Как найти предел последовательности с степенью

Пределы со степенями: показательная, степенная и показательно-степенная функции

Пределы со степенями бывают различных видов в зависимости от положения неизвестной $x$ в пределе. Рассмотрим примеры решений для следующих ситуаций:

  1. Показательная функция
    $$limlimits_{xto a} a^{f(x)} = a^{limlimits_{xto a} f(x)} $$
  2. Степенная функция
    $$ limlimits_{xto a} (f(x))^a = bigg(limlimits_{xto a} f(x) bigg)^a $$
  3. Показательно-степенная функция
    $$limlimits_{xto a} bigg(f(x)bigg)^{g(x)} = limlimits_{xto a} frac{ln(f(x))}{frac{1}{g(x)}} $$
Пример 1
Найти предел показательной функции $limlimits_{xto 2} 2^{frac{x^2-4}{x-2}}$
Решение

Подставив точку $x=2$ в предел получим неопределенность $2^{big(frac{0}{0}big)}$. Итак, перенесем знак предела в показатель и попробуем его вычислить путем разложения числителя по формуле разности квадратов $a^2-b^2 = (a-b)(a+b)$.

$$limlimits_{xto 2} 2^{frac{x^2-4}{x-2}} = 2^{limlimits_{xto 2} frac{(x-2)(x+2)}{x-2}} = $$

Сокращаем числитель со знаменателем на $x-2$ и вычисляем предел степени.

$$ =2^{limlimits_{xto 2} (x+2)} = 2^{2+2} = 2^4 = 16 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$limlimits_{xto 2} 2^{frac{x^2-4}{x-2}} = 16$$
Пример 2
Решить предел степенной функции $limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3$
Решение

Внесем знак предела внутрь скобок, а степень останется при этом снаружи.

$$limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3 = bigg(limlimits_{xto 0} frac{sin x^2}{1-cos x}bigg)^3 = $$

При подстановке точки $x=0$ в предел получаем неопределенность $frac{0}{0}$. Для её устранения воспользуемся таблицей эквивалентностей пределов.

$$sin x^2 sim x^2$$ $$ 1-cos x sim frac{x^2}{2}$$

Подставляем эквивалентные функции в предел и сокращаем $x$.

$$ = bigg(limlimits_{xto 0} frac{x^2}{frac{x^2}{2}}bigg)^3 = bigg(limlimits_{xto 0} frac{2x^2}{x^2} bigg)^3 = 2^3 = 8$$

Ответ
$$limlimits_{xto 0} bigg(frac{sin x^2}{1-cos x}bigg)^3 = 8$$
Пример 3
Вычислить предел показательно-степенной функции $limlimits_{xto 0} (tg x)^{sin x} $
Решение

Если подставим $x=0$, то получим предел ноль в степени ноль $(0^0)$. Превратим это в другую неопределенность $(frac{infty}{infty})$ с помощью третьей формулы.

$$limlimits_{xto 0} (tg x)^{sin x} = limlimits_{xto 0} frac{ln (tg ;x)}{frac{1}{sin x}} = frac{infty}{infty} = $$

Используем правило Лопиталя для продолжения решения. По нему, как известно, предел отношения функций равен пределу отношения производных от этих функций.

$$ = limlimits_{xto 0} frac{(ln (tg ;x))’}{(frac{1}{sin x})’} = limlimits_{xto 0} frac{frac{frac{1}{cos^2 x}}{tg ;x}}{-frac{cos x}{sin^2 x}} = $$

Преобразуем числитель в нормальный вид с помощью формулы $tg ; x = frac{sin x}{cos x}$ и выполняем все необходимые сокращения.

$$ = limlimits_{xto 0} frac{frac{1}{sin x cos x}}{-frac{cos x}{sin^2 x}} = -limlimits_{xto 0} frac{sin x}{cos^2 x} = $$

Теперь подставляя точку $x=0$ возможно получить окончательный ответ.

$$ = – frac{sin 0}{cos^2 x} = -frac{0}{1} = 0 $$

Ответ
$$limlimits_{xto 0} (tg x)^{sin x} = 0$$

Вычисление пределов степенно-показательных функций

Пусть функции

и

заданы на множестве

и функция

на нем положительна. Функция

называется степенно
– показательной
.

