Независимое наследование могут проявлять только гены, располагающиеся в разных хромосомах (это же свойство наблюдается в случаях, когда гены размещаются в одной хромосоме, но на очень большом расстоянии).
Рекомбинация
Однако у многих живых организмов имеется несколько тысяч генов, а число хромосом гораздо меньше. Таким образом, в одной хромосоме оказывается одновременно много, или по крайней мере, несколько генов. Это так называемые сцепленные гены, которые составляют группу сцепления. Они передаются из поколения в поколение как единое целое, что определяется поведением хромосом в мейозе. В случае одновременного рассмотрения наследования нескольких генов, содержащихся в одной хромосоме, расщепления по определемым ими сцепленным признакам отклоняются от закона независимого наследования (третьего закона Менделя). Степень отклонения от менделевских соотношений зависит от расстояния между генами. Если это расстояние мало, то генный состав хромосом у потомков оказывается таким же, как у родительских особей. Принцип сохранения исходных, или родительских, сочетаний генов иллюстрирует следующая схема скрещивания:
Формула сохранения исходных генов
Это, так называемое, полное сцепление. Оно наблюдается не слишком часто. В более распространенных вариантах гены располагаются на некотором удалении друг от друга — это случай частичного их сцепления. Однако исходные комбинации генов в случае неполного сцепления могут разделяться в результате процесса, который называется кроссинговером (перекрестом хромосом). При этом возникают не только родительские, но и новые (кроссоверные, или рекомбинантные). Это еще один вид генетической рекомбинации, приводящей к увеличению разнообразия в потомстве (первый вид рекомбинации описан в статье, посвященной закону независимого наследования).
Кроссинговер
Кроссинговер проходит в профазе первого мейотического деления в то время, когда хромосомы конъюгируют. При этом происходит обмен фрагментами наследственного материала между хроматидами гомологичных хромосом, в результате чего появляются новые комбинации генов (см. рис. выше).
Численность рекомбинантных (либо кроссоверных) классов всегда будет меньше, чем нерекомбинантных, и соотношение двух классов особей как с рекомбинантными, так и родительскими сочетаниями генов и признаков всегда равно 1:1. Это свойство определяет реципрокный характер кроссинговера.
Частота кроссинговера
Величину кроссинговера вычисляют как процентное отношение общего числа рекомбинантов к суммарной численности потомства. В приведенном примере она вычисляется как [сумма особей с фенотипами А-bb , aaB- / сумма особей с фенотипами А-B-, aabb , A- bb , aaB-] x 100%. Единицей этой величины является процент (%) кроссинговера, или сантиморган (сМ).
Процент кроссинговера или сантиморган
Величина кроссинговера является условным показателем генетического расстояния между генами. Так как ее значение оказывается постоянным в большинстве случаев, ее используют для картирования хромосом — расположения генов на схеме хромосомы в определенном порядке и на строго фиксированных расстояниях. В результате этих расчетов получается генетическая карта с нанесенными на нее генами и указанными расстояниями между ними (в процентах кроссинговера).
Этим расстояниям характерно свойство аддитивности. Оно выражается в следующем: если есть три гена, которые расположенны в порядке А-В-С, то расстояние между крайними генами А и С, выраженное в процентах кроссинговера, составляет АС = АВ + ВС. Подобная аддитивность однозначно доказывает то, что гены в хромосомах располагаются в линейном порядке.
Расстояние между генами
В результате изучения морфологии хромосом (их строения и структурных особенностей) создают их цитологические карты, а при исследовании первичной структуры ДНК и некоторых ее свойств методами молекулярной биологии и генетики — физические карты. Все три вида карт имеют сходство, заключающееся в том, что гены всегда располагаются в строго определенном порядке, и их последовательность всегда сохраняется постоянной. Однако величина расстояний между генами на трех разновидностях карт неодинакова. Она наиболее приближена к реальности на физических картах, т.к. точно соответствует длине нуклеотидных последовательностей в ДНК. Отклонения от этих величин на генетических и цитологических картах определяется структурными особенностями хроматина и хромосом.
Примерные экзаменационные вопросы по теме «Основы генетики».
Перейти к оглавлению.
Задача
1. Гены B,
C и D
находятся в одной хромосоме. Между генами B и C кроссинговер
происходит с частотой 6,5 %, между генами C и D – с частотой 3,7 %. Определить
взаиморасположение генов B, C, D в хромосоме, если расстояние между генами B и
D составляет 10,2 морганиды.
