Как найти предел текучести для стали

Разные материалы по-разному реагируют на приложенную к ним внешнюю силу, вызывающую изменение их формы и линейных размеров. Такое изменение называют пластической деформация. Если тело после прекращения воздействия самостоятельно восстанавливает первоначальную форму и линейные размеры – такая деформация называется упругой.

Упругость, вязкость, прочность и твердость являются основными механическими характеристиками твердых и аморфных тел и обуславливают изменения, происходящие с физическим телом при деформации под действием внешнего усилия и ее предельном случае – разрушении. Предел текучести материала – это значение напряжения (или силы на единицу площади сечения), при котором начинается пластическая деформация. Поведение сталей при высоких температурах

Текучесть металла

Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе. Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена. Разрушение или серьезная деформация строительных конструкций или элементов транспортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам. Предел текучести – это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать. Текучесть металла На практике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы. На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций. Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой – компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.

Величина предела текучести материала

С развитием атомной физики в XX веке появилась возможность рассчитать значение параметра теоретическим путем. Эту работы первым проделал Яков Френкель в 1924 году. Исходя из прочности межатомных связей, он путем сложных для того времени вычислений определил величину напряжения, достаточного для начала пластической деформации тел простой формы. Величина предела текучести материала будет равна ττ=G/2π. , где G — модуль сдвига, как раз и определяющий устойчивость связей между атомами.

Расчет величины предела текучести

Гениальное допущение, сделанное Френкелем при расчетах, заключалось в том, что процесс изменения формы материала рассматривался как приводимый в действие напряжениями сдвига. Для начала пластической деформации полагалось достаточным, чтобы одна половина тела сдвинулась относительно другой до такой степени, чтобы не смогла вернуться в начальное положение под действием сил упругости. График физического предела текучести Френкель предположил, что испытываемый в мысленном эксперименте материал имеет кристаллическое или поликристаллическое строение, свойственно для большей части металлов, керамики и многих полимеров. Такое строение предполагает наличие пространственной решетки, в узлах которой в строго определенном порядке расположены атомы. Конфигурация этой решетки строго индивидуальны для каждого вещества, индивидуальны и межатомные расстояния и связывающие эти атомы силы. Таким образом, чтобы вызвать пластическую деформацию сдвига, потребуется разорвать все межатомные связи, проходящие через условную плоскость, разделяющую половины тела. При некотором значении напряжения, равному пределу текучести, связи между атомами из разных половин тела разорвутся, и рады атомов сместятся друг относительно друга на одно межатомное расстояние без возможности вернуться в исходное положение. При продолжении воздействия такой микросдвиг будет продолжаться, пока все атомы одной половины тела не потеряют контакт с атомами другой половины

В макромире это вызовет пластическую деформацию, изменит форму тела и при продолжении воздействия приведет к его разрушению. На практике линия начала разрушений проходит не посередине физического тела, а находится в местах расположения неоднородностей материала.

Физический предел текучести

В теории прочности для каждого материала существует несколько значений этой важной характеристики. Физический предел текучести соответствует значению напряжения, при котором, не смотря на деформацию, удельная нагрузка не меняется вовсе или меняется несущественно. Иными словами, это значение напряжения, при котором физическое тело деформируется, «течет», без увеличения прилагаемого к образцу усилия

Условный предел текучести

Большое число металлов и сплавов при испытаниях на разрыв демонстрируют диаграмму текучести с отсутствующей или слабо выраженной «площадкой текучести». Для таких материалов говорят о условном пределе текучести. Его трактуют как напряжение, при котором происходит деформация в переделах 0,2%. Условный предел текучести К таким материалам относятся легированные и высокоуглеродистые стальные сплавы, бронза, дюралюминий и многие другие. Чем более пластичным является материал, тем выше для него показатель остаточных деформаций. Примером пластичных материалов могут служить медь, латунь, чистый алюминий и большинство низкоуглеродистых стальных сплавов.

Предел текучести стали

Сталь, как самый популярный массовый конструкционный материал, находится под особо пристальным вниманием специалистов по расчету прочности конструкций и предельно допустимых нагрузок на них. Стальные сооружения в ходе их эксплуатации подвергаются большим по величине и сложным по форме комбинированным нагрузкам на растяжение, сжатие, изгиб и сдвиг. Нагрузки могут быть динамическими, статическими и периодическими. Несмотря на сложнейшие условия использования, конструктор должен обеспечить у проектируемых им конструкций и механизмов долговечность, безотказность и высокую степень безопасности как для персонала, таки для окружающего населения. Предел текучести стали Поэтому к стали и предъявляются повышенные требования по механическим свойствам. С точки зрения экономической эффективности, предприятие стремится снизить сечение и другие размеры производимой им продукции, чтобы снизить материалоемкость и вес и повысить, таким образом, эксплуатационные характеристики. На практике это требование должно быть сбалансировано с требования ми по безопасности и надежности, зафиксированными в стандартах и технических условиях. Предел текучести для стали является ключевым параметрам в этих расчетах, поскольку он характеризует способность конструкции выдерживать напряжения без необратимых деформаций и разрушения.

Влияние содержание углерода на свойства сталей

Согласно физико-химическому принципу аддитивности, изменение физических свойств материалов определяется процентным содержанием углерода. Повышение его доли до 1,2% дает возможности увеличить прочность, твердость, предел текучести и пороговую хладоемкость сплава. Дальнейшее повышение доли углерода приводит к заметному снижению таких технических показателей, как способность к свариваемости и предельная деформация при штамповочных работах. Стали с низким содержанием углерода демонстрируют наилучшую свариваемость.

Азот и кислород в сплаве

Эти неметаллы из начала таблицы Менделеева являются вредными примесями и снижают механические и физические характеристики стали, такие, например, как порог вязкости, пластичность и хрупкость. Если кислород содержится в количестве свыше 0,03%- это ведет к ускорению старения сплава, а азот увеличивает ломкость материала. С другой стороны, содержание азота повышает прочность, снижая предел текучести. Микроструктура сплава, в составе которого присутствуют азот и кислород

Добавки марганца и кремния

Легирующая добавка в виде марганца применяется для раскисления сплава и компенсации отрицательного влияния вредных серосодержащих примесей. Ввиду своей близости по свойствам к железу существенного самостоятельного влияния на свойства сплава марганец не оказывает. Типовое содержание марганца – около 0,8%. Кремний оказывает похожее воздействие, его добавляют в процессе раскисления в объемной доле, не превышающей 0,4%. Поскольку кремний существенно ухудшает такой технический показатель, как свариваемость стали. Для конструкционных сталей, предназначенных для соединения сваркой, его доля не должна превышать 0,25%. На свойства стальных сплавов кремний влияния не оказывает.

Примеси серы и фосфора

Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики.