Предположим, что

– точка сгущения множества

и существуют конечные пределы

,
,

где
.
Нужно найти

.

Воспользовавшись
тождествами
,
запишем исходное выражение в виде

.

В силу теоремы 6.1
получим

.

При заданных
значениях пределов будем иметь

.

Из проведенного
рассуждения видно, что предположение
о существовании конечных пределов

и

можно отбросить. Действительно, для
нахождения предела выражения

достаточно знать предел произведения

(конечный или бесконечный).

1) Пусть
.
Тогда
.

2) Если
,
то
.

3) Если
,
то
.

Заметим, что
произведение

может оказаться неопределенностью типа
.
Тогда и исходное выражение

представляет собой неопределенность.
Перечислим возникающие здесь
неопределенности.

1) Если
,
то вычисление предела

приводит к неопределенности типа
.

2) Если
,
то вычисление предела

приводит к неопределенности типа
.

3) Если
,
то вычисление предела

приводит к неопределенности типа
.

Во всех указанных
случаях (,

,

)
можно раскрыть неопределенность

в показателе степени, преобразуя ее к
типу

и используя соответствующие эквивалентные
бесконечно малые.

Замечание 8.3.
Приведенные выше рассуждения справедливы
и для вычисления предела степенно-показательной
функции в бесконечно удаленной точке:
.

Пример 8.2.
Вычислить
.

Решение.
Здесь
,
,
поэтому имеем неопределенность типа
.
Преобразуем выражение под знаком
предела:

.

В показателе
степени имеем неопределенность типа
.
Заменой

при

на эквивалентную бесконечно малую

раскрываем ее:

.

Таким образом,

.

Замечание 8.4.
Аналогично доказывается равенство
.

Пределы

,

образуют две формы
одного и того же равенства, которое
также является замечательным
пределом

и часто служат определением числа
.

Задачи к §8

Задача
1.
Вычислить
.

Решение.
Здесь имеем
неопределенность типа
.
Преобразуем числитель дроби к форме
произведения:

.

Затем
заменим бесконечно малую в точке

функцию

эквивалентной бесконечно малой
.

Тогда
получим

.

Ответ:
.

Задача
2.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Преобразуем знаменатель, воспользовавшись
свойствами логарифмической функции, и
выделим в аргументе логарифма слагаемое,
равное 1:

.

Заменим
бесконечно малую в точке

функцию

эквивалентной бесконечно малой
.
Числитель разложим на множители:

.

Тогда
получим:

.

Ответ:
.

Задача
3.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Представим числитель в виде:

.

Затем
заменим его эквивалентной бесконечно
малой в точке

функцией
.

Функцию

в точке

тоже заменим на эквивалентную бесконечно
малую
.

Тогда

.

Ответ:
.

Задача
4.
Вычислить

.

Решение.
Здесь возникает неопределенность типа
.
Представим числитель в виде:

.

Затем
заменим его эквивалентной бесконечно
малой в точке

функцией
.

Преобразуем
знаменатель:

и
заменим его на эквивалентную бесконечно
малую
.
Тогда получим

.

Ответ:
.

Задача
5.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Числитель

можно заменить эквивалентной бесконечно
малой
.

Чтобы
воспользоваться соотношением (8.4),
преобразуем знаменатель:

и
заменим его эквивалентной бесконечно
малой
.

Тогда

.

Ответ:

.

Задача
6.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Чтобы применить к выражению

соотношение (8.3), представим его в виде:

,

и
заменим бесконечно малую функцию

эквивалентной бесконечно малой
.
Знаменатель же представим в виде:

и,
используя соотношения (8.2) и (8.8), заменим
его эквивалентной бесконечно малой
.
Учитывая проведенные выкладки и
соотношение (8.4), получим:

.

Ответ:

.

Задача
7.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Используя ряд приемов, примененных в
задачах 1–7, получим

.

Ответ:

.

Задача
8.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Используя ряд приемов, примененных в
задачах 1–7 и формулы приведения для
тригонометрических функций, получим

.