Решение:
процент кроссинговера равен расстоянию между генами в морганидах.
Гены
в хромосоме располагаются линейно. Распределим их на одной линии, в
соответствии с условием задачи.
Между геном B и D – 10,2 морганиды.
Между B и C – 6,5 морганиды. Между C и D – 3,7 морганиды.
Задача
2. Гены А и С расположены в одной группе сцепления, расстояние между ними 4,6 морганиды. Определите, какие типы гамет и в каком
процентном соотношении образуют особи генотипа АаСс.
Решение:
определяем
типы гамет. У организма с данным генотипом наблюдается неполное сцепление
генов. Значит, он будет давать четыре типа гамет. Некроссоверные
– АС и ас и кроссоверные – Ас и аС.
Определяем процентное соотношение гамет. Расстояние между генами в 4,6 морганид говорит нам о том, что вероятность кроссинговера
составляет 4,6 %. Таким образом, общее количество кроссоверных
гамет составит те же 4,6 %. Поскольку таких гамет у нас два типа, рассчитываем
количество каждого из них. Получаем по 2,3 % Ас
и аС.
Итак, всего гамет – 100%. Находим общее количество некроссоверных
гамет – 95,4 %. Делим на два и получаем количество каждого типа некроссоверных гамет АС и ас – по 47,7
%.
Ответ:
данный организм будет давать четыре типа гамет. По 47,7 % некроссоверных
АС и ас и по 2,3 % кроссоверных Ас и аС.
Задача
3. При скрещивании самок
дрозофил, дигетерозиготных по генам А и В, с рецессивными по обоим генам
самцами получены следующие расщепления по фенотипу:
1. AB :Ab :aB :ab = 25 % : 25 % :
25 % : 25 %.
2. AB :Ab :aB :ab = 47 % : 3 % :
3 % : 47 %.
В каком случае наблюдается
свободное комбинирование, а в каком – сцепленное наследование? Определите
расстояние между генами А и В для случая сцепленного наследования. Обозначьте
расположение генов в хромосомах для всех случаев.
Решение: определяем тип наследования.
Свободное комбинирование будет иметь место в первом
случае, так как разные типы гамет образуются в одинаковых количествах. Это
говорит нам также о том, что гены расположены в разных парах хромосом.
Во втором случае образуется разное количество типов
гамет. Значит, мы имеем дело со сцепленным наследованием.
Определяем расстояние между генами.
Для этого находим общее число рекомбинантных потомков. Поскольку каждого типа
таких гамет образуется по три процента, то общее количество рекомбинантных
гамет составит шесть процентов. Из чего делаем вывод, что расстояние между
генами А и B
– 6 морганид и
располагаются они в одной паре хромосом.
Ответ: в первом случае – свободное комбинирование генов,
расположенных в разных парах хромосом, во втором – сцепленное наследование.
Гены A и B расположены в одной паре хромосом на
расстоянии 6 морганид.
Задача 4. У
томатов высокий рост стебля доминирует над карликовым, а шаровидная форма плода
– над
грушевидной, гены высоты стебля и формы плода сцеплены и находятся друг от
друга на расстоянии 20 морганид. Скрещено
дигетерозиготное растение с карликовым, имеющим грушевидные плоды. Какое
потомство и в каком соотношении следует ожидать от этого скрещивания?
Решение:
вводим буквенные обозначения генов. Пускай
А – ген, отвечающий за высокий рост стебля, а
– за карликовый рост. B
определяет шаровидную форму плодов, b – грушевидную форму.
Записываем
генотипы родительских форм. Они нам известны из условия задачи.
Как мы знаем, дигетерозиготная по двум
признакам особь будет давать четыре типа гамет в равном количестве. Но это в том случае, если
гены высоты стебля и формы плода находятся в разных парах хромосом. В случае же
сцепленного наследования,
то есть когда эти гены находятся в одной паре хромосом, дигетерозигота
будет образовывать только два типа гамет: AB и
ab.
Однако, в условии задачи сказано, что расстояние между генами роста и формы
плода равно 20 морганидам. Это означает, что
образуется 20 % кроссоверных гамет: 10 % Ab и
10 % aB.
Определяем количество некроссоверных гамет AB и
ab.
Общее количество гамет – 100 %. Кроссоверных
– 20 %. Значит, некроссоверных – 80 %. 40 % AB и 40 % ab.