Предельно допустимое содержание этого элемента в виде хрупких сульфитов– 0,06% Сера ухудшает пластичность, предел текучести, ударную вязкость, износостойкость и коррозионную стойкость материалов. Фосфор оказывает двоякое воздействие на физико-механические свойства сталей. С одной стороны, с повышением его содержания повышается предел текучести, однако с другой стороны, одновременно понижаются вязкость и текучесть. Обычно содержание фосфора находится в пределах от 0,025 до 0,044%. Особенно сильное отрицательное влияние фосфор оказывает при одновременном повышении объемных долей углерода.

Легирующие добавки в составе сплавов

Легирующими добавками называют вещества, намеренно введенные в состав сплав для целенаправленного изменения его свойств до нужных показателей. Такие сплавы называют легированными сталями. Лучших показателей можно добиться, добавляя одновременно несколько присадок в определенных пропорциях. Влияние легирующих элементов на свойства стали Распространенными присадками являются никель, ванадий, хром, молибден и другие. С помощью легирующих присадок улучшают значение предела текучести, прочности, вязкости, коррозионной стойкости и многих других физико-механических и химических параметров и свойств.

Текучесть расплава металла

Текучестью расплава металла называют его свойство полностью заполнять литейную форму, проникая в малейшие полости и детали рельефа. От этого зависит точность отливки и качество ее поверхности. Жидкий металл для процессоров Свойство можно усилить, если поместить расплав под избыточное давление. Это физическое явление используется в установках литья под давлением. Такой метод позволяет существенно повысить производительность процесса литья, улучшить качество поверхности и однородность отливок.

Испытание образца для определения предела текучести

Чтобы провести стандартные испытания, используют цилиндрический образец диаметром 20 мм и высотой 10 мм, закрепляют его в испытательной установке и подвергают растягиванию. Расстояние между нанесенными на боковой поверхности образца метками называют расчетной длиной. В ходе измерений фиксируют зависимость относительного удлинения образца от величины растягивающего усилия. Зависимость отображают в виде диаграммы условного растяжения. На первом этапе эксперимента рост силы вызывает пропорциональное увеличение длины образца. По достижении предела пропорциональности диаграмма из линейной превращается в криволинейную, теряется линейная зависимость между силой и удлинением. На этом участке диаграммы образец при снятии усилия еще может вернуться к исходным форме и габаритам.

Для большинства материалов значения предела пропорциональности и предела текучести настолько близки, что в практических применениях разницу между ними не учитывают

Вопросы, рассмотренные в материале:

  • Что такое предел текучести стали
  • Практическое значение предела текучести стали
  • Влияние различных добавок на предел текучести стали
  • Значение предела текучести стали по ГОСТу
  • Проверка сплава на предел текучести

Что такое предел текучести стали

Различные марки стали широко применяются в большинстве областей современной промышленности. Стальные сплавы имеют высокие эксплуатационные характеристики, которые делают их востребованным материалом в строительстве, в машино- и станкостроении, в производстве самых разных механизмов, инструментов, медицинского оборудования и т. д.

На стадии проектирования специалистам необходимо принимать в расчет целый ряд важных характеристик металла, одной из которых является предел его текучести.

Конструктору-проектировщику необходимо подбирать сплав, исходя из его механических свойств. Предел текучести стали – это напряжение, при котором деформации нарастают без увеличения прилагаемой нагрузки. Соответственно, чем меньше это значение, тем хуже прочностные характеристики металла и ниже нагрузки, при которых допустима эксплуатация изделий.

При проектировании элементов конструкций и деталей для различных сооружений и механизмов инженерам необходимо исключить возможность серьезных изменений и разрушения. В ходе создания проекта обязательно учитывается, какой предел текучести стали допустим для деталей данного агрегата, так как от этого зависит, помимо эксплуатационных качеств, безопасность людей.

Предел текучести конструкционной стали позволяет судить о допустимых нагрузках для конкретных материалов и изготовленных из них деталей механизмов или элементов конструкций. Проще говоря, это максимальная нагрузка для:

  • зданий;
  • сооружений;
  • деталей и узлов механизмов.

Изначально этот параметр определяли эмпирическим путем. Только в XIX веке учеными были заложены основы сопромата – науки о прочности и надежности деталей механизмов и конструкций.

Развитие ядерной физики в начале прошлого столетия сделало возможным определение расчетного предела текучести стали. В работах, опубликованных в 1924 году, Яков Френкель смог определить значение напряжения, которого достаточно для деформирования простых тел, используя в качестве исходной величины прочность связей между атомами. Такие вычисления в начале XX века были крайне сложными, но начало было положено.

Значение предела текучести ученый рассчитал по формуле:

ττ = G / 2π, где

G – модуль сдвига, определяющий устойчивость межатомных связей,

ττ – обозначение предела текучести стали при кручении.

По мере развития науки повысившаяся точность расчетов позволила существенно расширить область применения металлоконструкций и механизмов в строительстве и многих других сферах.

Практическое значение предела текучести стали

Специалисты уделяют стальным сплавам особое внимание, разрабатывая методики расчета прочностных показателей и определяя предельно допустимые нагрузки на детали из разных типов стали, так как сегодня это самый востребованный в промышленности и строительстве материал.

Детали и элементы из стали при эксплуатации часто испытывают на себе серьезные нагрузки, в том числе и комбинированные. Изделия подвергаются растяжению, сжатию, изгибанию и сдвигу. Нагрузка может быть статической, динамической или циклической, когда максимум напряжения снова и снова достигается через определенные промежутки времени. Задача специалиста в том, чтобы сделать будущую конструкцию или механизм максимально долговечным, надежным и безопасным.

Типы стали с высоким пределом текучести востребованы по экономическим соображениям, так как дают возможность снизить металлоемкость и массу изделий, сохраняя при этом высокое качество и соответствие нормам ГОСТа, ТУ и другим стандартам.

Расчетное сопротивление стали по пределу текучести – ключевой показатель, характеризующий устойчивость деталей к деформированию и разрушению под действием различных нагрузок.

Влияние различных добавок на предел текучести стали

Влияние содержания углерода на свойства стали

В соответствии с принципом аддитивности можно проследить зависимость предела текучести стали от процентной доли содержащегося в ней углерода. Увеличивая концентрацию этого элемента до 1,2 %, можно добиться также повышения прочности, твердости и пороговой хладоемкости.

Влияние различных добавок на предел текучести стали

При увеличении процентной доли углерода выше 1,2 % углеродистая сталь демонстрирует существенное ухудшение таких характеристик, как свариваемость и предельная пластичность. Лучше всего поддаются сварке низкоуглеродистые типы стали.

Азот и кислород в сплаве

Оба этих элемента, стоящих в начале периодической таблицы, относят к вредным примесям. Они ухудшают качество сплава, отрицательно сказываясь на его вязкости и пластичности, снижая сопротивление хрупкому разрушению. Доля кислорода в составе выше 0,03 % ускоряет старение стали, а примесь азота способствует повышению ее ломкости. Однако в отдельных случаях азот может улучшать прочностные характеристики за счет снижения предела текучести.

