь имеем
неопределенность типа
.
Преобразуем числитель дроби к форме
произведения:
.
Затем
заменим бесконечно малую в точке
функцию
эквивалентной бесконечно малой
.
Тогда
получим
.
Ответ:
.
Задача
2. Вычислить
.
Решение.
Здесь возникает неопределенность типа
.
Преобразуем знаменатель, воспользовавшись
свойствами логарифмической функции, и
выделим в аргументе логарифма слагаемое,
равное 1:
.
Заменим
бесконечно малую в точке
функцию
эквивалентной бесконечно малой
.
Числитель разложим на множители:
.
Тогда
получим:
.
Ответ:
.
Задача
3. Вычислить
.
Решение.
Здесь возникает неопределенность типа
.
Представим числитель в виде:
.
Затем
заменим его эквивалентной бесконечно
малой в точке
функцией
.
Функцию
в точке
тоже заменим на эквивалентную бесконечно
малую
.
Тогда
.
Ответ:
.
Задача
4. Вычислить
.
Решение.
Здесь возникает неопределенность типа
.
Представим числитель в виде:
.
Затем
заменим его эквивалентной бесконечно
малой в точке
функцией
.
Преобразуем
знаменатель:
и
заменим его на эквивалентную бесконечно
малую
.
Тогда получим
.
Ответ:
.
Задача
5. Вычислить
.
Решение.
Здесь возникает неопределенность типа
.
Числитель
можно заменить эквивалентной бесконечно
малой
.
Чтобы
воспользоваться соотношением (8.4),
преобразуем знаменатель:
и
заменим его эквивалентной бесконечно
малой
.
Тогда
.
Ответ:
.
Задача
6. Вычислить
.
Решение.
Здесь имеем неопределенность типа
.
Чтобы применить к выражению
соотношение (8.3), представим его в виде:
,
и
заменим бесконечно малую функцию
эквивалентной бесконечно малой
.
Знаменатель же представим в виде:
и,
используя соотношения (8.2) и (8.8), заменим
его эквивалентной бесконечно малой
.
Учитывая проведенные выкладки и
соотношение (8.4), получим:
.
Ответ:
.
Задача
7. Вычислить
.
Решение.
Здесь имеем неопределенность типа
.
Используя ряд приемов, примененных в
задачах 1–7, получим
.
Ответ:
.
Задача
8. Вычислить
.
Решение.
Здесь имеем неопределенность типа
.
Используя ряд приемов, примененных в
задачах 1–7 и формулы приведения для
тригонометрических функций, получим
.
Ответ:
.
Задача
9. Вычислить
.
Решение.
Здесь имеем неопределенность типа
.
Чтобы применить к числителю соотношение
(8.2), преобразуем его следующим образом:
.
Теперь
числитель согласно соотношению (8.2)
можно заменить эквивалентной бесконечно
малой
.
Преобразуем
знаменатель
.
Заменяем,
используя соотношение (8.1),
эквивалентной бесконечно малой
.
Тогда
.
Ответ:
.
Задача
10. Вычислить
.
Решение.
Здесь имеем неопределенность типа
.
Используя приемы, описанные выше, получим
.
.
Ответ:
.
Задача
11. Вычислить
.
Решение.
Здесь имеем неопределенность типа
.
Используя теоремы 6.2 и 6.1, получим
.
Получили
неопределенность типа
.
Преобразуем выражение с помощью формул
приведения, затем переходим к эквивалентным
бесконечно малым. В итоге получим
.
Ответ:
.
Задача
12. Вычислить
.
Решение.
Здесь имеем неопределенность типа
.
Выделим
в основании степени:
.
Заметим,
что
при
.
Справедлива
цепочка равенств
.
Заменяя
логарифм эквивалентной бесконечно
малой согласно соотношению (8.2) и используя
замечание 6.4 для раскрытия неопределенности,
получим
.
Ответ:
.
Задача
134.
Вычислить
.
Решение.
Здесь имеем неопределенность типа
.
Введем переменную
.
Если
,
то
.
.
Выделим
в основании степени:
,
тогда
.
Заметим,
что
при
.