Рассчитаем
количество потомков. Их будет четыре типа: высокого роста с круглыми плодами, высокого
роста с грушевидными плодами, карликовых с круглыми плодами и карликовых с
грушевидными плодами.
Обратите внимание – при независимом наследовании признаков мы получили бы вот
такое процентное соотношение.
В
нашем же случае, когда гены находятся в одной паре хромосом, это соотношение
будет следующим.
Ответ:
в потомстве следует ожидать 40 % особей высокого роста с круглыми плодами, 40 %
карликовых с грушевидными плодами, 10 % высокого роста с грушевидными плодами и
10 % карликовых с круглыми плодами.
Однако,
не всё так просто. Насколько слово «просто» применимо к задачам на сцепленное
наследование.
При
решении задачи мы приняли, что у одного (гетерозиготного) родителя гены A и
B находились
в одной хромосоме, а гены a
и b
–
в другой. Но у этого родителя гены могли располагаться иначе. Кроссинговер мог
произойти где-то в предыдущих поколениях. Тогда гены A и
b были бы в одной хромосоме, а гены а и B – в другой.
В таком случае соотношения гамет были бы другими. Некроссоверных
Ab
и
аB
–
по 40 %, а кроссоверных – АB и аb – по 10 %. Соответственно,
изменилось бы и процентное сочетание потомков.
Задача
5. Скрещивание между гомозиготным серым длиннокрылым самцом дрозофилы и
гомозиготной черной самкой с зачаточными крыльями
дало в F1 гетерозиготных потомков с серым телом и длинными крыльями.
При
возвратном скрещивании мух из поколения F1 с гомозиготными рецессивными
по двум признакам особями были получены следующие результаты: серое тело,
длинные крылья – 5 965, чёрное тело, зачаточные крылья – 944; чёрное тело,
длинные крылья – 206, серое тело, зачаточные крылья – 185. Определите
расстояние между генами.
Неодинаковое
расщепление в потомстве при возвратном скрещивании говорит нам о том, что это
сцепленное наследование.
Для того, чтобы определить расстояние между генами, нам нужно узнать процент
кроссинговера. Процент кроссинговера можно найти, рассчитав процент кроссоверных гамет. Находим процент кроссоверных
гамет:
Ответ:
расстояние между генами составляет 17 морганид.
Вы хотите познавать биологию и профессионально, и с удовольствием? Тогда вам сюда! Автор методики системно-аналитического изучения биологии и химии кбн Богунова В.Г. раскрывает тайны организации и функционирования живого, делится секретами мастерства при подготовке к ЕГЭ, ДВИ, олимпиадам. Объясняет авторскую технологию решения задач по генетике и молекулярной биологии
Продолжаем разбирать коварные задачи по генетике, которые будут представлены на ЕГЭ 2020. Сегодня поговорим о сцеплении генов (формы сцепления, неполное сцепление, особенности расщепления, процент кроссинговера и расстояние между генами в морганидах).
Сцепленное наследование (кратное пояснение)
Сцепленное наследование – это распределение в потомстве неаллельных генов, лежащих в одной хромосоме. В 1910 г. Томас Морган экспериментально обнаружил существование групп сцепления у дрозофилы (длина крыльев и цвет тела наследовались сцепленно). Морган предложил термин «сцепление генов» и установил, что материальной основой сцепления является хромосома, которая представляет собой отдельную материальную и функциональную единицу при мейозе. И все гены, находящиеся в одной хромосоме, связаны между собой ее субстратом.
Закон Т. Моргана о сцепленном наследовании: гены, локализованные в одной хромосоме, занимают определенное место (локус) и наследуются сцепленно. Сила сцепления обратно пропорциональна расстоянию между генами: чем больше расстояние между генами, тем меньше сила сцепления между ними и чаще образуются рекомбинантные типы гамет.
Сцепление генов приводит к более низкой частоте особей с рекомбинантными, сочетаниями признаков, чем это ожидается при независимом наследовании признаков.
Т. Морган показал, что сцепление может быть полным и неполным, нарушение сцепления происходит за счет кроссинговера.
Полное сцепление генов возможно только у тех организмов, в клетках которых кроссинговер в норме не происходит, например, в гаметах особей гетерогаметного пола (самцы дрозофилы, человека, самки птиц и др.), поскольку у таких особей половые хромосомы не гомологичны.
Кроссинговер (от англ. сross-in-gover перекрест) – перекрест хромосом, взаимный обмен гомологичными участками хромосом, происходит в профазе-1 мейоза во время конъюгации хромосом.