Добавки марганца и кремния

Марганец в качестве легирующей добавки используют, чтобы раскислить сплав и нивелировать вредное воздействие серы. Благодаря близости свойств этого металла и железа его добавление в состав стальных сплавов само по себе не оказывает какого-либо заметного влияния на их характеристики. Обычно в стали содержится порядка 0,8 % этого элемента.

Кремний добавляют для раскисления сплава в концентрации не более 0,4 %. Дальнейшее повышение процентной доли этого элемента отрицательно сказывается на свариваемости. В конструкционных марках стали по этой причине содержание кремния не превышает 0,25 %. В остальном добавление этого компонента не меняет ключевых свойств металла.

Примеси серы и фосфора

Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики материалов. Предельно допустимое содержание этого элемента в стальных сплавах в виде хрупких сульфитов – 0,06 %.

Присутствие серы в составе стали ведет к снижению таких показателей, как предел текучести, пластичность, ударная вязкость, устойчивость к износу и коррозии.

Воздействие фосфора двояко: он влияет на ряд физико-химических характеристик. Добавление этого элемента повышает предел текучести, но при этом параллельно снижает ударную вязкость и пластичность. Допустимая процентная доля этой примеси колеблется от 0,025 до 0,044 %. Негативное воздействие фосфора усиливается при повышении углеродистости сплава.

Легирующие добавки в составе сплавов

Легирующие элементы (специальные добавки) используются для приведения его характеристик к требуемым значениям. Улучшенный таким способом металл принято называть легированным. Для достижения оптимального эффекта такие дополнения вводятся комбинированно с соблюдением нужных пропорций.

Легирующие добавки в составе сплавов

Для легирования используют хром, никель, ванадий, молибден и другие элементы. Их добавление дает возможность повысить предел текучести, прочность, ударную вязкость, устойчивость к коррозии и ряд других механических и физико-химических характеристик.

Значение предела текучести стали по ГОСТу

Предел текучести (σТ) для различных марок стали регламентируют соответствующие ГОСТы. Все значения указаны в МПа и с примечанием «не менее». Ниже приводятся примеры для наиболее широко применяемых типов.

ГОСТ 1050 от 1988 года для качественных углеродистых конструкционных видов стали содержит значения предела текучести сплава при температуре +20 °С (образцы, диаметр или толщина которых не превышает 80 мм):

  • сталь 20 (Ст20, 20) при T = +20 °С, прокат, нормализованная – не менее 245 МПа;
  • сталь 30 (Ст30, 30) при T = +20 °С, прокат, нормализованная – не менее 295 МПа;
  • сталь 45 (Ст45, 45) при T = +20 °С, прокат, нормализованная – не менее 355 МПа.

Значение предела текучести стали по ГОСТу

Если сталь изготавливается по согласованию с заказчиком, то ГОСТ предусматривает другие нормы. В частности, нормативный предел текучести стали для образцов, прошедших термообработку, должен быть:

Сталь 30 (Ст30, закалка и отпуск)

  • прокат размером до 16 мм – не менее 400 МПа;
  • прокат размером от 16 до 40 мм – не менее 355 МПа;
  • прокат размером от 40 до 100 мм – не менее295 МПа.

Сталь 45 (Ст45, закалка и отпуск)

  • прокат размером до 16 мм – не менее 490 МПа;
  • прокат размером от 16 до 40 мм – не менее 430 МПа;
  • прокат размером от 40 до 100 мм – не менее 375 МПа.

Указанные для Ст30 параметры относятся к прокату до 63 мм (ГОСТ 4543 от 1971 года).

Сталь 40Х (СТ40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543 от 1971 года): для проката размером 25 мм (закалка и отпуск)– предел текучести не менее 785 МПа.

Сталь 09Г2С (лист, конструкционная низколегированная для сварных конструкций, кремнемарганцовистая, ГОСТ 5520 от 1979 года) – предел текучести не менее 265 – 345 МПа. При высокой температуре предел текучести стали составляет: +250 °С – 225 МПа; +300 °С –196 МПа; +350 °С – 176 МПа; +400 °С – 157 МПа.

Сталь 3 (углеродистая обыкновенного качества, ГОСТ 380 от 2005 года) выпускается под марками: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, каждая имеет регламентированный минимальный предел текучести.

Проверка сплава на предел текучести

Перед началом производства свойства сплавов изучают, проводя испытания, в ходе которых образцы подвергают воздействию различных нагрузок до полной утраты изначальных характеристик.

Проверка сплава на предел текучести

Металл подвергают:

  • статистическим нагрузкам;
  • проверке на выносливость и усталость;
  • растягиванию;
  • изгибанию и скручиванию;
  • изгибанию с растяжением.

Для испытания образцов пользуются специальным оборудованием, создавая близкие или аналогичные таковым условия при последующей эксплуатации изделий.

Для исследования берется образец цилиндрической формы (сечение 20 мм, длина 10 мм), на который воздействует растягивающая нагрузка. Для захвата вырезается заготовка большей длины, на ней отмечается расчетный отрезок в 10 мм. Увеличивая силу воздействия, фиксируют удлинение, отмечая данные на графике – диаграмме условного растяжения.

При малой силе воздействия происходит пропорциональное удлинение расчетного отрезка, пока по мере увеличения напряжения не будет достигнут предел пропорциональности.

Далее удлинение становится непропорциональным и достигает порога, пройдя который образец не может вернуться к изначальной длине. На следующем этапе изменение длины идет без увеличения силы, воздействующей на него, – достигается предел текучести. К примеру, для прута Ст3 это состояние возникает при нагрузке 240 МПа.

Материалы, самостоятельно деформирующиеся в течение длительного периода времени при неизменной силе воздействия, принято называть идеально пластическими.

Случается, что нет возможности четко определить площадку текучести. В таких случаях пользуются определением «условный предел текучести», который подразумевает деформацию или остаточное изменение около 0,2 %. Эта величина может варьировать в зависимости от того, насколько пластичен конкретный металл.

Чем ниже пластичность, тем меньше остаточное изменение. Слабо выраженная деформация свойственна «уплотняющимся сплавам» – меди, латуни, алюминию, низкоуглеродистым типам стали.

В ходе исследований и испытаний выяснилось, что в металле, который начал «течь», имеют место существенные искажения кристаллической решетки с формированием линий сдвига слоев.

После самопроизвольного растяжения металл достигает следующего состояния и вновь начинает сопротивляться деформированию. Далее материал проходит предел прочности, образуется слабая область, где образец начинает сужаться.

Происходит быстрое уменьшение площади поперечного сечения, сопровождаемое одновременным падением величины силы воздействия и напряжения с последующим разрывом образца.