Ответ:

.

Задача
9.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Чтобы применить к числителю соотношение
(8.2), преобразуем его следующим образом:

.

Теперь
числитель согласно соотношению (8.2)
можно заменить эквивалентной бесконечно
малой
.

Преобразуем
знаменатель

.

Заменяем,
используя соотношение (8.1),

эквивалентной бесконечно малой
.

Тогда

.

Ответ:

.

Задача
10.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Используя приемы, описанные выше, получим

.

.

Ответ:
.

Задача
11.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Используя теоремы 6.2 и 6.1, получим

.

Получили
неопределенность типа
.
Преобразуем выражение с помощью формул
приведения, затем переходим к эквивалентным
бесконечно малым. В итоге получим

.

Ответ:
.

Задача
12.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Выделим

в основании степени:

.

Заметим,
что

при
.

Справедлива
цепочка равенств

.

Заменяя
логарифм эквивалентной бесконечно
малой согласно соотношению (8.2) и используя
замечание 6.4 для раскрытия неопределенности,
получим


.

Ответ:
.

Задача
13
4.
Вычислить
.

Решение.
Здесь имеем неопределенность типа
.
Введем переменную
.
Если
,
то
.

.

Выделим

в основании степени:

,

тогда

.

Заметим,
что

при
.
Заменим функцию

эквивалентной бесконечно малой
,
будем иметь

.

Используя
теорему 7.3, окончательно получим

.

Ответ:
.

Задача
14.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Поскольку

,

вычислим
сначала
.
Мы имеем дело с неопределенностью типа
.

Воспользовавшись
последовательно соотношениями (8.2) и
(8.1), будем иметь

.

Ответ:
.

Задача
15.
Вычислить
.

Решение.
Здесь возникает неопределенность типа
.
Воспользуемся формулой

.

Вычислим
предел, стоящий в показателе степени.
Для этого требуется раскрыть
неопределенность типа
.
Преобразуем ее в неопределенность типа

и воспользуемся эквивалентностью
бесконечно малых:

.

Ответ:
.

Задача
16.
Вычислить
.

Решение.
Здесь возникает неопределенность типа

.
Преобразуем исходное предельное
выражение

.

Вычислим
предел, стоящий в показателе степени.

.

Ответ:
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Предел показательно степенной функции, примеры нахождения

В процессе нахождения предела показательно-степенной функции типа limx→x0(f(x))g(x) часто работаем с такими степенными неопределенностями, как 1∞, 00, ∞0.

Для их раскрытия необходимо задействовать логарифмирование a=eln(a),  свойство логарифма a·ln(b)=ln(ba) и применение его предела заданной непрерывной функции, причем ее знак разрешено менять местами.

Для этого производятся преобразования вида:

limx→x0(f(x))g(x)=elnlimx→x0f(x))g(x)=elimx→x0(ln(f(x))g(x)=elimx→x0(g(x)ln(f(x)))==elimx→x0ln(f(x))1g(x)

Отсюда видно, что задание приводится к нахождению предела заданной функции вида elimx→x0ln(f(x))1g(x)=∞∞ или 00.

Данный случай рассматривает методы:

  • непосредственного вычисления;
  • использования правила Лопиталя;
  • с заменой эквивалентных бесконечно малых функций;
  • применение первого замечательного предела.

Для того, чтобы неопределенность была раскрыта, необходимо применять второй замечательный предел, при наличии 1∞.

Рассмотрим теорию на элементарных примерах заданий.

Пример 1

Найти предел заданной функции limx→0(x3+2x+1)32×3+x.

Решение

Для решения необходимо произвести подстановку. Получаем :

limx→0(x3+2x+1)32(x3+x)=(03+2·0+1)32(03+0)=1∞

Получение единицы в степени бесконечность называют неопределенностью, значит, необходимо решить другим методом.

Следует произвести преобразования данного предела. Получаем:

limx→0(x3+2x+1)32(x3+x)=elnlimx→0(x3+2x+1)32(x3+x)==elimx→0ln(x3+2x+1)32(x3+x)=elimx→03ln(x3+2x+1)2(x3+x)

Видим, что преобразование сводится к пределу  вида limx→03ln(x3+2x+1)2(x3+x).