Вероятность кроссинговера зависит от положения генов в хромосоме: чем ближе гены друг к другу, тем вероятность кроссинговера меньше, чем дальше они друг от друга, тем эта вероятность больше. Оценивая расстояние между генами по степени сцепления, можно построить карту относительных положений локусов в хромосоме.
Расстояние между генами выражают в единицах рекомбинации, т.е. через долю скрещиваний (в процентах), приводящих к появлению новых сочетаний генов, отличных от родительских: 1 единица рекомбинации (1% кроссинговера) = 1 морганиде
Формы сцепления генов: цис-: AB/ab и транс-: Ab/aB
Секреты расщепления при неполном сцеплении
1. В F2 образуется 4 группы фенотипов, собранных попарно с примерно одинаковым числом особей (вероятностью признака).
2. Группы с большим числом особей образованы некроссоверными гаметами и несут признаки родителей.
3. Группы с меньшим числом особей образованы кроссоверными гаметами.
4. По группам с большим числом особей можно определить форму сцепления (цис- или транс-).
5. Процент кроссинговера и расстояние между генами (в морганидах) определяют по доле особей с кроссоверными гаметами (число особей в меньших группах делят на общее число особей).
Предлагаю рассмотреть линию задач на неполное сцепление генов. Условия задач я взяла из сборника КИМов В.С. Рохлова.
Задача 28(1)
У томатов высокий рост стебля доминирует над карликовым, а шаровидная форма плода — над грушевидной, гены высоты стебля и формы плода сцеплены. Скрещено гетерозиготное по обоим признакам растение с карликовым, имеющим грушевидные плоды. В потомстве получилось 320 высоких растений с шаровидными плодами, 317 карликовых растений с грушевидными плодами, 26 высоких растений с грушевидными плодами и 29 карликовых растений с шаровидными плодами. При скрещивании другого гетерозиготного по обоим признакам растения с карликовым, имеющим грушевидные плоды, получилось другое расщепление: 246 высоких растений с грушевидными плодами, 239 карликовых растений с шаровидными плодами, 31 высокое растение с шаровидными плодами и 37 карликовых растений с грушевидными плодами. Составьте схему решения задачи. Объясните, почему получилось разное расщепление.
Задача 28(2)
Скрестили высокие растения томата с округлыми плодами и карликовые растения с грушевидными плодами. Гибриды первого поколения получились высокие с округлыми плодами. В анализирующем скрещивании этих гибридов получено четыре фенотипические группы: 40, 9, 10 и 44. Составьте схему решения задачи. Определите генотипы родителей, генотипы и фенотипы потомства каждой группы в двух скрещиваниях. Объясните формирование четырёх фенотипических групп в потомстве.
Понравилась статья? Скоро будет продолжение. Самое интересное, как всегда, впереди! Успехов и удачи! До встречи на Яндекс Дзен! Не забывайте подписаться на мой канал и поставить лайк!
ВНИМАНИЕ!!!
Репетитор Богунова В.Г. с 1 сентября 2020 г. начинает онлайн-курс подготовки к ЕГЭ 2021 по химии и биологии!
Расписание занятий:
1. Пятница, 17-00 – 20-00 Мск
Профильный курс биологии (Зоология, Ботаника), 1-е полугодие.
Погружение в ЕГЭ по биологии 2021 (имитация ЕГЭ с анализом и тренингом), 2-е полугодие.
2. Суббота 10-00 – 13-00 Мск
Профильный курс биологии (Общая биология) + Курс Алгоритмики задач по генетике и молекулярной биологии (уровень «Мастер»), 1-е полугодие.
Профильный курс биологии (Человек), 2-е полугодие.
3. Суббота, 14-00 – 17-00 Мск
Профильный курс химии (Химия элементов) + Курс Алгоритмики задач по химии (уровень «Мастер»), 1-е полугодие.
Погружение в ЕГЭ по химии 2021 (имитация ЕГЭ с анализом и тренингом), 2-е полугодие.
4. Воскресенье, 10-00 – 13-00 Мск
Профильный курс химии (Общая химия) + Курс Алгоритмики задач по химии (уровень «Стартап, продолжение»), 1-е полугодие.
Профильный курс химии (Органическая химия) + Курс Алгоритмики задач по химии (уровень «Стартап, продолжение»), 2-е полугодие.