Наиболее прочные сплавы выдерживают напряжение до 1 716 МПа. Предел текучести высокопрочной стали Ст3 колеблется от 392 до 490 МПа.

Предел текучести – одна из ключевых характеристик стальных сплавов. Современная промышленность требует большого количества деталей из стали, обладающих высокой прочностью. Поэтому специалисты обязаны уметь правильно рассчитывать главные параметры будущих изделий и применять расчетные данные на практике.

Предел текучести стали

Содержание

  1. Что это такое?
  2. Влияющие факторы
  3. Показатели для разных сталей
  4. Как рассчитать?
  5. Проведение испытаний на производстве

Сталь – востребованный в промышленной и строительной сферах материал, который отличается высокими эксплуатационными характеристиками и отлично подходит для возведения зданий, сооружений, мостов и других объектов.

При проектировании определенных конструкций инженеры учитывают свойства стали, среди которых – предел текучести. Стоит подробнее рассмотреть, что представляет собой нормативная характеристика, и как ее правильно рассчитать.

Что это такое?

Каждый конструктор должен знать все о механических свойствах материала, с которым работает. Предел текучести – максимально допустимая нагрузка, которая не разрушит конструкцию в момент приложения. Чем выше обозначение показателя, тем более прочным считается изделие, и тем большую нагрузку оно способно выдержать. Разрушение или серьезная деформация строительных элементов, используемых для возведения различных объектов, недопустимо. Поэтому при проектировании необходимо в обязательном порядке учитывать предел текучести, который предупреждает серьезные разрушения конструкций с возможностью появления человеческих жертв.

Если рассматривать предел текучести на практике, то он определяет, какую нагрузку можно прикладывать материалу и деталям или элементам, которые были из него изготовлены. Другими словами, предел текучести – особая нагрузка, которую способно выдержать:

  • здание;
  • сооружение;
  • механизм.

Ранее показатель определяли посредством проведения опытов, и лишь в XIX веке ученые пришли к сопромату или теории сопротивления материалов. Теперь вопрос надежности решается заложенным в материал запасом прочности. Увеличение этого показателя привело к повышению стоимости конструкций и расширению возможностей строительной и промышленной сфер.

Влияющие факторы

Свойства металла определяет тип кристаллической решетки, которая формируется исходя из процентного содержания углерода в составе. Отследить зависимость строения решетки от количества углеродных соединений можно на специальной структурной диаграмме. Например, если металл содержит 0,06% углерода, то это феррит, для которого характерна особая структура решетки – зернистая. Среди свойств материала выделяют прочность и повышенную текучесть, что позволяет ему выдерживать большие нагрузки.

По структуре стали классифицируют на:

  • ферритную;
  • перлитно- или цементитно-ферритовую;
  • цементитно-перлитовую;
  • перлитную.

Каждый металл обладает своими характеристиками и показателем текучести, определяющим максимальную несущую способность материала, при которой он не будет деформироваться или разрушаться.

Марганец и кремний

Представляют собой специальные добавки, за счет них удается поднять степень, при которой происходит раскисление материала. Дополнительно посредством применения этих элементов получается уменьшить вредное воздействие серы, и улучшить технические характеристики. Кремний, например, повышает свариваемость металла. Среднее содержание компонента составляет 0,38%. В основном добавление элемента происходит в период раскисления материала.

Сера и фосфор

Серу используют в виде хрупких сульфитов, способных изменить механические показатели сплава. Чем больше этого элемента, тем ниже:

  • пластичность;
  • текучесть;
  • вязкость.

При чрезмерных добавлениях серы свойства металла ухудшаются, он становится неустойчив к коррозии и сильному истиранию, быстро приходит в негодность. Фосфор служит для повышения показателя текучести и уменьшения пластичности сплава. Однако в больших количествах компонент также способен навредить металлу. Поэтому оптимальные значения серы и фосфора достигают соответственно 0,025% и 0,044%.

Азот и кислород

Компоненты неметаллического типа, посредством которых понижают механические свойства сплава. Большое содержание кислорода ускоряет коррозионные процессы и укорачивает срок службы изделия, также наличие подобного компонента негативно отражается на показателях пластичности и вязкости.

Азот, наоборот, способен повысить прочность материала. Однако в этом случае страдает предел текучести, а это значит, что металл не сможет вынести большие нагрузки.

Легирующие добавки

Они улучшают «физику» стали, повышая такие показатели, как текучесть, вязкость удара и прочность. Наличие подобных добавок предотвращает несвоевременные деформации и растрескивание материала. Среди распространенных компонентов:

  • вольфрам;
  • никель;
  • титан;
  • ванадий.

А также в качестве легирующей добавки используют хром.

Показатели для разных сталей

У сталей разных марок разный предел текучести. Если рассматривать варианты сортового проката размером 80 мм, то для них характерны следующие значения.

  • 20. Текучесть при температуре в 20 градусов по Цельсию достигает 245 Н/мм2. Если переводить в килограмм-силы, то показатель равен 25 кгс/мм2.
  • 30. Параметр достигает 295 Н/мм2 или 36 кгс/мм2.
  • 45. Максимальный предел текучести обладает значением 355 Н/мм2, которое достигается при температуре в 20 градусов по Цельсию после нормализации стали.

Дополнительно ГОСТ 1050-88 предусматривает для ряда сталей измененные параметры нормативного предела текучести, которые определяются исходя из требований потребителя и возможностей изготовителя. Например, образцы, вырезанные из заготовок, подвергшихся термической обработке, выдают следующие значения.

  • Сталь 30. Параметр зависит от толщины листовой стали. Прокат, размер которого не превышает 16 мм, демонстрирует предел текучести в 400 Н/мм2, от 16 до 40 мм – 355 Н/мм2, от 40 до 100 мм – от 295 Н/мм2.
  • Сталь 45. При таких же размерах показатели предела текучести составляют соответственно 490 Н/мм2, 430 Н/мм2 и 375 Н/мм
  • Сталь 40Х и 40ХН. Легированный хромистый материал, характеристики которого регулирует ГОСТ 4543-71. Прокат размером 25 мм обладает пределом текучести в 785 Н/мм2. Такого показателя удается добиться после прохождения металлом термической обработки. У стали 45Х показатель выше.
  • Сталь 09Г2С. Основные характеристики представлены в ГОСТ 5520-79. Сталь представляет конструкционный низколегированный материал, используемый для сборки сварных конструкций. Особенность марки – высокая прочность, максимальная текучесть составляет 345 Н/мм2. Чем выше температура эксплуатации материала, тем ниже показатель, и тем больше требований по использованию.
  • Сталь 3. Представляет металл с большим содержанием углерода, характеристики которого можно посмотреть в ГОСТ 380-200. Производители выпускают несколько марок такого вида стали: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, С245. У каждой марки своя текучесть, которая лежит в пределах от 195 до 235 Н/мм2.