Заменим функцию
эквивалентной бесконечно малой
,
будем иметь
.
Используя
теорему 7.3, окончательно получим
.
Ответ:
.
Задача
14. Вычислить
.
Решение.
Здесь возникает неопределенность типа
.
Поскольку
,
вычислим
сначала
.
Мы имеем дело с неопределенностью типа
.
Воспользовавшись
последовательно соотношениями (8.2) и
(8.1), будем иметь
.
Ответ:
.
Задача
15. Вычислить
.
Решение.
Здесь возникает неопределенность типа
.
Воспользуемся формулой
.
Вычислим
предел, стоящий в показателе степени.
Для этого требуется раскрыть
неопределенность типа
.
Преобразуем ее в неопределенность типа
и воспользуемся эквивалентностью
бесконечно малых:
.
Ответ:
.
Задача
16. Вычислить
.
Решение.
Здесь возникает неопределенность типа
.
Преобразуем исходное предельное
выражение
.
Вычислим
предел, стоящий в показателе степени.
.
Ответ:
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Предел показательно степенной функции, примеры нахождения
В процессе нахождения предела показательно-степенной функции типа limx→x0(f(x))g(x) часто работаем с такими степенными неопределенностями, как 1∞, 00, ∞0.
Для их раскрытия необходимо задействовать логарифмирование a=eln(a), свойство логарифма a·ln(b)=ln(ba) и применение его предела заданной непрерывной функции, причем ее знак разрешено менять местами.
Для этого производятся преобразования вида:
limx→x0(f(x))g(x)=elnlimx→x0f(x))g(x)=elimx→x0(ln(f(x))g(x)=elimx→x0(g(x)ln(f(x)))==elimx→x0ln(f(x))1g(x)
Отсюда видно, что задание приводится к нахождению предела заданной функции вида elimx→x0ln(f(x))1g(x)=∞∞ или 00.
Данный случай рассматривает методы:
- непосредственного вычисления;
- использования правила Лопиталя;
- с заменой эквивалентных бесконечно малых функций;
- применение первого замечательного предела.
Для того, чтобы неопределенность была раскрыта, необходимо применять второй замечательный предел, при наличии 1∞.
Рассмотрим теорию на элементарных примерах заданий.
Найти предел заданной функции limx→0(x3+2x+1)32×3+x.
Решение
Для решения необходимо произвести подстановку. Получаем :
limx→0(x3+2x+1)32(x3+x)=(03+2·0+1)32(03+0)=1∞
Получение единицы в степени бесконечность называют неопределенностью, значит, необходимо решить другим методом.
Следует произвести преобразования данного предела. Получаем:
limx→0(x3+2x+1)32(x3+x)=elnlimx→0(x3+2x+1)32(x3+x)==elimx→0ln(x3+2x+1)32(x3+x)=elimx→03ln(x3+2x+1)2(x3+x)
Видим, что преобразование сводится к пределу вида limx→03ln(x3+2x+1)2(x3+x).
Получаем
limx→03ln(x3+2x+12(x3+x)=00=32limx→0ln(x3+2x+1)x3+x==32limx→0x3+2xx3+x=32limx→0x2+2×2+1=32·02+202+1=3
Данные преобразования были выполнены при помощи применения замены логарифма на эквивалентную бесконечно малую функцию.
Тогда исходный предел принимает вид limx→0(x2+2x+1)32(x3+x)=e3.
Вычисление данного предела возможно с применением второго замечательного предела. Тогда получаем:
limx→0(x2+2x+1)32(x3+x)=limx→0(1+(x3+2x)1×3+2x(x3+2x)32(x3+x)==limx→0(1+(x3+2x))1×3+2×3(x3+2x)2(x3+x)=limx→01+(x3+2x))1×3+2×3(x2+2)2(x2+1)==limx→0(1+(x3+2x)1×3+2×3=e3
Ответ: e3.