Для каждого ученика составляется индивидуальное расписание занятий (с учетом его предварительной подготовки, уровня знаний и мастерства)
О занятиях с репетитором Богуновой В.Г. вы можете познакомиться в публикациях на Яндекс Дзен:
«Загадки программы профильного курса химии для подготовки к ЕГЭ»
«Пять секретов онлайн-занятий репетитора по химии. Профильный курс»
«Загадки программы профильного курса биологии для подготовки к ЕГЭ. 1. Общая биология»
Еще больше заданий и задач вы найдете на сайте репетитора Богуновой Валентины Георгиевны
Репетитор по химии и биологии кбн В.Богунова
Явления сцепления генов в Х-хромосоме. Кроссинговер (crossing over)
Задача 1
Какие типы гамет и сколько даст организм:
а) при полном сцеплении генов А и В;
б) если расстояние между генами А и В – 12 морганид?
Решение:
а) При полном сцеплении организм: дает два типа гамет: каждой по 50%.
б) Расстояние между генами 12 м показывает, что кроме не кроссоверных гамет есть кроссоверные гаметы, причем последних будет 12%. Гаметы некроссоверные: ; их соотношение [(100% – 12%) : 2 = 44% ] по 44%. Кроссоверные гаметы: , их соотношение [ 12 : 2 = 6% ] по 6%.
При решении задачи использовались положения теории Моргана:
1) гены лежат в хромосомах;
2) при полном сцеплении гены, лежащие в одной хромосоме, наследуются только вместе;
3) при неполном сцеплении генов гены, лежащие в одной хромосоме, могут наследоваться как вместе, так и раздельно (появляются кроссоверные гаметы);
4) 1 морганида (м) = 1% кроссинговера, поэтому по расстоянию генов можно судить о количестве кроссоверных гамет (1м = 1% кроссоверных гамет).
Задача 2
Сколько типов гамет, и какие дает организм, имеющий две пары хромосом:
а) при полном сцеплении;
б) если расстояние между генами А и В равно 12 морганид?
Решение:
а) Хромосомы во время мейоза расходятся к полюсам независимо друг от друга, поэтому будет 4 типа гамет:
, по 25%.
б). Расстояние между генами 12 морганид, поэтому гаметы будут как некроссоверные, так и кроссоверные. Некроссоверные гаметы: , каждой по = 22%. Кроссоверные гаметы: , каждой по 12/4 =3%.
Задача 3
Гены А, В, и С лежат в одной хромосоме. Между генами АС кроссинговер проходит с частотой 12,7% , количество рекомбинантов по генам ВС – 23,3% , расстояние между генами АВ – 36 морганид. Построить генетическую карту по взаиморасположению этих генов в хромосоме.
Решение:
1) 1% кроссинговера равен 1 морганиде.
2) Рекомбинанты – это организмы, образовавшиеся при слиянии кроссоверных гамет. Так как гены в хромосоме лежат линейно, чертим прямую линию и откладываем расстояние между генами, которое выражено в морганидах:
Гены в хромосомах лежат линейно, в определенных местах – локусах. Одна морганида соответствует одному проценту кроссинговера или рекомбинантных (кроссоверных) особей.
Задача 4
Расстояние между генами АВ равно 24 морганиды. Какова доля генотипов:
и во втором поколении от скрещивания организмов ААвв и ааВВ?
Решение:
В Расстояние между генами АВ – 24 морганиды показывает, что эти гены неполностью сцеплены, расположены в одной хромосоме и кроссоверных особей по этим генам будет 24%.
Такие задачи решаем в виде хромосомных карт.
Кроссоверные организмы и гаметы отмечены звездочкой – (*).
Расстояние между генами – 24 морганиды показывает, что кроссоверных особей 24%. Доля каждого кроссоверного генотипа: 24 : 12 (на число кроссоверных особей) = 2%. Доля каждого некроссоверного генотипа: (100% – 24%) : 4 (на число некроссоверных особей) = 19%.
Ответ:
Доля кроссоверного генотипа: — 2%, а доля некроссоверных генотипов: — 19%.
При решении задачи использовали: закон чистоты гамет и хромосомную теорию наследственности, взаимодействие генов – не полное сцепление.
Задача 5
У перца красная окраска плода доминирует над зеленной, а высокий рост стебля – над карликовым. Гены, определяющие окраску плода и высоту стебля, лежат в одной хромосоме, расстояние между их локусами 40 морганид. Скрещено гетерозиготное по обеим признакам растение с карликовым, имеющим зеленую окраску плода.