Получаем

limx→03ln(x3+2x+12(x3+x)=00=32limx→0ln(x3+2x+1)x3+x==32limx→0x3+2xx3+x=32limx→0x2+2×2+1=32·02+202+1=3

Данные преобразования были выполнены при помощи применения замены логарифма на эквивалентную бесконечно малую функцию.

Тогда исходный предел принимает вид limx→0(x2+2x+1)32(x3+x)=e3.

Вычисление данного предела возможно с применением второго замечательного предела. Тогда получаем:

limx→0(x2+2x+1)32(x3+x)=limx→0(1+(x3+2x)1×3+2x(x3+2x)32(x3+x)==limx→0(1+(x3+2x))1×3+2×3(x3+2x)2(x3+x)=limx→01+(x3+2x))1×3+2×3(x2+2)2(x2+1)==limx→0(1+(x3+2x)1×3+2×3=e3

Ответ: e3.

Пример 2

Найти  и вычислить предел lim x→π2 (tgx)2 cos x

Решение

Если произведем подстановку, в результате получим ответ в виде бесконечности в степени ноль, а это является знаком, что необходимо применить другой метод для преобразования. Получаем:

lim x→π2 (tg x)2 cos x=∞0=elnlim x→π2(tg x)2cos x==e2lim x→π2(tg x)2cos x=elim x→π2(2cos x·ln·(tg x))==e2lim x→π2ln(tg x)1cos x

Отсюда видно, что решение сводится к переделу lim x→π2ln(tg x)1cos x=∞∞.

Для дальнейшего преобразования применим правило Лопиталя, так как получили неопределенность в виде частного бесконечностей.  Видим, что

lim x→π2ln(tg x)1cos x=∞∞=lim x→π2=ln(tg x)’1cos(x)’==lim x→π21tg (x)·1cos2 (x)sin (x)cos2(x)=lim x→π2cos (x)sin2(x)=cosπ2sin2π2=012=0

Отсюда следует, что пределом показательно-степенной функции является результат, полученный при вычислении. Имеем вы предел вида limx→π2(tg x)2cos x=e2·0=e0=1.

Ответ: 1.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Пределы числовых последовательностей

Содержание

Предел последовательности свойства пределов раскрытие неопределенностей второй замечательный предел число e вычисление пределов числовых последовательностей

Предел числовой последовательности

ОПРЕДЕЛЕНИЕ 1. Число   a   называют пределом числовой последовательности

a1 ,  a2 , … an , …

если для любого положительного числа   ε   найдется такое натуральное число   N ,   что при всех   n > N   выполняется неравенство

| an – a | < ε .

Условие того, что число   a   является пределом числовой последовательности

a1 ,  a2 , … an , … ,

записывают с помощью обозначения

предел числовой последовательности определение

и произносят так: «Предел   an   при   n ,   стремящемся к бесконечности, равен   a ».

      То же самое соотношение можно записать следующим образом:

ana   при предел числовой последовательности определение.

Словами это произносится так: «an   стремится к   a   при   n ,   стремящемся к бесконечности».

ЗАМЕЧАНИЕ. Если для последовательности

a1 ,  a2 , … an , …

найдется такое число   a ,   что   ana   при предел числовой последовательности определение, то эта последовательность ограничена.

ОПРЕДЕЛЕНИЕ 2. Говорят, что последовательность

a1 ,  a2 , … an , …

стремится к бесконечности, если для любого положительного числа   C   найдется такое натуральное число   N ,   что при всех   n > N   выполняется неравенство

| an| > C .

Условие того, что числовая последовательность

a1 ,  a2 , … an , … ,

стремится к бесконечности, записывают с помощью обозначения

предел числовой последовательности определение

или с помощью обозначения

предел числовой последовательности определение при предел числовой последовательности определение.

ПРИМЕР 1. Для любого числа   k > 0   справедливо равенство

предел числовой последовательности

ПРИМЕР 2 . Для любого числа   k > 0   справедливо равенство

предел числовой последовательности

ПРИМЕР 3. Для любого числа   a   такого, что   | a | < 1,   справедливо равенство

предел числовой последовательности

ПРИМЕР 4. Для любого числа   a   такого, что   | a | > 1,   справедливо равенство

предел числовой последовательности

ПРИМЕР 5 . Последовательность

– 1 , 1 , – 1 , 1 , … ,

заданная с помощью формулы общего члена

an = (– 1)n ,

предела не имеет.

Свойства пределов числовых последовательностей

Рассмотрим две последовательности

a1 ,  a2 , … an , … ,   и   b b, … bn , … .

Если при свойства пределов числовых последовательностей существуют такие числа   a   и   b ,  что

свойства пределов числовых последовательностей   и   свойства пределов числовых последовательностей,

то при свойства пределов числовых последовательностей существуют также и пределы суммы, разности и произведения этих последовательностей, причем

Если, кроме того, выполнено условие

свойства пределов числовых последовательностей

то при свойства пределов числовых последовательностей существует предел дроби

свойства пределов числовых последовательностей

причем

Для любой непрерывной функции   f (x)   справедливо равенство

Вывод формулы для суммы членов бесконечно убывающей геометрической прогрессии

Рассмотрим геометрическую прогрессию

b1 ,  b2 , … bn , … ,

знаменатель которой равен   q .

Для суммы первых   n   членов геометрической прогрессии

Sn = b1 + b2 + … + bn  ,       n = 1, 2, 3, …

справедлива формула

предел числовой последовательности вывод формулы суммы членов бесконечно убывающей геометрической прогрессии

Если для суммы всех членов бесконечно убывающей геометрической прогрессии ввести обозначение

S = b1 + b2 + … + bn + … ,

то будет справедлива формула

предел числовой последовательности вывод формулы суммы членов бесконечно убывающей геометрической прогрессии

В случае бесконечно убывающей геометрической прогрессии знаменатель   q   удовлетворяет неравенству

| q | < 1 ,

поэтому, воспользовавшись cвойствами пределов числовых последовательностей и результатом примера 3, получаем

предел числовой последовательности вывод формулы суммы членов бесконечно убывающей геометрической прогрессии

предел числовой последовательности вывод формулы суммы членов бесконечно убывающей геометрической прогрессии

Итак,

предел числовой последовательности вывод формулы суммы членов бесконечно убывающей геометрической прогрессии

Примеры вычисления пределов последовательностей. Раскрытие неопределенностей

ОПРЕДЕЛЕНИЕ 3. Если при нахождении предела дроби выясняется, что и числитель дроби, и знаменатель дроби стремятся к предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов, то вычисление такого предела называют раскрытием неопределенности типа предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов.

Часто неопределенность типа предел числовой последовательности раскрытие неопределенностей примеры вычисления пределовудается раскрыть, если и в числителе дроби, и в знаменателе дроби вынести за скобки «самое большое» слагаемое. Например, в случае, когда в числителе и в знаменателе дроби стоят многочлены, «самым большим» слагаемым будет член с наивысшей степенью.

ПРИМЕР 6. Найти предел последовательности

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

РЕШЕНИЕ. Сначала преобразуем выражение, стоящее под знаком предела, воспользовавшись свойствами степеней:

ОТВЕТ. предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

ПРИМЕР 7 . Найти предел последовательности

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

ОТВЕТ. предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

В следующих двух примерах показано, как можно раскрыть неопределенности типапредел числовой последовательности раскрытие неопределенностей примеры вычисления пределов.

ПРИМЕР 8 . Найти предел последовательности

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

РЕШЕНИЕ. Сначала преобразуем выражение, стоящее под знаком предела, приводя дроби к общему знаменателю:

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

Преобразуем дробь, вынося за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое в каждой из скобок знаменателя дроби:

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

Теперь, используя cвойства пределов последовательностей и результат примера 1, получаем

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

ОТВЕТ. предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

ПРИМЕР 9. Найти предел последовательности

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

РЕШЕНИЕ. В рассматриваемом примере неопределенность типа предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов возникает за счет разности двух корней, каждый из которых стремится к предел числовой последовательности предел функции раскрытие неопределенностей первый замечательный предел. Для того, чтобы раскрыть неопределенность, умножим и разделим выражение, стоящее под знаком предела, на сумму этих корней и воспользуемся формулой сокращенного умножения «разность квадратов».

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

Из-за большого размера формул подробные вычисления видны только на устройствах с разрешением экрана по ширине не менее 768 пикселей (например, на стационарных компьютерах, ноутбуках и некоторых планшетах). На Вашем мобильном устройстве отображается только результат описанных операций.

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

Преобразуем дробь, вынося за скобки «самое большое» слагаемое в числителе дроби и «самое большое» слагаемое из-под каждого корня в знаменателе дроби, а затем сокращая дробь на n2:

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

Теперь, используя cвойства пределов последовательностей и результат примера 1, получаем

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

ОТВЕТ. предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

ПРИМЕР 10. Найти предел последовательности

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

РЕШЕНИЕ. Замечая, что для всех   k = 2, 3, 4, …   выполнено равенство

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов ,

получаем

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

предел числовой последовательности раскрытие неопределенностей примеры вычисления пределов

ОТВЕТ.   1 .

Число e. Второй замечательный предел

Рассмотрим последовательность

второй замечательный предел число e (1)

В дисциплине «Математический анализ», которую студенты естественнонаучных и технических направлений высших учебных заведений изучают на 1 курсе, доказывают, что последовательность (1) монотонно возрастает и ограничена сверху. Из теоремы Вейерштрасса о монотонных и ограниченных последовательностях, доказательство которой выходит за рамки школьного курса математики, вытекает, что последовательность (1) имеет конечный предел. Этот предел принято обозначать буквой   e.

Таким образом, справедливо равенство

второй замечательный предел число e (2)

причем расчеты показывают, что число

e = 2,718281828459045…

и является иррациональным и трансцендентным числом.

Число   e   играет исключительно важную роль в естествознании и, в частности, служит основанием натуральных логарифмов и основанием показательной функции

y = e x,

которую называют «экспонента».

Число   e   также является пределом последовательности

второй замечательный предел число e

второй замечательный предел число e

(3)

что позволяет вычислять число   e   с любой точностью. Конечно же, доказательство формулы (3) выходит за рамки школьного курса математики.

ЗАМЕЧАНИЕ. Предел (2), в котором для последовательностей раскрывается неопределенность типа второй замечательный предел число e, называют вторым замечательным пределом. В разделе нашего справочника «Пределы функций» можно ознакомиться со вторым замечательным пределом для функций.

При вычислении пределов от показательно-степенной функции пользуются либо формулой Вычисление пределов от показательно-степенных функций, либо вторым замечательным пределом.

Пример №1.

Вычислить Вычисление пределов от показательно-степенных функций.

Решение:

Вычисление пределов от показательно-степенных функций Вычисление пределов от показательно-степенных функций, так как

Вычисление пределов от показательно-степенных функций

Пример №1.

Вычислить Вычисление пределов от показательно-степенных функций.

Решение:

Заметим, что Вычисление пределов от показательно-степенных функций, а Вычисление пределов от показательно-степенных функций при Вычисление пределов от показательно-степенных функций. Следовательно, имеется неопределенность вида Вычисление пределов от показательно-степенных функций. Для ее раскрытия воспользуемся вторым замечательным пределом. Получим, что

Вычисление пределов от показательно-степенных функций

так как

Вычисление пределов от показательно-степенных функций

Пример №2.

Вычислить Вычисление пределов от показательно-степенных функций.

Решение:

Вычисление пределов от показательно-степенных функций в силу непрерывности Вычисление пределов от показательно-степенных функций. Вычислим

Вычисление пределов от показательно-степенных функций

Следовательно, Вычисление пределов от показательно-степенных функций.

Пример №3.

Вычислить Вычисление пределов от показательно-степенных функций.

Решение:

Так как Вычисление пределов от показательно-степенных функций, то в данном случае отсутствует неопределенность и

Вычисление пределов от показательно-степенных функций

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Высшая математика краткий курс лекций для заочников

Возможно вам будут полезны эти страницы:

Добавить комментарий