Найти и вычислить предел lim x→π2 (tgx)2 cos x
Решение
Если произведем подстановку, в результате получим ответ в виде бесконечности в степени ноль, а это является знаком, что необходимо применить другой метод для преобразования. Получаем:
lim x→π2 (tg x)2 cos x=∞0=elnlim x→π2(tg x)2cos x==e2lim x→π2(tg x)2cos x=elim x→π2(2cos x·ln·(tg x))==e2lim x→π2ln(tg x)1cos x
Отсюда видно, что решение сводится к переделу lim x→π2ln(tg x)1cos x=∞∞.
Для дальнейшего преобразования применим правило Лопиталя, так как получили неопределенность в виде частного бесконечностей. Видим, что
lim x→π2ln(tg x)1cos x=∞∞=lim x→π2=ln(tg x)’1cos(x)’==lim x→π21tg (x)·1cos2 (x)sin (x)cos2(x)=lim x→π2cos (x)sin2(x)=cosπ2sin2π2=012=0
Отсюда следует, что пределом показательно-степенной функции является результат, полученный при вычислении. Имеем вы предел вида limx→π2(tg x)2cos x=e2·0=e0=1.
Ответ: 1.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Пределы числовых последовательностей
Содержание
Предел числовой последовательности
ОПРЕДЕЛЕНИЕ 1. Число a называют пределом числовой последовательности
a1 , a2 , … an , …
если для любого положительного числа ε найдется такое натуральное число N , что при всех n > N выполняется неравенство
| an – a | < ε .
Условие того, что число a является пределом числовой последовательности
a1 , a2 , … an , … ,
записывают с помощью обозначения
и произносят так: «Предел an при n , стремящемся к бесконечности, равен a ».
То же самое соотношение можно записать следующим образом:
an → a при .
Словами это произносится так: «an стремится к a при n , стремящемся к бесконечности».
ЗАМЕЧАНИЕ. Если для последовательности
a1 , a2 , … an , …
найдется такое число a , что an → a при , то эта последовательность ограничена.
ОПРЕДЕЛЕНИЕ 2. Говорят, что последовательность
a1 , a2 , … an , …
стремится к бесконечности, если для любого положительного числа C найдется такое натуральное число N , что при всех n > N выполняется неравенство
| an| > C .
Условие того, что числовая последовательность
a1 , a2 , … an , … ,
стремится к бесконечности, записывают с помощью обозначения
или с помощью обозначения
при .
ПРИМЕР 1. Для любого числа k > 0 справедливо равенство
ПРИМЕР 2 . Для любого числа k > 0 справедливо равенство
ПРИМЕР 3. Для любого числа a такого, что | a | < 1, справедливо равенство
ПРИМЕР 4. Для любого числа a такого, что | a | > 1, справедливо равенство
ПРИМЕР 5 . Последовательность
– 1 , 1 , – 1 , 1 , … ,
заданная с помощью формулы общего члена
an = (– 1)n ,
предела не имеет.
Свойства пределов числовых последовательностей
Рассмотрим две последовательности
a1 , a2 , … an , … , и b1 , b2 , … bn , … .
Если при существуют такие числа a и b , что
и ,
то при существуют также и пределы суммы, разности и произведения этих последовательностей, причем
Если, кроме того, выполнено условие
то при существует предел дроби
причем
Для любой непрерывной функции f (x) справедливо равенство
Вывод формулы для суммы членов бесконечно убывающей геометрической прогрессии
Рассмотрим геометрическую прогрессию
b1 , b2 , … bn , … ,
знаменатель которой равен q .
Для суммы первых n членов геометрической прогрессии
Sn = b1 + b2 + … + bn , n = 1, 2, 3, …
справедлива формула
Если для суммы всех членов бесконечно убывающей геометрической прогрессии ввести обозначение
S = b1 + b2 + … + bn + … ,
то будет справедлива формула
В случае бесконечно убывающей геометрической прогрессии знаменатель q удовлетворяет неравенству
| q | < 1 ,
поэтому, воспользовавшись cвойствами пределов числовых последовательностей и результатом примера 3, получаем
Итак,
Примеры вычисления пределов последовательностей. Раскрытие неопределенностей
ОПРЕДЕЛЕНИЕ 3. Если при нахождении предела дроби выясняется, что и числитель дроби, и знаменатель дроби стремятся к , то вычисление такого предела называют раскрытием неопределенности типа .