Какое потомство и в каком соотношении можно ожидать от этого скрещивания? Какие законы генетики использовали при решении задачи и какое взаимоотношение генов наблюдается при наследовании данных признаков?
Решение:
А – ген, определяющий красную окраску плода;
а – ген, определяющий зеленную окраску плода;
В – ген, определяющий высокий рос стебля;
в – ген, определяющий карликовость;
(Расстояние между генами) SAB = 40 морганид.
Так как SAB = 40м, то гены не полностью сцепленны. В связи с тем, что ген роста стебля и окраски плодов сцеплены, генотип растений записываем в виде хромосомной карты. Допустим, что у гетерозиготной особи гены А и В пришли от одного родителя, а гены а и в от другого родителя, тогда ее хромосомная карта будет:
[Но у гетерозиготного родителя может быть и иначе: гены А и в пришли то одного родителя, а гены а и В пришли от другого родителя. В этом случае соотношение кроссоверных гамет и некроссоверных будет иное и поэтому другая фенотипическая структура потомства.]
В условии задачи сказано, что расстояние между генами равно 40 морганидам. Это означает, что кроме нормальных гамет (некроссоверных) у особи: будут кроссоверные гаметы. Некроссоверные гаметы: наблюдаются в соотношении , а кроссоверные гаметы: по 40%/2 = 20% каждой.
Второй родитель будет имеет хромосомную карту: и один тип гамет: а____в.
Рассмотрим скрещивание:
Кроссоверные гаметы и организмы в таблице отмечены: (*)
Вероятность кроссоверных особей каждого генотипа: 40%/2 = 20% ; некроссоверных особей каждого типа = 30%.
Взаимодействие генов: полное доминирование и неполное сцепление генов.
Законы генетики, которые использовали при решении задачи: закон чистоты гамет, хромосомная теория Моргана.
Задача 6
Жужелицу с коричневым и широким телом скрестили с самцом, имеющим узкое и зеленное тело. Гибриды первого поколения были коричневые с узким телом. Гибридную самку скрестили с самцом, имеющим зеленое и широкое тело. Во втором поколении получили: 55 с коричневым и 290 с зеленым телом, имеющих узкое тело, а с широким телом: 49 зеленой и 304 коричневой окраской. Написать схему скрещивания, дать цитологическое обоснование. Какое взаимодействие генов и каким законом генетики вы пользовались?
Решение:
Напишем фенотипическую схему первого скрещивания:
Из этой фенотипической схемы видно, что ген, определяющий коричневое тело, и ген, определяющий узкое тело, доминируют. Отсюда напишем дано:
Дано:
А – ген, определяющий коричневое тело;
а – ген, определяющий зеленое тело;
В – ген, определяющий узкое тело;
в – ген, определяющий широкое тело.
Из фенотипического расщепления во F2 видно, что одна группа организмов имеет по 290 и 304 особей, а вторая – 49 и 55 особей, что значительно меньше. Поэтому можно предположить, что здесь неполное сцепление генов.
Найдем расстояние между генами А и В.
Расстояние между генами выражается в морганидах – 1 морганида равна 1% кроссинговера.
Взаимодействие генов: полное доминирование, неполное сцепление. Закон генетики, которые использовали при решении задачи: закон чистоты гамет, хромосомная теория Моргана. Записывая хромосомные карты организмов – даем цитологическое обоснование.
Задача 7
Воробьи, имеющие длинные крылья и серую окраску тела, скрестили с воробьями (самцами), имеющими черную окраску тела и короткие крылья. В первом поколении все воробьи были серые и длиннокрылые. При скрещивании гибридов первого поколения с самцом из первого скрещивания, во втором поколении получили 18 – с серым телом и длинными крыльями, 1 – с черным телом и длинными крыльями, а коротких: 21 с черным телом и 2 с серым телом. Написать схему скрещивания. Какое взаимодействие генов и какие законы использовали при решении задачи?
Решение:
Из первого скрещивания можно выяснить какие гены за что отвечают: А – длинные крылья, а – короткие крылья, В – серая окраска, в – черная окраска.
Из второго скрещивания становиться ясно, что ген окраски тела и длины крыльев не полностью сцеплены.
Взаимодействие генов: полное доминирование, неполное сцепление. Закон генетики: закон чистоты гамет, хромосомная теория Моргана.
Задача 8
Определить вероятность рождения детей одновременно с обеими аномалиями и здоровых в семье, где жена страдает дефицитом глюкозо-6-фосфатдегидрогеназа (А), ее отец был гемофилик и страдал дефицитом глюкозо-6-фосфатдегидрогеназы, а мать здорова. Муж имел такой же генотип, как и отец женщины. Расстояние между генами 12 морганид. Дать цитологическое обоснование. Какими законами генетики пользовались?.
Решение:
Дано:
А – глюкозо-6-фосфатдегидрогеназа, а – норма;
h – гемофилия, H – нормальное свертывание крови;
SАВ = 12 м.
Ход решения:
Расстояние между генами 12 м говорит о том, что задача на неполное сцепление генов, поэтому решением в хромосомном исполнении. Оба гена лежат в неаллельном участке Х-хромосомы.
это некроссоверные особи, их вероятность:
= 22%.
кроссоверные особи, их вероятность: 12% : 4 = 3%
Вероятность рождения детей с обеими аномалиями: 2 • 22% + 3% = 47% ;
вероятность здоровых детей в семье: 22%.
При решении задачи применяли закон чистоты гамет, хромосомную теорию Моргана, сцепленное с полом наследование. Взаимодействие генов: полное доминирование, не полное сцепление генов.
Задача 9
Женщина, получившая аниридию (отсутствие радужной оболочки) от отца, а темную эмаль зубов от матери, вышла замуж за здорового мужчину. Какова вероятность рождения в этой семье детей с данными аномалиями, если локусы генов, определяющих эти признаки находятся в половых хромосомах на расстоянии 20 морганид.
Решение:
Дано:
А – ген аниридии;
а – ген нормы по радужной оболочке;
В – ген темной эмали зубов;
в – ген нормы;
SАВ = 20 морганид.
Это некроссоверные особи, их вероятность:
=20%.
Это кроссоверные особи, их вероятность: 20% : 4 = 5%.
Вероятность рождения детей: с обеими аномалиями – 5% • 2=10%; норма – 5% • 2=10%; с аниридией – 20% •2= 40%; с темные зубы – 20% •2 = 40%.
Задача 10
У кареглазых родителей родился голубоглазый сын, который страдал дальтонизмом и гемофилией, а также пятеро детей – дальтоники. Каковы вероятные генотипы родителей?.
Решение:
Дано:
А – карие глаза;
а – голубые глаза;
Д – нормальное зрение;
д – дальтонизм;
H – нормальное свертывание крови;
h – гемофилия.
сли у здоровых родителей родился сын дальтоник и гемофилик, то гены, определяющие эти заболевания он получил от матери через ее Х – хромосому. Кроме того эти гены у матери лежали в разных Х – хромосомах, так как пятеро детей были только дальтониками (т.е. это некроссоверные организмы – их всегда больше, чем кроссоверных). По цвету глаз родители гетерозиготные, потому что у них ребенок – голубоглазый.
Суть хромосомной теории наследования
Кроссинговер и сцепленное наследование
Биологическую роль хромосом сложно не заметить. Правила стабильности числа, парности, индивидуальности, сложное поведение мейоза и митоза укрепили биологов во мнении, что хромосомы значимы и напрямую связаны, в частности, с передачей наследственных признаков.
Если гены, определяющие комбинированные признаки, находятся в разных парах гомологических хромосом, то происходит независимое комбинирование признаков. Поэтому любой организм имеет количество генов, ограниченное числом пар хромосом, которые могут независимо комбинироваться в мейозе.
К примеру, у кукурузы насчитывается больше 500 генов, у мухи дрозофилы — свыше 1000. У человека больше 30 тысяч генов, при том, что хромосом — 10, 4 и 23 пары.
Это говорит о том, что каждая хромосома содержит огромное количество генов.
Находящиеся в одной хромосоме и образующие группу сцепления гены наследуются вместе.
Сцепленное наследование — это общее наследование генов по Томасу Хант Моргану.
Из этого положения следует, что специфика гаплоидного набора хромосом определяет количество групп сцепления.
Сцепление не всегда бывает абсолютным — к этому заключению пришел Томас Хант Морган в своих дальнейших исследованиях. Он проводил эксперименты на плодовых мушках дрозофилах и выяснил, что полное сцепление случается только в 83% случаев: у одной половины потомства были длинные крылья и серое тело (41,5%), у другой — короткие крылья и черное тело (признаки только родительских форм). 17% случаев связаны с перекомбинацией признаков: 8,5% имело короткие крылья и серое тело, а другие 8,5% — длинные крылья и черное тело.
Причина нарушения сцепления генов — в кроссинговере.
Что такое кроссинговер?
Кроссинговер — это перекрест хромосом, который происходит в профазе I мейоза.
Чем больше расстояние между генами в хромосомах, тем выше вероятность перекреста и больше количество гамет, образованных в результате перекомбинации генов. Частота кроссинговера пропорциональна расстоянию, на котором находятся гены друг от друга. Основное биологическое значение кроссинговера — в увеличении комбинативной изменчивости, которая дает материал для естественного отбора.
Если говорить о количестве, то расстояние между генами коррелирует с частотой, с которой появляются кроссинговерные организмы. В примере выше этот показатель равен 17%. Это расстояние описывает силу сцепления и обозначается процентами рекомбинации кроссинговера или морганидами.
Один процент кроссинговера = одна морганида.
У одних генов наблюдается высокий процент сцепления, а у других — почти не выявляется. При этом в варианте сцепленного наследования максимальная величина кроссенговера — не больше 50%. Если этот показатель будет выше, то пары аллелей смогут беспрепятственно комбинироваться — в таком случае кросенговер невозможно будет отличить от независимого наследования.
Процент кроссинговера учитывается при составлении генетических карт хромосом, с нанесенным на них относительным расстоянием между генами.
Биологическое значение кроссинговера сложно переоценить. Благодаря генетической рекомбинации создаются условия для образования новых комбинаций генов и обеспечивается более высокая жизнеспособность организмов в ходе эволюции.
Основные положения хромосомной теории наследования
Впервые наблюдение хромосом в гаметах и зиготах стало возможно в конце 19 века, когда появились усовершенствованные микроскопы и цитологические методы. Важную роль ядра в регулировании развития признаков организма показал в 1902 году ученый Бовери. Еще ранее, в 1882 году, ученый Флемминг описал поведение хромосом во время митоза. А в 1900 году повторно были открыты законы Менделя. Независимо друг от друга, их оценили трое ученых: Фриз, Корренс и Чермак.
Американский цитолог У. Сеттон и немецкий эмбриолог Т. Бовери, взяв за основу описанные выше данные, предположили, что хромосомы — носители наследственной информации. Так была сформулирована хромосомная теория наследственности.
Согласно этой теории, каждая пара генов находится в паре гомологических хромосом, при этом, каждая хромосома является носителем одного гена. Поскольку у каждого организма признаков намного больше, чем хромосом, то в каждой хромосоме должно находиться большое количество генов.
Автором хромосомной теории наследования признан американский генетик Томас Хант Морган, который обнаружил линейный порядок расположения генов в хромосоме.
Описанные им закономерности, которые подтвердились и углубились позже на различных объектах, получили название хромосомной теории наследования.
Вот главные положения этой теории:
- гены размещаются в хромосомах. Каждая пара хромосом — это группа сцепления генов, за счет которых осуществляется сцепленное наследование. У каждого вида число групп сцепления идентично гаплоидному числу хромосом (если речь идет о гомогаметной стати) и больше на 1 (если речь идет о гетерогаметной стати);
- у каждого гена в хромосоме своем место — локус. Отмечается линейный порядок расположения генов;
- диплоидное число хромосом сокращается вдвое (гаплоидное число) во время мейоза, который происходит при образовании гамет. Это подтверждает закон расщепления, который утверждает, что родительский генетический материал комбинируется в гаметах разным образом;
- исходя из закона независимого расщепления, расщепление материнских и отцовских наборов несцепленных генов происходит независимо друг от друга. При расположении несцепленных генов в разных хромосомах, отцовские и материнские хромосомы в ходе мейоза распределяться между гаметами случайно;
- между гомологическими хромосомами возможен перекрест (кроссинговер) или обмен генами. Об этом свидетельствует образование хиазм в процессе конъюгации гомологических хромосом в мейозе — генетический кроссинговер;
- частота кроссинговера напрямую зависит от расстояния между генами. Более частый перекрест наблюдается в случаях, если гена расположены далеко друг от друга. Для каждой конкретной пары генов частота кроссинговера — величина относительно постоянная. Один процент кроссинговера = одна морганида;
- сила сцепления между генами обратно пропорциональна расстоянию между ними;
- у каждого биологического вида свой кариотип — специфический набор хромосом.
Преподаватель биологии и химии