А также существуют показатели для сталей 35, 50, 20Х, С245, 10ХСНД и других марок. Чем выше показатель, тем более высокопрочный материал и выше его устойчивость к внешним воздействиям в виде внушительных нагрузок.

Как рассчитать?

Френкель – один из известных ученых, которому приписывают гениальное допущение. Ранее под изменением материала формы понимали деформацию, которая происходит в результате воздействия на структуру материала напряжений сдвига. В рукописях прошлого столетия полагали, что для запуска пластической деформации материала достаточно сдвига одной половины изделия до точки, когда уже невозможно вернуться в первоначальное положение. Френкель первым выдвинул предположение, что у материала может быть особое строение, которое включает кристаллы или представляет полукристаллическое пространство, что свойственно, например, для:

  • металлов 30ХГСА, 5, 65Г, 17Г1С и других марок;
  • керамики;
  • полимеров.

Подобный вид строения материала говорит о существовании пространственной решетки, в узлах которой собрано определенное количество атомов. Строение решеток бывает разным и строго уникальным для каждого вещества, где также отличаются расстояния между атомами в узлах решетки. Поэтому для вызова сдвига и деформации, которая после него следует, необходимо приложить усилия для разрыва межатомных связей.

Предел текучести – особый показатель напряжения, которое необходимо для разрыва связей между атомами. Приложение подобного усилия приведет к смещению элементов относительно друг друга без возможности возвращения первоначального положения, так как силы упругости уже не будут действовать. В макромире прикладывание усилий, равных пределу текучести, приводит к развитию в материале деформаций пластического типа, способных изменить его форму и размеры. Результатом такого воздействия становится изменение формы и тела стали с последующим отказом и разрушением структуры.

Расчетное сопротивление определяют посредством испытаний стандартных образцов. По мере исследования формируется график, по которому удается узнать, где сталь «течет».

Проведение испытаний на производстве

Испытания для определения показателя текучести проводят с применением предварительно подготовленных образцов и специального оборудования. Вот основные этапы исследования.

  • Сначала цилиндрический образец, сечение которого составляет 20 мм в диаметре и 10 мм в длине, ставят в предварительно подготовленную установку.
  • Оборудование запускают, и начинают замеры, постепенно отмечая результаты в тетради или блокноте, а также отслеживая диаграмму растяжения на экране, если есть такая возможность.
  • Строят график, где наглядно отображается изменение структуры образца.
  • Фиксируют значение усилия при разрушении цилиндра.

Далее приступают к оценке графика. Как показывают результаты, небольшая нагрузка приводит к прямо пропорциональному удлинению образца. При постепенном увеличении силы растяжения заготовка достигает предела, где заканчивается пропорциональность, после чего изделие достигает точки невозврата, когда исходник не сможет вернуться к первоначальной длине при снятии нагрузки. Со временем даже без изменения нагрузки деталь продолжит меняться, пока не достигнет предела и не разрушится.

Например, недавно проведенные испытания доказали, что стальной прут Ст3 разрушается при достижении нагрузки в 2450 кг.

Изделия из стали востребованы во всех отраслях народного хозяйства. Сталь используется при строительстве домов, мостов и других сооружений. При создании той или иной стальной конструкции учитываются прочностные характеристики. Одной из них является предел текучести стали. Его определение позволяет увеличить срок службы металлического изделия.

Блок: 1/5 | Кол-во символов: 345
Источник: https://promzn.ru/metallurgiya/predel-tekuchesti-stali.html

Содержание

  • 1 Основное определение
  • 2 Условный предел текучести
  • 3 Какие факторы изменяют предел текучести
    • 3.1 Влияние добавок марганца и кремния
    • 3.2 Влияние добавок серы и фосфора
    • 3.3 Влияние добавок азота и кислорода
    • 3.4 Влияние легирующих добавок
  • 4 Предел текучести металла
  • 5 Как рассчитывается величина текучести стали
  • 6 Предел текучести стали
  • 7 Проверка сплава
    • 7.1 Проведение испытаний
    • 7.2 Невыраженная точка текучести
    • 7.3 Характеристика пластичности
    • 7.4 Показатель хрупкости
    • 7.5 Прочность материала
  • 8 Текучесть расплава

Основное определение

В процессе использования на любое сооружение приходятся разные нагрузки в виде сжатий, растяжений или ударов. Они могут действовать как обособленно, так и совместно.

Современные конструкторы стремятся уменьшить массу стальных деталей для экономии материала, но при этом не допустить критичного снижения несущей способности всей конструкции. Происходит это засчет уменьшения сечения стальных арматур.

В зависимости от назначения объектов, могут меняться некоторые требования к стали, но имеется перечень стандартных и важных показателей. Их величины рассчитывают на этапе проектирования деталей и узлов будущего сооружения. Заготовка должна обладать высокой прочностью при соответствующей пластичности.

В первую очередь при расчетах прочности изделия из стали обращают внимание на предел текучести. Это значение характеризующее поведение деталей при воздействиях на них.

Предел текучести материала — это величина критического напряжения, при которой материал продолжает самостоятельную деформацию без увеличения нагрузки. Эта характеристика измеряется в Паскалях и позволяет рассчитывать максимально возможное напряжение для пластичной стали.

После прохождения этого предела в материале происходят невосстановимые процессы искажения кристаллической решетки. При последующем увеличении силы воздействия на заготовку и преодолении площадки текучести, деформация увеличивается.

Предел текучести иногда путают с пределом упругости. Это похожие понятия, но предел упругости — это величина максимального сопротивления металла и она чуть ниже предела текучести.

Величина текучести примерно на пять процентов превышает предел упругости.

Блок: 2/4 | Кол-во символов: 1663
Источник: https://tokar.guru/hochu-vse-znat/opredelenie-predela-tekuchesti-stali.html

Условный предел текучести

Условный предел текучести (он же технический предел текучести). Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести — напряжение, при котором остаточная деформация образца достигает определённого значения, установленного техническими условиями (большего, чем это установлено для предела упругости). Под условным пределом текучести обычно подразумевают такое напряжение, при котором остаточная деформация составляет 0,2%. Таким образом обычно условный предел текучести при растяжении обозначается σ0,2.

Выделяют также условный предел текучести при изгибе и условный предел текучести при кручении.

Блок: 2/5 | Кол-во символов: 736
Источник: http://www.modificator.ru/terms/sigma_t.html

Какие факторы изменяют предел текучести

Сталь – это сплав железа с углеродом, количество которого определяет свойства металла. Углерод придает сплавам твердость и прочность. Текучесть металла увеличивается, если количество углеродной добавки составляет порядка 1,2%. Такое соотношение позволяет улучшить прочностные характеристики и повысить устойчивость к высоким температурам. Увеличение содержания углерода приводит к ухудшению технических параметров металла.

Влияние добавок марганца и кремния

Марганец не оказывает влияния на технические свойства сплава. Его добавляют в целях увеличения степени раскисления металла и уменьшения вредного воздействия серы. Обычно его содержание не превышает 0,8%.

Добавка кремния позволяет улучшить качество сварки. Его добавляют в процессе раскисления. А общее содержание данного элемента не превышает 0,38%.

Влияние углерода на механические свойства стали

Влияние добавок серы и фосфора

Количество серы, добавляемой в сплав, оказывает влияние на его механические показатели. Увеличенное содержание серы значительно снижает пластичность, вязкость и текучесть металла. Наибольшему истиранию подвержены изделия, содержащие более 0,6% серы.

Добавление фосфора позволяет улучшить показатели текучести. Однако данный элемент способствует снижению пластичности, вязкости и общих характеристик металла. Допустимым количеством фосфора считается не более 0,025-0,044%.

Как влияют сера и фосфор на свойства стали

Влияние добавок азота и кислорода

Азот и кислород относятся к неметаллическим примесям, поэтому их содержание должно быть минимальным. Если металл содержит более 0,03% кислорода, его эксплуатационные характеристики ухудшаются. Снижение пластичности и вязкости приводит к быстрому износу изделий.

Добавление азота способствует увеличению прочности стали. Но вместе с ней происходит уменьшение предела текучести материала. Если количество азота превышает допустимые значения, металлические конструкции быстро стареют за счет повышенной ломкости.

Микроструктура сплава, в составе которого присутствуют азот и кислород

Влияние легирующих добавок

К легирующим добавкам относятся химические элементы, добавляемые в сплав для придания определенных свойств. К числу легирующих элементов относятся:

Влияние легирующих элементов на свойства стали

  • хром;
  • титан;
  • вольфрам;
  • никель;
  • ванадий;
  • молибден.

Для получения оптимальных результатов их добавляют все вместе, соблюдая определенные пропорции.

Блок: 3/5 | Кол-во символов: 2401
Источник: https://promzn.ru/metallurgiya/predel-tekuchesti-stali.html

Предел текучести металла

Характеристика, данная выше, справедлива в первую очередь для предела текучести металла. Предел текучести металла измеряется в кг/мм2 или Н/м2. На значение предела текучести металла влияют самые разные факторов, например: толщина образца, режим термообработки, наличие тех или иных примесей и легирующих элементов, микроструктура, тип и дефекты кристаллической решётки и др. Предел текучести металлов сильно меняется с изменением температуры.

Блок: 3/5 | Кол-во символов: 508
Источник: http://www.modificator.ru/terms/sigma_t.html

Как рассчитывается величина текучести стали

Первые расчеты величины текучести металла были выполнены в 30-х годах прошлого столетия советским ученым Яковом Френкелем. В их основу была положена прочность межатомных связей. Ученому удалось определить, какое напряжение требуется для начала пластической деформации простых тел.

Для расчета данной величины применяется следующая формула:

Предел текучести стали

ττ=G/2π, где величина G является модулем сдвига, определяющим устойчивость межатомных связей.

Как физик-теоретик, Френкель предположил, что материалы состоят из кристаллов, между которыми есть пространство. Там в определенном порядке расположены атомы. Чтобы достичь пластической деформации, необходимо разорвать межатомные связи в плоскости, разделяющей половинки тела.

Ряды атомов сместятся и половинки тела разорвутся, если на них оказать напряжение, величина которого соответствует определенному значению. Если воздействие будет оказываться и дальше, атомы одной половинки потеряют связь с атомами другой половинки.

Отчасти Френкель оказался прав. Только разрушение произойдет не между половинками тела, то есть посередине, а в том месте, где структура материала неоднородна.

Для каждого вида металла существует несколько значений предела текучести.

Физический предел текучести. Данной величиной обозначают силу напряжения, при которой тело деформируется без изменения прилагаемой нагрузки.

График физического предела текучести стали

Условный предел текучести. Данный термин применяют к силе напряжения, при которой значение пластической деформации материала составляет около 0,2%.

Блок: 4/5 | Кол-во символов: 1583
Источник: https://promzn.ru/metallurgiya/predel-tekuchesti-stali.html

Предел текучести стали

Предел текучести сталей в ГОСТах указывается с пометкой «не менее», единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.

Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:

  • Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм2 или 25 кгс/мм2.
  • Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм2 или 36 кгс/мм2.

Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:

  • Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм2 или 41 кгс/мм2; прокат размером от 16 до 40 мм — не менее 355 Н/мм2 или 36 кгс/мм2; прокат размером от 40 до 100 мм — не менее295 Н/мм2 или 30 кгс/мм2.
  • Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм2 или 50 кгс/мм2; прокат размером от 16 до 40 мм — не менее 430 Н/мм2 или 44 кгс/мм2; прокат размером от 40 до 100 мм — не менее 375 Н/мм2 или 38 кгс/мм2.

*Механические свойства стали 30 распространяются на прокат размером до 63 мм.

Предел текучести стали 40Х (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм2 или 80 кгс/мм2.

Предел текучести стали 09Г2С (ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая). Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм2 (27 кгс/мм2) до 345 Н/мм2 (35 кгс/мм2). Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).

Предел текучести стали 3. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм2 (не менее).

Блок: 4/5 | Кол-во символов: 3000
Источник: http://www.modificator.ru/terms/sigma_t.html

Проверка сплава

Перед запуском в производство для изучения свойств металлического сплава, проводят испытания. На образцы металла воздействуют различными нагрузками до полной потери всех свойств.

Нагрузки бывают:

  • Статистическая нагрузка.
  • Проверка на выносливость и усталость стали.
  • Растягивание элемента.
  • Тестирование на изгиб и кручение.
  • Совместная выносливость на изгиб и растяжение.

Для этих целей применяют специальные станки и создают условия, максимально приближенные к режиму эксплуатации будущей конструкции.

Проведение испытаний

Для проведения испытаний на цилиндрический образец сечением в двадцать миллиметров и расчетной длиной в десять миллиметров применяют нагрузку на растяжение. Сам образец имеет длину более десяти миллиметров, чтобы была возможность надежно его захватить, а на нем отмечена длина в десять миллиметров и именно она называется расчетной. Силу растяжения увеличивают и замеряют растущее удлинение образца. Для наглядности данные наносят на график. Он носит название диаграммы условного растяжения.

При небольшой нагрузке образец удлиняется пропорционально. Когда сила растяжения достаточно увеличится, то будет достигнут предел пропорциональности. После прохождения этого предела начинается непропорциональное удлинение материала при равномерном изменении силы растяжения. Затем достигается предел, после прохождения которого образец не может возвратиться к первоначальной длине. При прохождении этого значения, изменение испытываемой детали происходит без увеличения силы растяжения. Например, для стального прута Ст. 3 эта величина равна 2450 кг на один квадратный сантиметр.

Невыраженная точка текучести

Если при постоянной силе воздействия, материал способен длительное время самостоятельно деформироваться, то его называют идеально пластическим.

При испытаниях часто бывает, что площадка текучести нечетка определена, тогда вводят определение условного предела текучести. Это означает, что сила, действующая на металл, вызвала деформацию или остаточное изменение около 0.2%. Значение остаточного изменения зависит от пластичности металла.

Чем металл пластичнее, тем выше значение остаточной деформации. Типичными сплавами, в которых нечетко выражена такая деформация, являются медь, латунь, алюминий, стали с малым содержанием углерода. Образцы этих сплавов называют уплотняющимися.

Когда металл начинает «течь» то, как демонстрируют опыты и исследования, в нём происходят сильные изменения в кристаллической решетке. На её поверхности появляются линии сдвига и слои кристаллов значительно сдвигаются.

После того как металл самопроизвольно растянулся, он переходит в следующее состояние и опять приобретает способность сопротивления. Затем сплав достигает своего предела прочности и на детали четко проявляется наиболее слабый участок, на котором происходит резкое сужение образца.

Площадь поперечного сечения становится меньше и в этом месте происходит разрыв и разрушение. Величина силы растяжения в этот момент падает вместе со значением напряжения и деталь рвётся.

Высокопрочные сплавы выдерживают нагрузку до 17500 килограмм на сантиметр квадратный. Предел прочности стали СТ.3 находится в пределах 4−5 тыс. килограммов на сантиметр квадратный.

Характеристика пластичности

Пластичность материала является важным параметром, который должен учитываться при проектировании конструкций. Пластичность определяется двумя показателями:

  • остаточным удлинением;
  • сужением при разрыве.

Остаточное удлинение вычисляют путем замера общей длины детали после того, как она разорвалась. Она состоит из суммы длин каждой половины образца. Затем в процентах определяют отношение к первоначальной условной длине. Чем прочнее металлический сплав, тем меньше значение относительного удлинения.

Остаточное сужение — это отношение в процентах самого узкого места разрыва к изначальной площади сечения исследуемого прута.

Показатель хрупкости

Самым хрупким металлическим сплавом считается инструментальная сталь и чугун. Хрупкость — это свойство обратное пластичности, и оно несколько условно, поскольку сильно зависит от внешних условий.

Такими условиями могут являться:

  • Температура окружающей среды. Чем ниже температура, тем хрупче становится изделие.
  • Скорость изменения прилагаемого усилия.
  • Влажность окружающей среды и другие параметры.

При изменении внешних условий, один и тот же материал ведет себя по-разному. Если чугунную болванку зажать со всех сторон, то она не разбивается даже при значительных нагрузках. А, например, когда на стальном пруте есть проточки, то деталь становиться очень хрупкой.

Поэтому на практике применяют не понятие предела хрупкости, а определяют состояние образца как хрупкое или довольно пластичное.

Прочность материала

Это механическое свойство заготовки и характеризуется способностью выдерживать нагрузки полностью не разрушаясь. Для испытываемого образца создают условия наиболее отражающие будущие условия эксплуатации и применяют разнообразные воздействия, постепенно увеличивая нагрузки. Повышение сил воздействия вызывают в образце пластические деформации. У пластичных материалов деформация происходит на одном, ярко выраженном участке, который называется шейка. Хрупкие материалы могут разрушаться на нескольких участках одновременно.

Сталь проходит испытание для точного выяснения различных свойств, чтобы получить ответ о возможности её использования в тех или иных условиях при строительстве и создании сложных конструкций.

Значения текучести различных марок сталей занесены в специальные Стандарты и Технические Условия. Предусмотрено четыре основных класса. Значение текучести изделий первого класса может доходить до 500 кг/см кв., второй класс отвечает требованиям к нагрузке до 3 тыс. кг/см кв., третий — до 4 тыс. кг/см кв. и четвертый класс выдерживает до 6 тыс. кг/см кв.

Блок: 4/4 | Кол-во символов: 5791
Источник: https://tokar.guru/hochu-vse-znat/opredelenie-predela-tekuchesti-stali.html

Текучесть расплава

Текучесть расплава металла — это способность расплавленного металла заполнять литейную форму. Текучесть расплава для металлов и металлических сплавов — то же что и жидкотекучесть. (См. Литейные свойства сплавов).

Текучесть жидкости вообще и расплава в частности есть величина, обратная динамической вязкости. В Международной системе единиц (СИ) текучесть жидкости выражается в Па-1*с-1.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
  2. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
  3. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
  4. Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.
  5. Белянкин Ф.П. Энергетический предел текучести металлов. // Сборник Института строительной механики АН УССР. №9, 1948.152

Блок: 5/5 | Кол-во символов: 1229
Источник: http://www.modificator.ru/terms/sigma_t.html

Кол-во блоков: 12 | Общее кол-во символов: 17256
Количество использованных доноров: 3
Информация по каждому донору:

  1. https://tokar.guru/hochu-vse-znat/opredelenie-predela-tekuchesti-stali.html: использовано 2 блоков из 4, кол-во символов 7454 (43%)
  2. https://promzn.ru/metallurgiya/predel-tekuchesti-stali.html: использовано 3 блоков из 5, кол-во символов 4329 (25%)
  3. http://www.modificator.ru/terms/sigma_t.html: использовано 4 блоков из 5, кол-во символов 5473 (32%)

Поделитесь в соц.сетях:

Оцените статью:

Загрузка…

Понятие и определение предела текучести стали

Изделия из стали востребованы во всех отраслях народного хозяйства. Сталь используется при строительстве домов, мостов и других сооружений. При создании той или иной стальной конструкции учитываются прочностные характеристики. Одной из них является предел текучести стали. Его определение позволяет увеличить срок службы металлического изделия.

Содержание

  • Предел текучести – общее определение
  • Какие факторы изменяют предел текучести
  • Как рассчитывается величина текучести стали
  • Как проводятся испытания на производствах

Предел текучести – общее определение

В процессе эксплуатации любое сооружение испытывает нагрузки. Под влиянием атмосферных явлений и других неблагоприятных факторов стальные конструкции подвергаются комбинированным нагрузкам, к числу которых относятся сжатие, растяжение и удары.

Предел текучести

Предел текучести

Стальные элементы чаще всего используются при возведении несущих стен, на которые оказывается основная нагрузка. В целях экономии материалов конструкторы стремятся уменьшить диаметр металлической арматуры таким образом, чтобы не допустить снижения несущей способности возводимого сооружения.

Выполнить это условие можно, если на этапе проектирования сооружения произвести правильный расчет прочности и пластичности. В первую очередь при расчетах учитывается предел текучести материала. Данный параметр обозначает напряжение, при котором происходит пластическая деформация детали без увеличения нагрузки.

Предел текучести измеряется в Паскалях. Его определение позволяет рассчитать максимальную нагрузку, которую способна выдержать пластичная сталь. Превышение этого предела вызывает необратимый процесс деформации и разрушения кристаллической решетки.

Какие факторы изменяют предел текучести

Сталь – это сплав железа с углеродом, количество которого определяет свойства металла. Углерод придает сплавам твердость и прочность. Текучесть металла увеличивается, если количество углеродной добавки составляет порядка 1,2%. Такое соотношение позволяет улучшить прочностные характеристики и повысить устойчивость к высоким температурам. Увеличение содержания углерода приводит к ухудшению технических параметров металла.

Предел текучести стали 30хгса

Влияние добавок марганца и кремния

Марганец не оказывает влияния на технические свойства сплава. Его добавляют в целях увеличения степени раскисления металла и уменьшения вредного воздействия серы. Обычно его содержание не превышает 0,8%.

Добавка кремния позволяет улучшить качество сварки. Его добавляют в процессе раскисления. А общее содержание данного элемента не превышает 0,38%.

Влияние углерода на механические свойства стали

Влияние углерода на механические свойства стали

Влияние добавок серы и фосфора

Количество серы, добавляемой в сплав, оказывает влияние на его механические показатели. Увеличенное содержание серы значительно снижает пластичность, вязкость и текучесть металла. Наибольшему истиранию подвержены изделия, содержащие более 0,6% серы.

Добавление фосфора позволяет улучшить показатели текучести. Однако данный элемент способствует снижению пластичности, вязкости и общих характеристик металла. Допустимым количеством фосфора считается не более 0,025-0,044%.

Как влияют сера и фосфор на свойства стали

Как влияют сера и фосфор на свойства стали

Влияние добавок азота и кислорода

Азот и кислород относятся к неметаллическим примесям, поэтому их содержание должно быть минимальным. Если металл содержит более 0,03% кислорода, его эксплуатационные характеристики ухудшаются. Снижение пластичности и вязкости приводит к быстрому износу изделий.

Добавление азота способствует увеличению прочности стали. Но вместе с ней происходит уменьшение предела текучести материала. Если количество азота превышает допустимые значения, металлические конструкции быстро стареют за счет повышенной ломкости.

Микроструктура сплава, в составе которого присутствуют азот и кислород

Микроструктура сплава, в составе которого присутствуют азот и кислород

Влияние легирующих добавок

К легирующим добавкам относятся химические элементы, добавляемые в сплав для придания определенных свойств. К числу легирующих элементов относятся:

Влияние разных элементов на свойства стали

Влияние легирующих элементов на свойства стали

  • хром;
  • титан;
  • вольфрам;
  • никель;
  • ванадий;
  • молибден.

Для получения оптимальных результатов их добавляют все вместе, соблюдая определенные пропорции.

Как рассчитывается величина текучести стали

Первые расчеты величины текучести металла были выполнены в 30-х годах прошлого столетия советским ученым Яковом Френкелем. В их основу была положена прочность межатомных связей. Ученому удалось определить, какое напряжение требуется для начала пластической деформации простых тел.

Для расчета данной величины применяется следующая формула:

Предел текучести стали

Предел текучести стали

ττ=G/2π, где величина G является модулем сдвига, определяющим устойчивость межатомных связей.

Как физик-теоретик, Френкель предположил, что материалы состоят из кристаллов, между которыми есть пространство. Там в определенном порядке расположены атомы. Чтобы достичь пластической деформации, необходимо разорвать межатомные связи в плоскости, разделяющей половинки тела.

Ряды атомов сместятся и половинки тела разорвутся, если на них оказать напряжение, величина которого соответствует определенному значению. Если воздействие будет оказываться и дальше, атомы одной половинки потеряют связь с атомами другой половинки.

Отчасти Френкель оказался прав. Только разрушение произойдет не между половинками тела, то есть посередине, а в том месте, где структура материала неоднородна.

Для каждого вида металла существует несколько значений предела текучести.

Физический предел текучести. Данной величиной обозначают силу напряжения, при которой тело деформируется без изменения прилагаемой нагрузки.

График физического предела текучести стали

График физического предела текучести стали

Условный предел текучести. Данный термин применяют к силе напряжения, при которой значение пластической деформации материала составляет около 0,2%.

Как проводятся испытания на производствах

Для проведения испытаний, целью которых является определение текучести материала, берут цилиндрическую заготовку диаметром 20 мм и длиной более 10 мм. На детали делают насечки для получения отрезка длиной 10 мм. Сама заготовка должна быть больше этой длины для того, чтобы ее можно было захватить с двух сторон.

Поведение сталей при высоких температурах

Поведение сталей при высоких температурах

Деталь зажимают в тиски и начинают растягивать, постепенно увеличивая силу растяжения. В процессе произведения нагрузки производят замеры растущего удлинения образца. Полученные данные заносят в график, называемый диаграммой условного растяжения.

Если на заготовку оказывается небольшая нагрузка, она растягивается в обе стороны пропорционально. По мере увеличения силы растяжения достигается предел пропорциональности, после чего деталь растягивается неравномерно. Предел текучести стали определяется в тот момент, когда материал уже не может вернуться к первоначальной длине.

Существуют Государственные Стандарты и Технические Условия, в которых значения предела текучести разделены на четыре класса:

  • 1 класс – до 500 кг/см2;
  • 2 класс – до 3000 кг/см2;
  • 3 класс – до 4000 кг/см2;
  • 4 класс – до 6000 кг/см2.

Определение пластичности

Показатель пластичности является не менее важным параметром, который обязательно учитывается в процессе проектирования конструкций. Он определяется двумя параметрами:

  • остаточным удлинением;
  • сужением при разрыве.

Чтобы рассчитать остаточное удлинение, производят замер двух частей детали после разрыва. Длину каждой части складывают, а затем определяют процентное соотношение к первоначальной длине. У более прочных металлических сплавов этот показатель меньше.

Характеристики пластичности стали

Характеристики пластичности стали

Определение хрупкости

Хрупкость – это свойство, противоположное пластичности. Показатель хрупкости зависит от множества факторов. К ним относятся:

  • температура воздуха (при низких температурах хрупкость материала увеличивается);
  • увеличение скорости оказываемой нагрузки;
  • влажность воздуха и пр.

Изменение этих условий приводит к изменению показателя хрупкости. К примеру, чугун – хрупкий материал. Но если чугунную деталь зажать со всех сторон, она способна перенести значительные нагрузки. А стальной прут с насечками становится невероятно хрупким.

Диаграммы сжатия хрупких и пластичных материалов

Определение прочности

Прочность – это характеристика металла, определяющая его способность выдерживать нагрузки, не разрушаясь полностью. Для испытаний берут деталь и создают для нее условия, максимально приближенные к эксплуатационным, путем постепенного увеличения нагрузок.

Прочность стали на растяжение при изгибе

Прочность стали на растяжение при изгибе

Видео по теме: Испытание стали разных марок

Добавить комментарий