Часто неопределенность типа удается раскрыть, если и в числителе дроби, и в знаменателе дроби вынести за скобки «самое большое» слагаемое. Например, в случае, когда в числителе и в знаменателе дроби стоят многочлены, «самым большим» слагаемым будет член с наивысшей степенью.
ПРИМЕР 6. Найти предел последовательности
РЕШЕНИЕ. Сначала преобразуем выражение, стоящее под знаком предела, воспользовавшись свойствами степеней:
ОТВЕТ.
ПРИМЕР 7 . Найти предел последовательности
ОТВЕТ.
В следующих двух примерах показано, как можно раскрыть неопределенности типа.
ПРИМЕР 8 . Найти предел последовательности
РЕШЕНИЕ. Сначала преобразуем выражение, стоящее под знаком предела, приводя дроби к общему знаменателю:
Преобразуем дробь, вынося за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое в каждой из скобок знаменателя дроби:
Теперь, используя cвойства пределов последовательностей и результат примера 1, получаем
ОТВЕТ.
ПРИМЕР 9. Найти предел последовательности
РЕШЕНИЕ. В рассматриваемом примере неопределенность типа возникает за счет разности двух корней, каждый из которых стремится к . Для того, чтобы раскрыть неопределенность, умножим и разделим выражение, стоящее под знаком предела, на сумму этих корней и воспользуемся формулой сокращенного умножения «разность квадратов».
Из-за большого размера формул подробные вычисления видны только на устройствах с разрешением экрана по ширине не менее 768 пикселей (например, на стационарных компьютерах, ноутбуках и некоторых планшетах). На Вашем мобильном устройстве отображается только результат описанных операций.
Преобразуем дробь, вынося за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое из-под каждого корня в знаменателе дроби, а затем сокращая дробь на n2:
Теперь, используя cвойства пределов последовательностей и результат примера 1, получаем
ОТВЕТ.
ПРИМЕР 10. Найти предел последовательности
РЕШЕНИЕ. Замечая, что для всех k = 2, 3, 4, … выполнено равенство
,
получаем
ОТВЕТ. 1 .
Число e. Второй замечательный предел
Рассмотрим последовательность
(1) |
В дисциплине «Математический анализ», которую студенты естественнонаучных и технических направлений высших учебных заведений изучают на 1 курсе, доказывают, что последовательность (1) монотонно возрастает и ограничена сверху. Из теоремы Вейерштрасса о монотонных и ограниченных последовательностях, доказательство которой выходит за рамки школьного курса математики, вытекает, что последовательность (1) имеет конечный предел. Этот предел принято обозначать буквой e.
Таким образом, справедливо равенство
(2) |
причем расчеты показывают, что число
e = 2,718281828459045…
и является иррациональным и трансцендентным числом.
Число e играет исключительно важную роль в естествознании и, в частности, служит основанием натуральных логарифмов и основанием показательной функции
y = e x,
которую называют «экспонента».
Число e также является пределом последовательности
(3) |
что позволяет вычислять число e с любой точностью. Конечно же, доказательство формулы (3) выходит за рамки школьного курса математики.
ЗАМЕЧАНИЕ. Предел (2), в котором для последовательностей раскрывается неопределенность типа , называют вторым замечательным пределом. В разделе нашего справочника «Пределы функций» можно ознакомиться со вторым замечательным пределом для функций.
При вычислении пределов от показательно-степенной функции пользуются либо формулой , либо вторым замечательным пределом.
Пример №1.
Вычислить .
Решение:
, так как
Пример №1.
Вычислить .
Решение:
Заметим, что , а при . Следовательно, имеется неопределенность вида . Для ее раскрытия воспользуемся вторым замечательным пределом. Получим, что
так как
Пример №2.
Вычислить .
Решение:
в силу непрерывности . Вычислим
Следовательно, .
Пример №3.
Вычислить .
Решение:
Так как , то в данном случае отсутствует неопределенность и
На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:
Высшая математика краткий курс лекций для заочников
Возможно вам будут полезны эти страницы: